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Abstract: Medical image segmentation plays a critical role in accurate diagnosis and treatment
planning, enabling precise analysis across a wide range of clinical tasks. This review begins by
offering a comprehensive overview of traditional segmentation techniques, including thresholding,
edge-based methods, region-based approaches, clustering, and graph-based segmentation. While
these methods are computationally efficient and interpretable, they often face significant challenges
when applied to complex, noisy, or variable medical images. The central focus of this review is the
transformative impact of deep learning on medical image segmentation. We delve into prominent
deep learning architectures such as Convolutional Neural Networks (CNNs), Fully Convolutional
Networks (FCNs), U-Net, Recurrent Neural Networks (RNNs), Adversarial Networks (GANs), and
Autoencoders (AEs). Each architecture is analyzed in terms of its structural foundation and specific
application to medical image segmentation, illustrating how these models have enhanced segmenta-
tion accuracy across various clinical contexts. Finally, the review examines the integration of deep
learning with traditional segmentation methods, addressing the limitations of both approaches. These
hybrid strategies offer improved segmentation performance, particularly in challenging scenarios
involving weak edges, noise, or inconsistent intensities. By synthesizing recent advancements, this
review provides a detailed resource for researchers and practitioners, offering valuable insights into
the current landscape and future directions of medical image segmentation.

Keywords: image segmentation; medical image processing; deep learning; biomedical engineering;
medical imaging; diagnostic imaging

1. Introduction

Medical image segmentation is a crucial process in medical imaging, forming the
foundation for accurate diagnosis, treatment planning, and quantitative analysis across
various clinical applications [1]. It involves partitioning an image into distinct regions
that correspond to anatomical structures or pathological areas, such as organs, tissues,
or lesions [2]. This segmentation allows for precise interpretation of medical images,
supporting critical tasks such as tumor localization, organ boundary delineation, and
pre-surgical planning [3]. Given its significance, the accuracy of segmentation has a direct
impact on clinical outcomes, making it an indispensable element in the workflow of modern
healthcare systems.

For decades, traditional segmentation methods (such as thresholding [4], edge-based
techniques [5], region-based approaches [6], clustering-based methods [7], and graph-based
segmentation [8]) have been widely employed. These methods rely on predefined rules and
intensity-based operations, making them relatively efficient and interpretable. However,
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their performance often degrades when confronted with complex medical images contain-
ing noise [9], intensity variations [10], or ambiguous boundaries [11]. These limitations
underscore the need for more adaptive and robust approaches to segmentation.

In recent years, deep learning has revolutionized the field of medical image segmenta-
tion by enabling automatic feature extraction and handling of complex, high-dimensional
data [12]. Architectures such as Convolutional Neural Networks (CNNs) [13,14], Fully
Convolutional Networks (FCNs) [15], U-Net [16,17], and Recurrent Neural Networks
(RNNs) [18] have become central to this transformation, delivering superior performance
in pixel-wise segmentation tasks. Generative Adversarial Networks (GANs) [19] and Au-
toencoders (AEs) [20] have further extended the boundaries of segmentation, enhancing
both accuracy and adaptability, particularly in scenarios where traditional methods falter
due to noise or high variability in the images.

Despite these advances, deep learning also presents challenges, such as the demand
for large, annotated datasets and significant computational resources. To address these
limitations, hybrid approaches [21] combining traditional methods with deep learning have
gained momentum. These models harness the strengths of both paradigms, improving seg-
mentation performance in challenging medical images by blending rule-based techniques
with adaptive feature learning.

This review aims to offer a comprehensive exploration of medical image segmentation
techniques. It begins by critically evaluating traditional medical image segmentation
methods. It then delves into deep learning approaches, focusing on key architectures
such as CNNs, FCNs, U-Net, GANs, RNNs, and AEs and their specific contributions to
medical image segmentation. Finally, this review discusses the applications of hybrid
approaches that integrate deep learning with traditional segmentation methods in medical
image segmentation. By synthesizing recent developments, the review provides practical
insights into the strengths and limitations of these combined techniques, offering a valuable
reference for ongoing research and clinical practice.

2. Traditional Segmentation Techniques

For a long time, traditional segmentation techniques have served as the foundation of
medical image analysis, offering a range of methods that vary in complexity and applicabil-
ity. These techniques (including thresholding, edge detection, region-based segmentation,
clustering, and graph-based methods) have proven effective in many scenarios. However,
they often face limitations when dealing with the inherent complexity of medical images.
Figure 1 provides an overview of the traditional segmentation techniques discussed in
this session.
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2.1. Thresholding Techniques

Thresholding stands as a pivotal technique within the realm of image segmentation
methodologies. Its primary objective is to transmute a grayscale image into its binary
counterpart, where each pixel adopts one of two distinct values, typically represented as 0
or 1, which can be visually interpreted as black or white, respectively. Thresholding can be
more intuitively described as follows:
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B(x, y) =
{

1, i f I(x, y) ≥ T
0, i f I(x, y) < T

(1)

where

• I(x,y) is the pixel value of the grayscale image at position (x,y);
• B(x,y) is the pixel value of the binary image at position (x,y);
• T is the chosen threshold.

Within image processing, thresholding methodologies can be taxonomically bifurcated
into global and local thresholding, contingent upon the modality of threshold selection and
its subsequent application [22].

2.1.1. Global Thresholding Techniques

Global thresholding hinges on adopting a singular, invariant threshold, meticulously
ascertained from the homogeneous attributes pervasive throughout the image or inferred
from the comprehensive histogram. Typically, the global thresholding technique is em-
ployed when there is a distinct difference in the grey scale distribution between the fore-
ground (or region of interest) and the background [22]. Notable methods of global thresh-
olding encompass Ostu’s Method, Iterative Thresholding, Minimum Error Thresholding,
and Entropy-based Thresholding.

Ostu’s method: The Otsu thresholding technique determines the optimal threshold
by maximizing the variance between the grey levels of an object and its background [23].
Initially, it requires converting the image into greyscale, which consists of 256 grey levels
ranging from 0 (black) to 255 (white). The method aims to identify a grey value threshold
that separates the background (higher values) from the foreground (lower values). The
ideal threshold is where this variance is at its maximum, enhancing the distinction between
black and white in the binarized image.

Iterative thresholding: Iterative thresholding is a technique for binarizing images by
repeatedly adjusting the threshold based on the mean grey scale values of the foreground
and background [24]. Starting with an initial threshold T1 (typically the average grey value
of the image), the image is divided into two groups: pixels above T1 (background) and
below T1 (foreground). The means of these groups are calculated to derive a new threshold
T2. This process is repeated, updating T1 with T2 until the change between thresholds is
within a small tolerance T0 (usually T0 = 0.5 or 1), at which point T2 is deemed optimal [25].

Minimum Error Thresholding: The Minimum Error Thresholding technique, also
known as the Kittler–Illingworth method, operates on the premise that the pixel grey
values in an image’s foreground and background normally distribute. This method aims
to find a threshold T that minimizes the total classification error after segmentation. This
error is measured using the probability density functions of each segment, factoring in their
probabilistic magnitude and variance [26].

Entropy-based thresholding: Pun’s entropy thresholding method maximizes the a
posteriori entropy of segmented objects and backgrounds in greyscale images to enhance
information content [27].

2.1.2. Local Thresholding Techniques

Uniform thresholding methodologies may fail to yield optimal results under condi-
tions of heterogeneous illumination attributable to variables such as shadows or directional
lighting. In contrast, local thresholding techniques demonstrate enhanced suitability for
such scenarios, accommodating the non-uniform light distribution [28]. These local ap-
proaches necessitate the implementation of more sophisticated algorithms that meticulously
account for the local attributes of each segment within the image. Specifically, local thresh-
olding assigns values contingent upon the statistical parameters prevalent within each
discrete neighborhood, considering elements such as luminance, contrast, and textural
nuances. This means that each pixel point in an image is classified based on the charac-



Bioengineering 2024, 11, 1034 4 of 42

teristics of its surrounding pixels [22,29]. Among the array of local adaptive thresholding
methodologies are Niblack’s Method, Sauvola’s Method, and Bernsen’s Method.

Niblack’s Method: Niblack’s technique is a notable method in local adaptive thresh-
olding. It calculates the local mean (m) and standard deviation (s) of pixel values within a
specific window centered on each pixel [30]. The method leverages the mean to assess local
brightness and the standard deviation to gauge contrast or texture, dynamically setting
thresholds for effective image segmentation [31].

Sauvola’s Method: Niblack’s method struggles with low-texture backgrounds where
fine details may surpass the set threshold. Sauvola enhanced this approach to better
handle varying backgrounds and lighting by incorporating the dynamic range of the
standard deviation, R, into the threshold calculation. This modification allows the method
to adaptively amplify the standard deviation’s dynamic range [31].

Bernsen’s Method: Bernsen’s method focuses on adaptive segmentation, leveraging
the local contrast of pixel regions to differentiate between high-contrast areas—indicative
of edges or text—and low-contrast regions, typically homogeneous backgrounds [22]. This
approach excels at detecting subtle image variations and highlighting key features against
diverse backgrounds [32].

2.2. Edge-Based Segmentation

An edge is a boundary between two homogeneous regions and is a local variation
in the intensity of an image. Edge detection is the process of identifying and locating
sharp discontinuities in an image. In edge-based segmentation methods, the contours
of the objects in the image and the boundaries between the objects and the background
are first detected. Then, the edges are joined to form object boundaries to segment the
desired region [33]. Discontinuity-based segmentation methods can detect sudden changes
in intensity values [34]. The essence of edge detection is to detect the locations where the
image characteristics have changed.

In edge-based image segmentation techniques, the process typically unfolds in a
sequence of well-defined steps. It begins with image pre-processing, which sets the stage
for subsequent analysis. This is followed by edge detection, a crucial phase for identifying
potential boundaries within the image. Next, non-maximum suppression is applied to refine
these edge detections, emphasizing the most significant edges while diminishing weaker
ones. Subsequently, thresholding is performed, converting the gradient image into a binary
format to distinctly separate edges from non-edges. Immediately following this step is post-
processing, which further refines the segmented edges, potentially filling gaps or smoothing
irregularities. The culmination of this process is the final image segmentation, where the
image is partitioned into segments based on the identified and processed edges [35].

Edge detection is crucial in edge-based segmentation. Image edges are characterized by
two fundamental elements: direction and magnitude. Along the direction of the edge, pixel
value transitions are typically gradual. In contrast, changes in pixel values perpendicular
to the edge are more pronounced. Due to these characteristics, both first and second-order
derivatives are commonly used to describe and detect edges in images.

First-order differential operators like the Roberts Cross Operator [36], Prewitt Opera-
tor [37], Sobel Operator [38], and Canny Edge Detector [39,40] detect edges by highlighting
gradients in pixel intensities. Second-order differential operators, such as the Laplacian
Operator [41] and Laplacian of Gaussian [42], are also frequently utilized. These operators
work by convolving a specific template matrix with the pixel value matrix of the image,
effectively calculating gradients or curvatures at each pixel [43].

Each edge detection operator has distinct advantages and limitations (Table 1), making
them suitable for different application scenarios.

The Roberts Cross operator is known for its simplicity and speed due to its small
kernel size, making it particularly well-suited for less noisy images. However, it is highly
sensitive to noise and offers only moderate performance in precise edge localization.
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Table 1. Advantages and limitations of different edge detectors [44–47].

Operator Advantages Disadvantages

Roberts Cross The computation is simple and effective in noise
minimization scenarios.

Sensitive to noise and inaccurate positioning
of precise edges.

Prewitt Particularly sensitive to edge orientation Susceptible to noise and less crisp edges.

Sobel Similar to Prewitt but provides better noise suppression
while also providing moderate edge smoothing.

Edges may be too blurred and unsuitable for
accurate edge detection tasks.

Canny
Canny boasts a high accuracy in edge detection, efficiently

suppressing noise, which contributes to its ability to
precisely position edges.

Canny is computationally complex, and its
performance is highly dependent on

parameter selection.

Laplacian Accurately identifies the center of edges and is sensitive to
fine detail.

Highly sensitive to noise and does not
provide information about edge orientation.

Laplacian
of Gaussian

Preliminary Gaussian smoothing reduces the effect of
noise and provides good edge localization.

Higher computational complexity and may
miss some fine edges.

Both the Prewitt and Sobel operators utilize pixel neighborhood differencing. The Pre-
witt operator is more sensitive to edge direction, while the Sobel operator offers improved
noise suppression, although this comes at the cost of potentially blurring edges slightly.
The Canny operator, recognized for its high precision, is a multi-stage edge detection
process that effectively suppresses noise and accurately locates edges, but it requires more
computational resources [48].

On the other hand, the Laplacian operator, which uses second-order derivatives,
emphasizes image details. Although it is more prone to noise interference, it excels in
enhancing finer details. The Laplacian of Gaussian operator combines Gaussian smoothing
with the Laplacian operator to mitigate noise effects through pre-smoothing, making it suit-
able for scenarios requiring precise edge localization in noise-sensitive environments [35].

2.3. Region-Based Segmentation

In image processing and computer vision, region-based segmentation is a frequently
utilized approach. It segments images into areas that exhibit similar properties, enabling a
more nuanced analysis of the visual content [49].

Region-based segmentation in image processing and computer vision is fundamentally
guided by two key principles: pixel similarity and spatial proximity. This technique hinges
on the premise that pixels within a given region share common characteristics, such as color,
brightness, or texture, ensuring consistency within the segment. Beyond mere attribute
similarity, the spatial closeness of pixels is also a critical factor. Pixels that are adjacent or
near each other are typically more likely to be classified within the same region, reinforcing
the segmentation’s coherence [50]. Two principal methods dominate the field of region-
based segmentation in segmenting images into distinct regions based on pixel similarity:
Seeded Region Growing (SRG) and Split and Merge.

2.3.1. Seeded Region Growing

SRG, which was proposed by Adams and Bischof, stands out for its robustness,
speed, and lack of parameter tuning requirements [51]. These characteristics enable the
development of highly effective algorithms, making SRG versatile and suitable for a diverse
array of images [52].

The SRG technique in image analysis can be succinctly outlined in four key steps [53]:

1. Seed Point Selection: Initiate by identifying one or more seed points within the image.
These points are chosen based on specific attributes such as brightness, color, or
texture, which serve as a foundation for region growth;
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2. Criteria Determination: Define the parameters that will guide the region’s growth.
This could involve setting thresholds for color differences, brightness similarities, or
texture consistencies between adjacent pixels;

3. Regional Expansion: Evaluate the pixels surrounding each seed point. Based on the
established criteria, decide whether to integrate these pixels into the current region.
This inclusion leads to a gradual expansion of the region;

4. Iterative Process: Continue this procedure iteratively, adding new pixels to regions as
appropriate. The process concludes when no further pixels can be assimilated into
any region.

2.3.2. Split and Merge

The split-and-merge algorithm is a straightforward approach to region detection,
operating through a hybrid methodology [54]. This process alternates between subdividing
the initial image into a collection of disjoint regions and merging those regions. The
subdivision can be achieved either by a top-down splitting procedure or a bottom-up
merging procedure, with both operations guided by segmentation conditions defined
through a Boolean predicate P [55]. The basic process of splitting and merging includes the
following steps [55,56]:

5. Let R represent the whole image with different objects. Segmentation can be thought
of as dividing R into n subregions R1, R2, . . ., Rn as a process;

6. Split any region Rn into four almost equal regions where P(Rn) = FALSE;
7. If P(R1 ∪ R2 ∪ . . . ∪ Rn) = TRUE, then consider any two or more neighboring subre-

gions R1, R2, . . ., Rn, and then merge the n regions into a single region;
8. Repeat steps 2–3 until no further splitting and merging is possible.

2.4. Clustering-Based Segmentation

Clustering-based techniques serve as invaluable tools for image segmentation, fa-
cilitating the categorization of pixels with akin characteristics into distinct clusters. A
fundamental approach to data clustering involves the systematic division of data points
into clusters predicated on predetermined similarity or dissimilarity metrics. Subsequently,
each cluster is labeled, ensuring that elements within the same cluster exhibit greater
similarity to each other in contrast to elements residing in different clusters [33,57].

To provide a comprehensive framework for clustering methodologies, Fraley and
Raftery [58] have proposed a dichotomy, classifying clustering methods into two distinct
groups: hierarchical and partitional techniques. Figure 2 visually offers a structured
overview of the multifaceted landscape of clustering methodologies.
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2.4.1. Hierarchical Clustering

In the realm of hierarchical clustering methodologies, clusters emerge through an
iterative process of pattern segregation, employing either a top-down or a bottom-up
approach. Such algorithms tackle the clustering challenge by constructing a binary tree-like
data structure known as a dendrogram (Figure 3) [59]. Hierarchical methods bifurcate into
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two primary categories: agglomerative hierarchical clustering and divisive hierarchical
clustering [60].
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Agglomerative hierarchical clustering commences at the most granular level, with each
cluster encapsulating a singular data entity. This method progressively amalgamates pairs
of clusters, thereby cultivating a hierarchical structure from the bottom up. Conversely, the
divisive approach adopts a top-down strategy, systematically fragmenting a comprehensive
cluster, encompassing all entities, into increasingly smaller subdivisions. This division
persists until each entity is isolated into its own cluster or until pre-defined termination
criteria are satisfied [57].

Hierarchical clustering methods employ a greedy approach where once a data item is
allocated to a cluster, it is not reassessed, leading to an inability to correct misclassifications
and reduced robustness, especially in the presence of noise and outliers. These methods do
not optimize any objective function during clustering, which is problematic for overlapping
clusters and compromises performance [7]. Additionally, hierarchical clustering often
requires prior knowledge of the number of clusters, complicating cluster formation. Issues
also arise with spherical cluster formation and potential distortion of the hierarchical
structure [61]. Furthermore, the time complexity of hierarchical methods makes them
computationally expensive, particularly for high-dimensional datasets like images [7].

2.4.2. Partitional Clustering

Partitional clustering methodologies categorize data items into distinct clusters by
optimizing an objective function to enhance the similarity within each cluster relative to
others. This process measures the similarity of each data item across various clusters,
aiming to minimize a within-cluster similarity criterion, often quantified using Euclidean
distance. This objective function evaluates the efficacy of each cluster, seeking the most
representative configuration. Like hierarchical clustering, partitional clustering requires
specifying the number of clusters in advance. A key feature is the comprehensive allocation
of every data item to a specific cluster, even if an item lies far from its cluster’s center, which
can result in distorted shapes or inaccuracies, especially in noisy or outlier-heavy datasets.
Partitional clustering includes soft clustering (exemplified by Fuzzy c-means clustering
(FCM) [62,63]) and hard clustering (notably the k-means algorithm [64–66]).

The main advantage of partitioning algorithms is their ability to iteratively improve
clustering quality, a feature not found in hierarchical clustering methods [59]. However,
these algorithms have several limitations. They often lack adequate cluster descriptors,
which depend on a predetermined number of clusters. They are also highly sensitive to
initial conditions and can be significantly affected by noise and outliers. Additionally,
partitioning algorithms often struggle with clusters that vary in size and density or have
non-convex shapes [67].
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2.5. Graphic-Based Segmentation

GTAs are pivotal in the field of medical image segmentation. Consider a graph
G = (V, E), where V = {v1, . . . , vn} represents a set of vertices corresponding to image
elements, which may be pixels or regions within Euclidean space. The set E comprises edges
connecting certain pairs of neighboring vertices. Each edge (vi, vj) ϵ E is assigned a weight
ω(vi, vj) that quantifies a specific property between the two connected vertices [68]. In the
context of image segmentation, an image is divided into mutually exclusive components,
such that each component A forms a connected subgraph G′ = (V′, E′), where V′ ⊆ V
and E′ ⊆ E, with E′ containing only edges formed from nodes in V′ [69]. The union of the
vertices in all subgraphs equals the complete set of vertices in the original graph. Each
subgraph comprises a collection of vertices that exhibit a strong affinity towards each other,
indicative of their interconnectedness and similarity [70]. Figure 4 shows graphically the
relationship between image segmentation and graph partitioning.
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2.5.1. Minimal Spanning Tree (MST) Based Methods

MST is a concept from graph theory where a subset of edges forms a tree that includes
every vertex of the graph and minimizes the total weight of these edges. Specifically, for
a graph G, the spanning tree T is defined as T = (V, E′), where E′ ⊆ E. This principle is
highly relevant in image segmentation, where pixels or regions are treated as nodes, and
edges represent some measure of the difference between these nodes.

The construction of MSTs for image segmentation generally utilizes two well-known
algorithms: Kruskal’s and Prim’s. Kruskal’s algorithm [71] begins by sorting all the edges
of the graph by increasing weight and incrementally adding them to a growing forest
of MSTs, ensuring no cycles are formed. In contrast, Prim’s algorithm [72] initiates from
a single node and incrementally adds the least costly adjacent edge to expand the tree,
ensuring connectivity at minimal cost.

2.5.2. Graph Cuts

Graph cuts treat the segmentation problem as a graph partitioning problem where an
image is converted into a graph G = (V, E) with nodes V representing pixels or voxels and
edges E representing the neighborhood relationships between them.

In this graph-based segmentation framework, there are two distinct types of ver-
tices [73]. The first type, referred to as neighborhood nodes, corresponds to individual
pixels within the image. The second type comprises terminal nodes, specifically the source
(s) and sink (t), forming what is commonly known as an s − t graph. In such a graph,
the source nodes (s) typically represent the objects of interest in an image, while the sink
nodes (t) denote the background. There are also two principal types of edges in this graph
structure [74]. The first, known as n − links, connects neighboring pixels to each other
within the image, facilitating the assessment of pixel similarity. The second type, t − links,
connects the terminal nodes to these neighborhood nodes, linking each pixel to either the
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source or the sink based on predefined criteria. Table 2 provides a comprehensive summary
of the various graphic cutting methods.

Table 2. A comprehensive summary of various graph-cutting methods, delineating each method’s
cost function, optimization technique, foundational principles, and reference.

Method Cost Function Optimization Method Bias Reference

Minimal cut c(A, B|w(u, v)) Gomory–Hu’s K-way
maxflow algorithm Short boundary Wu and Leahy [75]

Ratio regions c(A,B|w(u,v))
|A|

Minimize the ratio between the
cost of the bounding contour and
the benefit of the enclosed region

Smooth boundary Cox et al. [76]

Ncut
c(A,B|w(u,v))
c(A,V|w(u,v)) +

c(A,B|w(u,v))
c(B,V|w(u,v))

Measure both the total
dissimilarity between the

different groups as well as the
total similarity within the groups

Similar weight
partition Shi and Malik [77]

Minimum
mean weight

|
∫

R f dxdy|∫
∂R gds

Globally Optimal Regions
and Boundaries Depends on f and g Jermyn and

Ishikawa [78]

Mean cut c(A,B|w(u,v))
c(A,B|1)

Global bipartition None Wang and Siskind [79]

Ratio cut c1(A,B)
c2(A,B)

Global bipartition None Wang and Siskind [80]

Region-based
Ncut

NA · c(A,B)
Totalw(A,V)

+

NB · c(A,B)
Totalw(B,V)

Consider the number of links on
a Ncut basis

Similar weight
partition Cigla and Alatan [81]

2.5.3. Markov Random Fields (MRF)

The segmentation of an image can fundamentally be described as the task of assigning
labels to pixels [82]. Within the probabilistic framework, this labeling process is modeled
using a MRF, where the optimal labels are determined through Bayesian estimation, specif-
ically using Maximum A Posteriori (MAP) estimation [83]. A significant advantage of the
MRF model is its ability to incorporate a priori information locally through factorial poten-
tials [84]. Typically, MRF models generate non-convex energy functions, the minimization
of which is essential to accurately identify the most probable segmentation according to the
MRF framework [85].

2.5.4. Shortest Path Methods

The shortest path between two vertices in a graph is defined as the path that minimizes
the sum of the weights of its constituent edges. This classical problem in graph theory
involves finding the most efficient route between two specified vertices, s and t, within a
connected weighted graph G. The objective is to identify a path from s to t such that the
total weight of the edges along the path is minimized [69].

Several well-established algorithms are commonly employed to find the shortest path
in a graph, including Dijkstra’s algorithm [86], which is optimal for graphs with non-
negative weights; Bellman–Ford’s algorithm [87], which can handle graphs with negative
weights; and Floyd–Warshall’s algorithm [88,89], suitable for computing shortest paths
between all pairs of vertices in a weighted graph.

3. Deep Learning in Medical Image Segmentation

While traditional segmentation techniques have been widely used in various medical
imaging tasks, their limitations, particularly when handling complex and high-dimensional
data, have driven the development of more advanced methods. Deep learning, with its
capacity to automatically learn features from data, has emerged as a powerful tool to
overcome these challenges and enhance segmentation accuracy in complex medical images.
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Session 3 provides a comprehensive overview of deep learning techniques, including
Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net Ar-
chitecture, Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs)
and Autoencoders (AEs). It will also explore the application of each of these deep-learning
techniques to medical image segmentation. Finally this session will discuss some of the
current challenges in deep learning.

3.1. Overview of Deep Learning Techniques

Deep learning models are deep artificial neural networks composed of an input layer,
an output layer, and multiple hidden layers [90]. Various deep-learning architectures have
become dominant in the field, with CNNs serving as the foundation for most segmentation
models. Section 3.1 provides an overview of the primary deep-learning techniques used in
medical image segmentation.

3.1.1. Convolutional Neural Networks (CNNs)

CNNs [13] are classical models resulting from the integration of deep learning and
image processing technologies. As one of the most representative neural networks in deep
learning, CNNs have made numerous breakthroughs in image analysis and processing. The
predecessor of CNNs is the neocognitron, proposed by Fukushima [91], inspired by Hubel
and Wiesel’s [92] hierarchical receptive field model of the visual cortex. LeCun et al. [93]
further developed the modern CNN architecture for document recognition (Figure 5),
which evolved into LeNet-5, a multilayer artificial neural network capable of classifying
handwritten digits.
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Figure 5 illustrates the architecture of a typical CNN used for image tasks. The
core structure of a CNN consists of three main components: the convolutional layer,
the pooling layer, and the fully connected layer [94]. The process begins with an input
image, which is passed through multiple convolution layers (represented by the green
boxes). In these layers, various convolutional filters are applied to extract key features
from the image, such as edges, textures, and patterns. After each convolution, the image
is downsampled using pooling layers (blue boxes), which reduce the spatial dimensions
of the feature maps, helping to retain essential information while reducing computational
complexity. This sequence of convolution and pooling is repeated multiple times to capture
increasingly complex and abstract features. Finally, the network flattens the feature maps
and passes them through fully connected layers (yellow boxes), where the learned features
are combined to make a high-level decision, generating an output, typically in the form of
a classification label or prediction.

Most notably, Krizhevsky et al. [95] introduced a classical CNN architecture known
as AlexNet, which demonstrated significant improvements over previous approaches in
image classification tasks. The success of AlexNet spurred the development of many
subsequent models aimed at enhancing performance, with four representative architectures
being ZFNet [96], VGGNet [97], GoogleNet [98], and ResNet [99].
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A non-linear activation function, such as ReLU (Rectified Linear Unit), is often applied
after the convolutional layer to introduce non-linearity, allowing the network to learn
complex patterns. In traditional CNN architectures, fully connected layers are used in
image classification tasks to map high-dimensional features to output categories.

While traditional CNNs are primarily used for image classification, where the goal is to
assign a category label to the entire image, image segmentation requires assigning a label to
each pixel, necessitating adjustments to CNN architecture [100]. The fully connected layers
typically used for classification are replaced with fully convolutional networks (FCNs) to
enable pixel-level predictions [90]. This allows the network to not only classify the entire
image but also predict the class of each pixel (e.g., tumor, background, or organ), enabling
precise image segmentation.

3.1.2. Fully Convolutional Networks (FCNs)

FCNs are a specialized form of CNNs designed for dense prediction tasks, such as im-
age segmentation. The concept of FCNs was first introduced by Long et al. [15] specifically
for image segmentation. Unlike traditional CNNs, which rely on fully connected layers for
classification tasks, FCNs remove the fully connected layers and use only convolutional
layers, enabling pixel-level predictions. The process begins with standard convolutional
layers that extract features from the input image, detecting various patterns from low-level
features like edges to more complex shapes in deeper layers. Following convolution, pool-
ing layers reduce the spatial dimensions of the feature maps, effectively downsampling the
image while summarizing key features.

In FCNs, fully connected layers are replaced by fully convolutional layers, allowing
the network to retain spatial dimensions and predict the category of each pixel (e.g., skin
lesion segmentation [101], brain tumor segmentation [102], or retinal blood vessel segmen-
tation [103]) rather than classifying the entire image as one label. After feature extraction
and downsampling, FCNs use upsampling techniques such as transposed convolution
(deconvolution) or bilinear interpolation to restore feature maps to the original image
resolution. This produces a dense output with the same spatial dimensions as the input
image, enabling precise pixel-level segmentation [104]. Advanced versions introduce skip
connections to combine low-level and high-level features, improving the preservation of
boundary details in the segmentation map [94].

As shown in Figure 6, the FCN architecture begins with the input image, which passes
through a series of convolutional layers to progressively extract features at different levels
of abstraction. These features are then downsampled before being restored to their original
resolution through upsampling techniques. The final output is a segmentation map, where
each pixel is classified according to its predicted label.
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3.1.3. U-Net Architecture

Based on FCNs, Ronneberger et al. [16] developed the U-Net network (Figure 7)
for biomedical image segmentation, which has become widely used in the field since
its introduction.
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Figure 7 illustrates the U-Net architecture, which is widely used for medical image
segmentation. The network has a U-shaped structure, with an encoder on the left that
captures features through convolutional and max-pooling layers and a decoder on the right
that restores the original resolution using up-convolution layers. Skip connections between
the encoder and decoder ensure that important high-resolution features are retained, lead-
ing to more accurate and detailed segmentation results. The final output is a segmentation
map that classifies each pixel in the input image [15]. U-Net’s suitability for medical image
segmentation lies in its ability to combine low-level and high-level information, where
low-level information enhances accuracy and high-level information helps extract complex
features [104].

The improvement of U-Net has become a prominent research focus in medical im-
age segmentation, leading to the development of numerous variants. Cicek et al. [105]
introduced a three-dimensional (3D) U-Net model aimed at enriching spatial information
for volumetric images while retaining the original strengths of FCN and U-Net. Milletari
et al. [106] proposed the V-Net, a U-Net structure adapted for 3D data, which utilizes the
Dice coefficient loss function instead of the traditional cross-entropy loss. Zhang et al. [107]
introduced Residual U-Net (ResU-Net), where residual connectivity helps mitigate the
vanishing gradient problem in deep neural networks, making the network easier to train.
Oktay et al. [108] proposed an Attention U-Net, which incorporates an attention mechanism
into U-Net, allowing the network to adaptively focus on critical regions in the image while
ignoring irrelevant areas. The attention mechanism learns the weights to automatically
emphasize pixels crucial to the segmentation task during feature extraction.

3.1.4. Recurrent Neural Networks (RNNs)

RNNs were originally designed to process sequential data, such as text and time-
series data, due to their “memory” properties that capture temporal dependencies in
input data [109]. However, standard RNNs struggle with long sequential data due to the
gradient vanishing problem, which also affects image segmentation tasks. To address this,
researchers often use LSTM (Long Short-Term Memory) [110] or GRU (Gated Recurrent
Unit) [18], both of which are variants of RNNs that enhance memory capabilities.

LSTM is a specialized RNN structure that captures temporal dependencies by intro-
ducing gates—specifically the forget gate, input gate, and output gate—which control
the flow of information. This structure allows LSTM to effectively retain long-range



Bioengineering 2024, 11, 1034 13 of 42

dependency information, which is crucial when processing long-distance pixel depen-
dencies in large images. For example, when segmenting complex liver or heart images,
distant tissue and boundary information can be maintained effectively by the LSTM
network. GRU, a simplified version of LSTM, contains only two gates—the reset gate
and the update gate—reducing computational complexity. Despite its simpler struc-
ture, GRU performs comparably to LSTM in many tasks and is particularly suitable for
resource-limited applications.

3.1.5. Generative Adversarial Networks (GANs)

GANs have shown great promise in various computer vision tasks, including image
segmentation. The concept of GANs was first introduced by Goodfellow et al. [19] for
synthesizing images from noise. Figure 8 illustrates the structure of GANs, which comprise
two primary components: the generator and the discriminator. The generator network
takes random noise as input and generates synthetic images that mimic real ones. In
contrast, the discriminator network receives both real images and the synthetic images
produced by the generator, and its task is to distinguish between the two. The discriminator
outputs a prediction of whether the input is “real” or “fake”. During training, the generator
continuously improves by creating increasingly realistic images to deceive the discriminator,
while the discriminator simultaneously enhances its ability to correctly identify real versus
fake images. This adversarial process results in the mutual improvement of both networks,
ultimately driving the overall performance of the GAN framework.
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Generators in GANs typically optimize two types of losses: adversarial losses and
pixel-level losses, such as L2 or cross-entropy [111]. L2 loss [112] measures the difference
between predicted pixel values and the ground truth, penalizing large deviations, and is
useful for regression tasks like segmentation. Cross-entropy loss [113] is commonly used
for classification tasks and evaluates how well the predicted pixel class (e.g., tumor or non-
tumor) matches the actual class. By combining these losses, the generator is encouraged to
not only produce visually realistic segmentation masks but also ensure that each pixel is
correctly labeled, resulting in accurate and consistent outputs.

3.1.6. Autoencoders (AEs)

AEs [114] are unsupervised learning algorithms used for representation learning, di-
mensionality reduction, and feature extraction. Figure 9 illustrates the generic architecture
of AEs. The Autoencoder consists of two main components: the encoder and the decoder.
The encoder compresses the input image into a latent representation, which captures the
most important features of the input in a lower-dimensional space. This latent representa-
tion acts as a compressed code that retains critical information about the input. The decoder
then takes this latent representation and reconstructs the input image as closely as possible
to its original form. The process allows the Autoencoder to learn efficient representations
of the input data, which can be useful for tasks such as image denoising, compression, or
feature extraction.

Although originally designed for tasks such as image compression and denoising, the
architecture of autoencoders is also well-suited for image segmentation, where the objective
is to classify each pixel in an image.
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To enhance the performance of basic autoencoders for segmentation tasks, variants
such as Convolutional Autoencoders (CAEs) [115], Variational Autoencoders (VAEs) [20], and
SegNet [116] have been developed, demonstrating significant potential in image segmentation.

3.2. Challenges and Limitations of Deep Learning

Despite the considerable advancements that deep learning has brought to medical
image segmentation, it still faces several notable challenges and limitations compared to
traditional segmentation techniques. One of the primary constraints is the reliance on large,
annotated datasets [117]. Deep learning models, particularly CNNs and GANs, require
substantial amounts of labeled training data to effectively learn meaningful representations.
However, in the context of medical imaging, obtaining such annotated datasets is both
time-intensive and costly, as it necessitates expert input. To mitigate the challenge posed
by deep learning’s dependence on large, annotated datasets, several strategies have been
developed. One such approach is transfer learning [118], where models pre-trained on
large, generalized datasets (e.g., ImageNet [119]) are fine-tuned on smaller, domain-specific
medical datasets. This enables the model to leverage knowledge from a broader dataset,
reducing the need for extensive labeled data in the specific task of medical image segmen-
tation. Another key strategy is data augmentation [120,121], which involves artificially
expanding the dataset by applying transformations such as rotation, flipping, and scaling.
This allows the model to be exposed to a more diverse set of inputs without requiring
additional labeled examples. Additionally, synthetic data generation using models like
GANs can produce realistic medical images along with corresponding annotations, further
addressing the scarcity of labeled data [122]. By contrast, traditional methods such as
thresholding and edge detection often demand significantly less training data or can be
directly applied using predefined rules.

Another critical challenge lies in the high computational demands of deep learning
models [123]. Architectures like CNNs, FCNs, and GANs require significant computational
power, including high-performance GPUs, to train effectively. This can present a barrier
in resource-constrained environments, where traditional methods, with their lower com-
putational overhead, are more readily deployable. Furthermore, deep learning models
typically entail prolonged training times, especially when processing large 3D medical im-
ages, a challenge that many conventional segmentation approaches do not face. Several key
strategies have been widely adopted to address the high computational demands of deep
learning models. One approach is model compression [124], which includes techniques
such as pruning and quantization. These methods reduce the network size by eliminating
redundant parameters and compressing the weights, thereby lowering computational costs
without significantly compromising accuracy. Another solution involves using lightweight
architectures [125], such as MobileNetV2 [126] and EfficientNet [127], which are specifically
designed for efficiency, offering strong performance with reduced computational resource
requirements. Additionally, distributed and parallel computing techniques [128], including
the use of GPUs [129] and TPUs [130], can significantly accelerate the training process by
distributing computations across multiple processors. Collectively, these strategies enable
deep learning models to perform complex tasks, such as medical image segmentation, with
reduced computational overhead, making them more feasible for real-world applications.

Interpretability is another key limitation of deep learning models [131]. While tradi-
tional methods, such as edge-based or region-based segmentation, produce transparent,
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rule-based outputs, deep learning models are frequently perceived as “black boxes”. Com-
plex models, including AEs and GANs, extract intricate features from the data, yet their
decision-making processes are often opaque. This lack of interpretability poses particular
challenges in clinical settings, where understanding the rationale behind a segmentation
outcome is crucial for medical professionals. Several strategies have emerged to improve
transparency and interpretability. One prominent approach is the use of attentional mecha-
nisms [132], which allow the model to focus on the most relevant parts of the input data
and provide insights into which areas the model has considered in its decision-making
process. Another technique is Layer-Wise Relevance Propagation (LRP) [133], which traces
predictions through network layers to understand which input features contribute most to a
particular output. In addition, interpretable agent models [134], such as decision trees [135]
or linear models [136], can be trained based on the predictions of deep learning models to
provide a simpler and more understandable explanation of the decision-making process.

Finally, deep learning models often struggle with generalization when applied to
unseen data [137]. Traditional, rule-based methods tend to demonstrate more consistent
performance across different datasets, whereas deep learning models are prone to overfit-
ting, particularly when trained on datasets with limited variability [104]. Overfitting is a
common challenge in deep learning, and several approaches have been proposed to address
it, as discussed in the studies reviewed in Section 3.3. For instance, Rehman et al. [138] effec-
tively employed dropout and regularization techniques in their BU-Net model to mitigate
overfitting in brain tumor segmentation, leading to improved performance across different
MRI datasets. Similarly, Chen et al. [139] utilized data augmentation and integrated learn-
ing methods to enhance the generalization of liver tumor segmentation models. In retinal
vascular segmentation, Park et al. [103] introduced an innovative GAN-based adversarial
training approach, which reduces overfitting by balancing generators and discriminators,
thereby improving segmentation robustness across multiple datasets. These and other
methods discussed in Section 3.3 demonstrate that while overfitting remains a challenge, it
can be effectively managed with strategies tailored to specific tasks and datasets, ensuring
better model generalization.

3.3. Applications of Deep Learning in Medical Image Segmentation

In the field of medical image segmentation, deep learning has demonstrated remark-
able success in overcoming the challenges associated with diverse anatomical regions
and pathological conditions. By automatically extracting complex features from medical
images, deep learning has substantially improved segmentation accuracy, particularly in
cases where traditional methods falter due to variability in intensity, shape, and texture.

This section focuses on the application of deep learning techniques in the last five years
in the segmentation of seven key anatomical regions: brain tumors, breast, liver tumors,
lungs, prostate, retinal vessels, and skin lesions. These regions are among the most clini-
cally significant, where precise segmentation is essential for disease detection, treatment
planning, and outcome monitoring. For each anatomical area, we will explore how deep
learning architectures have been employed to enhance segmentation performance, address-
ing the specific challenges and complexities unique to each region.

To enable a standardized comparison of the segmentation techniques reviewed in
this paper, a consistent set of evaluation metrics, including Dice Similarity Coefficient
(DSC), Jaccard Index (IOU), Recall, Accuracy, Sensitivity (SE), and Specificity (SP). These
metrics were chosen due to their widespread acceptance in the field of medical image
segmentation, allowing for consistent and objective performance evaluation across various
methods. They were consistently mentioned for cases in Sections 3.3.1–3.3.7, and Table 3
summarizes the performance of deep learning-based segmentation methods applied to
different anatomical regions using publicly available medical imaging datasets. This
comparison underscores the strengths and limitations of each technique under a unified
evaluation framework, providing clearer insights into their applicability across specific
clinical and research scenarios.
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Table 3. Performance summary of deep learning-based segmentation methods on public medical imaging datasets (TC: Tumor Core, WT: Whole Tumor, ET:
Enhanced Tumor).

Anatomical Region Deep Learning Method Dataset DSC IOU Recall Accuracy SE SP

Brain tumour

CNN models [140] BraTS dataset / 0.633 / 0.927 / /

Patch-wise U-Net [141] OASIS dataset 0.93 0.877 / / / /

BU-Net [138] BraTS 2017 and 2018 datasets
TC: 0.901
WT: 0.837
ET: 0.788

/ / / / /

ACU-Net [142] BraTS 2015, 2018, and 2019 datasets
WT: 0.9273
ET: 0.8429
TC: 0.9580

/
0.9415
0.8119
0.7856

0.9652
0.9054
0.9248

/ /

AGResU-Net [143] BraTS 2017–2019 datasets
TC: 0.787
WT: 0.876
ET: 0.745

/ / / / /

Inception U-Det [144] BraTS 2020, 2018, and 2017 datasets 0.868 0.777 / 0.988 / /

ME-Net [145] BraTS 2020 dataset
TC: 0.74
WT: 0.88
ET: 0.70

/ / /
0.742
0.905
0.724

0.999
0.999
0.999

AFP-Net [146] BraTS 2013 dataset
TC: 0.73
WT: 0.85
ET: 0.67

/ / / / /

Breast

SK U-Net CNNs [147] UDIAT, OASBUD, and BUSI datasets 0.701 / / 0.965 / /

CNNs [148] DSprivate42 and DSpublic88 datasets 0.9578 / / 0.9897 0.9549 0.8549

Connected U-Nets [149] CBIS-DDSM, INbreast datasets 0.9109 0.839 / / / /

Expanded U-Net [150] Breast ultrasound image 0.905 0.827 / / / /

MF U-Net [151] BUSIS datasets 0.9535 0.9112 0.9421 / / /

U-Net [152] Kaggle dataset / / / 0.942 / /

GG-Net [153] DAF’s dataset 0.954 0.912 0.957 0.951 / /

U-Net [154] TCGA-BRCA dataset 0.680 / / / / /

SMU-Net [155] BUS datasets 0.8078 0.7012 / 0.7474 0.8933 /

ASSGAN [156] DBUI, OASBUI, SPDBUI and SDBUI 0.8319 0.7123 / 0.9589 / /
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Table 3. Cont.

Anatomical Region Deep Learning Method Dataset DSC IOU Recall Accuracy SE SP

Liver tumour

Modified SegNet [157] 3D-IRACDb dataset / 0.937 / 0.988 / /

CEDCNN [158] 3DIRCADb dataset 0.9522 / / / / /

ResU-Net [159] 3D-IRCADb01 dataset 0.97 / / / / 0.9618

Dilated convolutions [160] 3DIRCADb dataset 0.9638 / / / / /

DRAUNet [139] LiTS, 3DIRCADb, and Sliver07 0.972 / / / / /

Mask-RCNN [161] CT images / / / 0.878 / /

CEDRNN [162] 3DIRCADb dataset 0.952 0.91 / 0.957 / /

UNet++ network [163] MRI images 0.915 / / / / /

Lung

Attention U-Net [164] JSRT dataset 0.975 / / / / /

Mask R-CNN [165] CT scans 0.97 / / 0.9768 0.8772 0.8670

Residual U-Net [166] LUNA16 VESSEL12, and HUG-ILD 0.9898 0.9798 0.9898 0.9898 / /

GAN-based model [167] CXR datasets 0.9740 0.943 / / / /

3D-Res2Unet [168] LUNA16 public dataset 0.953 / 0.991 / / /

DC-U-Net model [169] CT images 0.9743 0.9627 0.9699 0.9731 /

ResBCDU-Net [170] LIDC-IDRI database 0.9731 / 0.9701 0.9758 / /

LGAN [171] LIDC-IDRI dataset 0.985 0.978 / / / /

EfficientNet-B4 [172] Benchmark lung segmentation 0.978 0.957 / 0.989 0.9795 0.989

Prostate

2D U-Net model [173] Public dataset PROMISE12 0.89 / / / / /

Deeply supervised U-Net [174] Promise12 public dataset 0.9067 / / / / /

3D–2D Hybrid UNet [175] Prostate mpMRI 0.898 / / / / /

3D AlexNet [176] MRI images 0.9768 / / / 0.896 0.902

MetricUNet [177] PROMISE 2012 dataset 0.9 / / / 0.89 /

HF-Unet [178] CT images 0.88 / / / 0.88 /

3D PBV-Net [179] PROMISE 12 and TPHOH 0.9613 / / 0.9797 / /

SegDGAN [180] PROMISE12 public dataset 0.8869 / / / / /
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Table 3. Cont.

Anatomical Region Deep Learning Method Dataset DSC IOU Recall Accuracy SE SP

Retinal Vessel

RCED-Net [181] DRIVE, CHASE_DB1, and STARE / / / 0.9333 0.8419 0.9801

M-GAN [103] DRIVE, STARE, HRF, and
CHASE-DB1datasets / 0.7198 0.8324 0.9761 0.8324 0.9938

CNN-based method [182] DRIVE and STARE datasets / / / 0.9716 0.8096 0.9841

SA-Unet [183] DRIVE and CHASE_DB1 datasets / / / 0.9724 0.8573 0.9835

Lightweight Attention
CNN [184] DRIVE, STARE, AND CHASE_DB1 / / / 0.9627 0.8050 0.9817

Pyramid U-Net [185] DRIVE and CHASE-DB1 datasets / / / 0.9615 0.8213 0.9807

CRAUNet [186] DRIVE and CHASE_DB1 datasets / / / 0.9659 0.8259 /

ResDO-U-Net [187] DRIVE, STARE, and CHASE_DB1 / / / 0.9623 0.8015 0.9807

Wave-Net [188] DRIVE set, STARE set, and CHASE / / / 0.9592 0.8046 0.9798

Skin lesion

UNet-SCDC [189] ISIC Skin Lesion Challenge datasets 0.885 0.824 / 0.929 0.953 0.911

IFCN [190] IEEE ISBI 2017 Challenge and PH2 0.9302 0.871 / 0.9692 0.9688 0.9531

CNN [191] ISBI 2016 and 2017 datasets 0.862 0.783 / 0.938 0.870 0.964

Res-Unet [192] ISIC 2017 dataset 0.924 0.854 / / / /

CNN [193] HAM10000 dermoscopic image / / 0.8480 0.961 / /

MSAU-Net [194] ISIC 2017, ISIC 2018, and PH2 0.9377 0.9617 / 0.9617 0.943 0.9698

U-Net [195] PH2 dataset / 0.976 / 0.977 / /

Ms RED [196] ISIC 2016, 2017, 2018, and PH2 0.8999 0.8345 0.9049 0.9619 / /
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3.3.1. Brain Tumour

Brain tumor segmentation involves identifying malignant brain tissue and automat-
ically labeling regions according to tumor type. Accurate segmentation is crucial for
preserving healthy tissue while targeting tumor cells during treatment.

To address the issue of small brain tumors being lost during downsampling, Daimary
et al. [140] introduced three hybrid CNN models: U-SegNet, Res-SegNet, and Seg-UNet.
These models were designed for high-accuracy automatic segmentation of brain tumors
from MRI images. Trained and validated on the BraTS dataset, they achieved average
accuracies of 91.6%, 93.3%, and 93.1%, respectively, demonstrating superior performance
compared to existing CNN models.

To tackle U-Net’s limited memory for high-resolution input images and difficulty
retaining local details, Lee et al. [141] proposed a patch-wise U-Net architecture for au-
tomatic brain structure segmentation in structural MRI. This method divides MRI slices
into non-overlapping patches, which are fed into the network along with ground truth
data for training. The patch-wise U-Net achieved an average DSC of 0.93, outperforming
conventional U-Net and SegNet-based methods by 3% and 10%, respectively.

Rehman et al. [138] improved segmentation accuracy with the BU-Net model, which
incorporated two new modules: Residual Extended Jumps (RES) and Wide Context (WC).
The WC module enhances segmented region reconstruction, while the RES module prevents
information degradation. BU-Net, evaluated on BraTS 2017 and 2018 datasets, achieved
Dice scores of 0.901 for Tumor Core (TC), 0.837 for Whole Tumor (WT), and 0.788 for
Enhanced Tumor (ET), showing significant improvements over U-Net, with gains of 7%,
6.6%, and 8.5%, respectively.

To address challenges such as high heterogeneity and low resolution in multimodal
MRI images, Tan et al. [142] developed ACU-Net, a multimodal segmentation method that
uses deep separable convolutions to enhance computational efficiency. Dense residues and
full-size skip connections were added to stabilize loss and improve global feature fusion.
Additionally, the active contour model was employed to mitigate noise and edge blurring,
achieving Dice scores of 0.9273 for WT, 0.9580 for TC, and 0.8429 for ET on BraTS datasets.

Zhang et al. [143] proposed AGResU-Net, an attention-gated residual U-Net model
that integrates residual modules and attention gates into the U-Net architecture. Attention-
gated units were added in skip connections to highlight salient features and filter out
irrelevant noise. AGResU-Net outperformed U-Net and ResU-Net on benchmarks from
BraTS 2017–2019.

Aboussaleh et al. [144] developed Inception U-Det, an improved U-Net architecture
inspired by U-Det, which replaces convolutional blocks with inception blocks. This mod-
ification reduces dimensionality, shortens execution time, and mitigates the vanishing
gradient problem. Inception U-Det achieved Dice scores of 87.9%, 85.5%, and 83.9% on
BraTS 2020, 2018, and 2017 datasets, respectively.

To address the limitations of conventional V-Net in multimodal segmentation, Zhang
et al. [145] proposed the Multi-Encoder Network (ME-Net), which uses four separate
encoders to handle different MRI modalities. ME-Net processes multiple inputs simulta-
neously, extracting features unique to each modality. It achieved average Dice scores of
0.70249 for ET, 0.88267 for WT, and 0.73864 for TC using the BraTS Challenge validation
tool. Similarly, Guan et al. [197] introduced 3D AGSE-VNet, incorporating Squeeze-and-
Excite (SE) modules and Attention-Guided Filters (AG) to enhance channel information
and suppress noise. This model achieved Dice scores of 0.68 for ET, 0.85 for WT and 0.69
for TC on the BraTS 2020 dataset.

Zhou et al. [146] addressed spatial information loss in traditional convolutional net-
works with AFPNet, a 3D fully convolutional network that integrates a pyramid of convo-
lutional features for brain tumor segmentation. Tested on the BRATS 2013 dataset, AFPNet
achieved Dice scores of 0.68 for ET, 0.86 for WT, and 0.73 for TC. Sun et al. [102] designed a
novel 3D fully convolutional model using multipath convolutional layers, which extract
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features from the input data and fuse them in transposed convolutional layers. Tested on
BraTS 2018, the model achieved Dice scores of 0.90 for WT, 0.79 for TC, and 0.77 for ET.

3.3.2. Breast

Breast cancer is one of the most prevalent diseases affecting women globally. To tackle
the challenge of automatic segmentation, which is complicated by variations in breast
lump size and image features, Byra et al. [147] developed a selective kernel (SK) U-Net
convolutional neural network that efficiently segments breast lumps in ultrasound images.
The method is based on a U-Net model enhanced with a selective kernel, allowing the
network to automatically adjust receptive fields for improved segmentation performance
compared to the standard U-Net. The average Dice scores for segmentation on the UDIAT,
OASBUD, and BUSI datasets were 0.780, 0.676, and 0.646, respectively.

Piantadosi et al. [148] enhanced their previous U-Net deep convolutional neural
network for breast segmentation in MRI, originally proposed in 2018 [198], by incorporating
an efficient CNN integration and a voter mechanism to exploit DCE multiplanarity for
3D breast tissue segmentation. The median Dice similarity indices in the DSprivate42
and DSpublic88 datasets were 96.60% (±0.30%) and 95.78% (±0.51%), respectively, with
p < 0.05 and 100% tumor lesion coverage.

Inspired by the success of U-Net and its variants, Baccouche et al. [149] proposed
a new architecture for segmenting breast mass tumor regions of interest (ROIs) by con-
necting two simple U-Nets, referred to as Connected-U-Nets. This architecture provides
two cascaded encoders and decoders that are alternately connected through skip connec-
tions. Additionally, it integrates Atrous Spatial Pyramid Pooling (ASPP) to emphasize
contextual information. The proposed architecture achieved high Dice scores of 89.52%,
95.28%, and 95.88%, along with Intersection over Union (IoU) scores of 80.02%, 91.03%,
and 92.27% on the CBIS-DDSM, INbreast, and private datasets, respectively.

To improve the performance of the U-Net model, Guo et al. [150] developed a fully
automated real-time image segmentation and recognition system for breast ultrasound-
guided intervention. They analyzed practical scenarios for semantic segmentation of
breast ultrasound images using U-Net and added a dropout layer to reduce texture detail
redundancy and prevent overfitting. The system achieved a mean Dice coefficient of 90.5%
(±0.02) and a mean IoU of 82.7% (±0.02) with an extended training method. This approach
facilitates accurate and automatic multi-class recognition of breast ultrasound images.

Addressing issues related to multi-scale and edge blurring in breast lesion segmenta-
tion, Li et al. [151] proposed a deep learning architecture called Multi-scale Fusion U-Net
(MF U-Net), based on U-Net. The architecture includes a fusion module (WFM) for seg-
menting irregular breast lesions, a multi-scale dilated convolution module (MDCM) to
handle segmentation challenges posed by large-scale variations, and a focal-DSC loss to
address class imbalance in breast lesion segmentation. The MF U-Net achieved state-of-the-
art segmentation results on the BUSIS dataset, with a recall of 0.9421, precision of 0.9345,
FPs/image of 0.0694, DSC of 0.9535, and IoU of 0.9112.

Robin et al. [152] proposed a U-Net-based architecture for tumor region segmentation
in histopathological images. The network relies on a fully convolutional design that reduces
the need for extensive training data and improves segmentation accuracy. Their method
achieved an overall accuracy of 94.2% with a small dataset.

Xue et al. [153] introduced GG-Net, a CNN with a Global Guidance Block (GGB) de-
signed to address CNN’s limited ability to capture long-range dependencies in ultrasound
images. The GG-Net aggregates non-local features in the spatial and channel domains,
guided by multilayer feature integration, to learn robust non-local contextual information.
Additionally, a Breast Lesion Boundary Detection (BD) module was developed within the
framework to enhance boundary quality. GG-Net outperformed state-of-the-art segmenta-
tion methods in experimental evaluations on two ultrasound breast lesion datasets.

To reduce workload and improve segmentation accuracy in four-dimensional (4D)
DCE-MRI, Khaled et al. [154] proposed an automated breast lesion segmentation method
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based on a U-Net framework. This method uses an ROI-guided, 3D patch-based U-Net
previously proposed by Khaled [199] and incorporates residual blocks and an ensemble
approach combining three different models. The new method achieved an average DSC of
0.680 (0.802 for major foci) on the TCGA-BRCA dataset, outperforming existing methods
on the same dataset.

Ning et al. [155] addressed issues of low-contrast appearance, blurred borders, and
shape variations in breast ultrasound (BUS) images by developing a saliency-guided
morphology-aware U-Net (SMU-Net). The SMU-Net consists of a primary network, an
intermediate stream, and an auxiliary network. The co-learning of foreground and back-
ground saliency representations allows the network to utilize rich background texture
information to assist in foreground segmentation. Extensive experiments on five public
datasets demonstrated the superiority of SMU-Net in both performance and robustness
over state-of-the-art deep learning methods.

Zhai et al. [156] proposed a novel asymmetric semi-supervised GAN (ASSGAN) based
on the GAN framework, which employs two generators and a discriminator for adversarial
learning. The generators supervise each other, producing reliable segmentation prediction
masks without the need for labeling, thus facilitating model training using unlabeled cases.
ASSGAN outperformed fully supervised methods by 4.16% to 13.94% in IoU across several
public BUS datasets (DBUI, OASBUI, SPDBUI) and the custom SDBUI dataset.

3.3.3. Liver Tumor

Liver cancer is the leading cause of cancer-related deaths globally, with early detection
via CT offering the potential to prevent millions of deaths annually. However, the fast
and accurate extraction of the liver from CT scans remains a significant challenge and a
bottleneck for any automated detection system.

Almotairi et al. [157] modified the SegNet deep learning technique to improve tumor
segmentation in CT liver scans in DICOM format. By replacing the classification layer
with a binary pixel classification layer, the model facilitated the binary segmentation of
medical images. Using the 3D-IRCADb-01 dataset for training and testing, the method
detected most tumor regions accurately, achieving a classification accuracy exceeding 86%.
However, a few false positives remain, which could be mitigated with a false positive filter
or by training the model on a larger dataset.

To enhance segmentation accuracy in liver and tumor regions, Budak et al. [158]
introduced a new deep learning method utilizing a cascaded encoder–decoder convolu-
tional neural network (CEDCNN) for liver and tumor detection in CT images. The model,
tested on the 3DIRCADb dataset, achieved an average DSC of 95.22%, outperforming other
existing liver segmentation methods.

Addressing the challenges of fuzzy boundaries and irregular liver shapes, Aghamo-
hammadi et al. [200] proposed a cascaded convolutional neural network (TPCNN) that
combines three input images to identify liver and tumor boundaries in abdominal CT
images. By applying a Z-Score normalization method and LDOG encoding, the approach
improved segmentation accuracy, particularly for fuzzy boundaries. Sabir et al. [159] imple-
mented a deep, dense network (ResU-Net) on CT scans, utilizing the 3D-IRCADb01 dataset
to segment the liver and tumor regions. The ResU-Net system achieved a DSC of 0.97% for
organ recognition and 0.83% for tumor segmentation, outperforming state-of-the-art meth-
ods. Sirco et al. [201] evaluated four liver segmentation methods using ResNet variants
(ResNet-18, ResNet-34, ResNet-50, ResNet-101) on 130 CT datasets, finding that ResNet-34
achieved the highest accuracy at 99.2%, while ResNet-101 proved the most efficient, and
ResNet-18 was the fastest.

Despite U-Net’s widespread use for medical image segmentation, its encoder-decoder
structure can be limited in certain applications. To address this, Tran et al. [160] proposed
a new structure for convolutional nodes that integrates dilated convolutions (DC) and a
dense structure to enhance learning depth. On the LiTS dataset, this model achieved a DSC
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of 96.38% for liver segmentation and 73.69% for tumor segmentation, with similar results
on the 3DIRCADb dataset.

To leverage the 3D spatial information in medical images, which 2D networks often
fail to capture, Chen et al. [139] developed a biplane joint method combining segmentation
results from coronal and transverse slices to retain spatial information. Integrated with Deep
Residual Attention U-Net (DRAUNet), the method achieved DSC scores of 97.3%, 97.4%,
and 96.9% on the LiTS, 3DIRCADb, and Sliver07 datasets, respectively, outperforming
other state-of-the-art networks.

To address noise, non-homogeneity, and variability in tumor appearance, Roy et al. [161]
introduced an automated liver tumor segmentation method combining masked RCNN
for liver segmentation with MSER for tumor identification. The model achieved an av-
erage segmentation accuracy of 87.8% for hepatocellular carcinoma (HCC), malignant
tumors (excluding HCC), and benign tumors. Similarly, Selvaraj et al. [162] proposed
the Convolutional Encoder-Decoder Residual Neural Network (CEDRNN), which uses
additive jump-connected feature accumulation to improve learning efficiency and training
convergence. The model, tested on the 3DIRCADb dataset, achieved a DSC of 95.2% for
liver tumor segmentation.

Wang et al. [163] employed the UNet++ network for initial liver segmentation, rein-
troducing the segmented liver mask as input for tumor segmentation. By integrating
T2-weighted and T1-enhanced sequences, the model achieved DSC scores of 0.612 and
0.687 for liver tumors on the validation and internal test sets, respectively, showing promise
for reducing manual annotation time and supporting advanced imaging genomics research.

3.3.4. Lung

Lung cancer is the second most common type of cancer globally, affecting both men
and women [202]. According to the World Health Organization (WHO), approximately
1.3 million people succumb to lung cancer each year worldwide [203]. Early diagnosis
plays a pivotal role in reducing mortality and improving patient survival rates. Therefore,
continuous advancements in intelligent algorithms for the early detection of lung cancer
are critical.

Gaál et al. [164] developed a state-of-the-art fully convolutional neural network-
integrated with an adversarial critic model for segmenting lungs from chest X-rays. While
the adversarial scheme contributed primarily to minor shape refinements, the model
achieved an impressive DSC of 97.5% on the JSRT dataset.

To address challenges in lung region delineation within CT scans, Hu et al. [165]
applied a Mask R-CNN model in combination with both supervised and unsupervised ma-
chine learning methods, including Bayesian models, Support Vector Machines (SVMs), K-
means, and Gaussian Mixture Models (GMMs). The Mask R-CNN, coupled with a K-means
kernel, delivered the best segmentation results, achieving an accuracy of 97.68 ± 3.42%
with an average runtime of 11.2 s.

Khanna et al. [166] tackled the issue of shallower networks’ limited ability to extract
discriminative features by introducing a deep learning-based architecture known as Resid-
ual U-Net, coupled with a false-positive removal algorithm for lung CT segmentation. The
architecture, which incorporates residual blocks and various data enhancement techniques
to improve generalization, demonstrated superior performance. The proposed method
achieved DSC values of 98.63%, 99.62%, and 98.68% on the LUNA16, VESSEL12, and
HUG-ILD datasets, respectively.

Munawar et al. [167] were pioneers in proposing a GAN-based model for lung seg-
mentation from chest X-rays. The model, which consists of a generator and multiple
discriminators akin to the U-Net architecture, uses adversarial loss to refine the segmen-
tation masks. The model demonstrated strong performance across three CXR datasets,
yielding a DSC of 0.9740 and an Intersection over Union (IoU) score of 0.943.

Recognizing the influence of surrounding tissues and the heterogeneity of lung nod-
ules, Xiao et al. [168] proposed a segmentation method for CT images based on a 3D-UNet
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and Res2Net, introducing the 3D-Res2UNet architecture. This novel design addresses
challenges such as gradient vanishing and explosion, leading to improved detection and
segmentation accuracy. Tested on the LUNA16 public dataset, the network achieved a DSC
of 95.30% and a recall rate of 99.1%, underscoring its efficacy in lung nodule segmentation.

To enhance the accuracy and efficiency of lung CT image segmentation, Chen et al. [169]
proposed the DC-U-Net model. This architecture incorporates a cavity convolution struc-
ture to expand the model’s receptive field without increasing the number of parameters
and includes 1 × 1 convolution layers to enhance non-linear representation. The DC-U-Net
achieved an IoU of 0.9627 and a DSC of 0.9743, outperforming the traditional U-Net model.

Addressing the lack of binary masks in current lung CT databases, Jalali et al. [170]
developed a semi-automatic approach for generating corresponding masks. Ground truth
was extracted via morphological operations and manual refinements before being processed
through a modified U-Net architecture. By replacing the encoder with a pre-trained ResNet-
34 and incorporating BConvLSTM for high-level feature integration, the proposed Res
BCDU-Net achieved a DSC of 97.31% on the LIDC-IDRI database.

To streamline the segmentation process, Tan et al. [171] introduced a GAN-based
segmentation framework (LGAN) for lung CT images. The model utilizes a generator and
discriminator network, with the generator predicting lung masks and the discriminator
refining these predictions via Earth Mover’s (EM) distance. The LGAN framework signifi-
cantly outperformed existing methods on the LIDC-IDRI dataset, achieving a Dice score
of 0.985.

Liu et al. [172] addressed the issue of gradient instability by employing a pre-trained
EfficientNet-B4 as the encoder, along with residual blocks and a LeakyReLU activation
function in the decoder. This approach improved both the DSC and Jaccard index by ap-
proximately 2.5% and 6%, respectively, across two benchmark lung segmentation datasets
and by 5% and 9% on a private dataset. The method demonstrated robustness and a low
standard deviation in segmentation outcomes.

3.3.5. Prostate

Prostate cancer is among the most prevalent cancers in men, and precise segmentation
of the prostate is a critical step in optimizing radiation dose delivery to the tumor while
minimizing damage to adjacent healthy organs.

Astono et al. [173] optimized a basic two-dimensional (2D) U-Net model for prostate
segmentation using a private dataset of T2-weighted MR images. Their model demon-
strated superior upsampling performance, employing interpolation and convolution in
place of transposed convolution. Notably, the integration of feature mapping and skip
connections was advantageous primarily in serial operations. Additionally, average pool-
ing significantly outperformed other pooling methods, such as max, RMS, and L2. The
inclusion of a batch normalization layer prior to activation further enhanced model perfor-
mance, leading to median and average DSC improvements of approximately 6% and 7%,
respectively, over traditional segmentation methods on the public dataset PROMISE12.

Recognizing the heterogeneous and inconsistent pixel representation near the prostate
boundary, Hambarde et al. [174] proposed a radiomics-based, deeply supervised U-Net for
the segmentation of both the prostate capsule and lesions in axial T2W MR images. The
framework was trained using the Stochastic Gradient Descent (SGD) algorithm, paired with
the Adam optimizer, and included additional hyperparameters. Efficient segmentation of
prostate lesions at all cancer stages (T1–T4) was achieved, with average DSCs of 0.8958 for
prostate capsule segmentation and 0.9176 for prostate lesion segmentation.

Ushinsky et al. [175] enhanced traditional CNN techniques by reconfiguring a stan-
dard 2D U-Net into a hybrid 3D–2D U-Net architecture. This hybrid model was trained on
3D images and then employed for segmentation on 2D images. Modifications to the down-
sampling layers, including 3D convolution and corrected linear unit activation, yielded a
five-fold cross-validation paradigm for training and validation. The hybrid 3D–2D U-Net
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achieved an average DSC of 0.898 and a Pearson correlation coefficient of 0.974 for prostate
volume estimation.

To develop a model with high computational accuracy and fast convergence, Chen
et al. [176] introduced a 3D AlexNet method for the automatic segmentation of prostate
cancer in MRI images. By incorporating the PReLU activation function, the effect of varying
convolutional kernel sizes on recognition accuracy was evaluated. The model’s global
pooling mechanism compared global max pooling and global average pooling to identify
the most effective approach. Experimental results indicated that the model achieved a DSC
of 0.9768.

Addressing the limitations of conventional FCNs, which often result in non-smooth
segmentation boundaries, He et al. [177] proposed a two-stage framework for prostate
segmentation from raw CT images. The first stage involved rapid localization of the
prostate region using a lightweight network on downsampled CT images. The second stage
employed a multitasking UNet, termed MetricUNet-HCR, which combined segmentation
information with voxel-level feature relations to generate refined segmentation maps.
Although initial results showed a DSC of 0.9, He et al. [178] later introduced a hierarchical
fusion U-Net (HF-UNet) to overcome data fitting limitations in traditional multi-task
networks. HF-UNet utilized two complementary branches with attention-based task-
consistency learning blocks, resulting in superior performance compared to existing multi-
task networks.

Given the substantial variability in image appearance, anisotropic spatial resolution,
and imaging disturbances, Jin et al. [179] proposed an automated segmentation method for
prostate MRI data using bicubic interpolation and a modified 3D V-Net named 3D PBV-Net.
The method utilized double cubic interpolation to pre-process MRI data, addressing the
low-frequency components in prostate imaging. The 3D PBV-Net demonstrated strong
segmentation performance, achieving average accuracies of 97.65% and 98.29% and DSC
scores of 0.9613 and 0.9765 on the PROMISE12 and TPHOH datasets, respectively.

To further enhance segmentation performance across varying locations in prostate
MRI images, Wang et al. [180] developed SegDGAN, an end-to-end architecture based on
the GNN model. This approach combined densely connected blocks in a fully convolutional
generator network with a multi-scale, multi-level convolutional discriminator network.
SegDGAN outperformed U-Net, FCN, and SegAN, achieving the highest DSC values
and the lowest VOE, ASD, and HD values—86.24%, 23.60%, 1.02 mm, and 7.57 mm,
respectively—on the PROMISE12 public dataset.

3.3.6. Retinal Vessel

The retinal vasculature plays a critical role in diagnosing many ocular diseases, making
accurate segmentation essential for effective diagnosis.

To overcome the limitations of existing FCNNs that involve a large number of hy-
perparameters and increased end-to-end training time due to their decoder structures,
Khan et al. [181] proposed a novel supervised deep learning-based approach for retinal
vessel segmentation. This method extends a variant of FCNNs by sharing the indexes
obtained from maximal pooling in the encoder at each stage with the decoder, thereby
enhancing the resolution of the feature map. This significantly reduces the number of
tunable hyperparameters and computational overhead during training and testing. A key
innovation is the use of external jump connections to convey preserved low-level semantic
edge information, which improves the detection of fine blood vessels in retinal fundus
images. Experimental results demonstrate reduced computational complexity, memory
requirements, and high robustness in microvessel segmentation.

Most supervised and unsupervised methods suffer from a lack of segmentation ro-
bustness, leading to spurious or fine branches due to suboptimal loss function optimization.
To address this issue, Park et al. [103] introduced a novel conditional generative adver-
sarial network, M-GAN, to achieve accurate retinal vessel segmentation by balancing the
loss through stacked deep, fully convolutional networks. M-GAN features an M-shaped
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architecture with a generator that includes long-term residual connections between down-
sampled and up-sampled network layers. It also incorporates a binary cross-entropy loss
function and a pseudo-negative loss function to enhance training efficiency and segmenta-
tion robustness. The proposed model achieves balanced precision and recall through the
FN loss function, yielding the highest IoU and F1 scores across multiple datasets.

Chala et al. [182] proposed an end-to-end approach based on a multi-encoder-decoder
architecture that learns features from CNN models to produce retinal vessel segmenta-
tion. Their model includes two encoder units (RGB and green), a decoder, and a mod-
ule for progressive dimensionality reduction. Each encoder consists of sub-CNNs with
three convolutional layers. The model was tested on the DRIVE and STARE datasets,
achieving F1 scores of 0.8321, accuracy of 0.9716, sensitivity of 0.8214, specificity of 0.9860,
and precision of 0.8466.

To improve the interpretability and reduce the complexity of U-Net, Guo et al. [183]
introduced a spatial attention module within a lightweight network model called Spatial
Attention U-Net (SA-UNet). The spatial attention module refines feature maps by multi-
plying the attention graph with the input feature map. Additionally, structured dropout
convolutional blocks replace U-Net’s original blocks to prevent overfitting. The model
achieved state-of-the-art performance on both the DRIVE and CHASE_DB1 datasets. Simi-
larly, Li et al. [184] proposed a CNN with an attention mechanism to improve retinal vessel
segmentation, reducing network parameters while maintaining performance across five
common datasets. The attention modules operate similarly to conventional convolutional
layers, allowing for the addition of multiple attention modules.

Addressing the difficulty of segmenting vascular structures from low-contrast, blurred
retinal images, Zhang et al. [185] developed Pyramid U-Net for accurate retinal vessel
segmentation. The model employs a Pyramid Scale Aggregation Block (PSAB) in both
the encoder and decoder to aggregate multiscale features, improving capillary detection.
Optimizations in the encoder (pyramid input enhancement) and decoder (deep pyramid
supervision) further enhance performance. Extensive evaluations show that Pyramid U-Net
surpasses state-of-the-art methods on the DRIVE and CHASE-DB1 datasets.

Dong et al. [186] tackled the limitations of simple skip connections between the encoder
and decoder, which can degrade accuracy, by introducing Cascaded Residual Attention
U-Net (CRAUNet). CRAUNet incorporates DropBlock into the base residual module,
effectively reducing overfitting and enhancing segmentation. The model also includes
Scale Fusion Channel Attention (MFCA) to leverage multiscale information. CRAUNet
demonstrated superior performance on both the DRIVE and CHASE_DB1 datasets, achiev-
ing AUC scores of 0.9830 and 0.9865, respectively. Additionally, Liu et al. [187] proposed
ResDO-UNet, an encoder-decoder framework with a residual DO-conv (ResDO-conv) net-
work and pooled fusion block (PFB) to improve feature extraction and mitigate information
loss. Their model also employs an attention fusion block (AFB) to enhance multi-scale
feature expression. Tested on DRIVE, STARE, and CHASE_DB1, ResDO-UNet achieved
state-of-the-art detection performance.

Liu et al. [188] proposed Wave-Net, a lightweight segmentation network designed
for accurate retinal blood vessel segmentation, specifically addressing thin blood vessel
segmentation. To mitigate semantic information loss and enhance microstructure details,
the model introduces a Detail Enhancement and Denoising Block (DED), replacing the
original U-Net’s simple jump connections. A Multi-Scale Feature Fusion Block (MFF)
further improves segmentation accuracy by fusing cross-scale contexts. Experiments show
that Wave-Net outperforms advanced segmentation methods, particularly in fine vessel
segmentation, while maintaining a lightweight architecture.

3.3.7. Skin Lesion

Skin lesion segmentation is a crucial yet challenging task in the computer-aided
diagnosis of dermoscopic images.
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To address the challenge of varying scales of view and lesion regions in dermoscopic
images, Lei et al. [189] designed a novel GAN with dual discriminators for skin lesion seg-
mentation. The network comprises a segmentation module based on skip connections and a
dense convolutional U-Net (UNet-SCDC) combined with a dual discriminator (DD) module.
In the UNet-SCDC module, both skip connections and dense inflated convolutional blocks
are employed to capture discriminative feature representations and retain fine-grained
information for precise segmentation. The DD module enhances the discriminator’s ability
to improve decision-making by using two independent but complementary discriminators,
which optimizes the generative module more effectively. Extensive experiments on the
ISIC Skin Lesion Challenge datasets (2017 and 2018) demonstrated superior segmentation
performance compared to state-of-the-art methods.

In cutaneous melanoma detection, the segmentation phase is particularly challenging
due to misleading factors such as lesion color, edge variations, hair, markers, frame artifacts,
and size inconsistencies. To tackle these issues, Öztürk et al. [190] proposed an efficient
segmentation method that leverages spatial information to support the residual structure
of the FCN architecture. The improved FCN (iFCN) processes full-resolution skin lesion
images without pre-processing or post-processing, effectively determining lesion centers
and refining edge details. Tested on the IEEE ISBI 2017 Challenge and PH2 datasets, the
method achieved average accuracies of 95.30% and 96.2% and DSC scores of 88.64% and
93.02%, respectively.

To counter the issue of decreasing spatial feature map resolution across network layers,
Xie et al. [191] proposed a novel CNN architecture for skin lesion segmentation designed
to generate high-resolution feature maps for more accurate boundary delineation. The
architecture integrates a High-Resolution Feature Block (HRFB) consisting of primary,
spatial attention, and channel attention branches, whose outputs are fused to produce
robust features with enhanced detail. Experiments on the ISBI 2016 and 2017 datasets, as
well as the PH2 dataset, yielded Jaccard indices of 0.783, 0.858, and 0.857, respectively.

To address variations in dermoscopic image properties caused by fluorescence and
luminance inhomogeneity, Zafar et al. [192] developed an automated lesion boundary
segmentation method combining U-Net and ResNet architectures, termed Res-Unet. This
method integrates an advanced dehairing algorithm that effectively removes hair structures,
significantly enhancing segmentation accuracy. Tested on the ISIC-2017 and PH datasets,
Res-Unet achieved Jaccard indices of 0.772 and 0.854, respectively.

To implement an automatic classifier capable of distinguishing between various types
of nevi without human intervention, Thurnhofer-Hemsi et al. [193] proposed an end-to-end
system that employs a deep neural network for classifying dermatological disorders. The
system leverages transfer learning across five state-of-the-art CNN architectures to create
both general and hierarchical classifiers capable of recognizing seven types of nevi. Trained
on the large HAM10000 dermoscopic image dataset and enhanced with data augmentation
techniques, the DenseNet201 model achieved high classification accuracy, F-measure, and
low false-negative rates.

Recognizing the limitations of conventional network structures in modeling multi-
scale objects with significant texture and shape variations, Alahmadi [194] introduced a
multi-scale attention U-Net (MSAU-Net) for skin lesion segmentation. MSAU-Net improves
upon the standard U-Net by incorporating an attention mechanism at the bottleneck layer
to simulate hierarchical representations. The attention module aggregates multi-level
features in a non-linear manner, selectively tuning representative features. Furthermore, a
bidirectional convolutional long short-term memory (BDC-LSTM) structure is employed to
capture discriminative features while suppressing irrelevant ones. MSAU-Net achieved a
DSC of 0.9377 on the PH2 dataset.

Anand et al. [195] proposed an improved U-Net architecture for accurate and au-
tomatic dermoscopic image segmentation by modifying the feature map dimensionality.
The architecture uses pixel-wise classification to locate and distinguish boundaries, en-
suring that input and output share the same size. The encoder applies convolutional
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and max-pooling layers, while the decoder uses transposed convolutional and standard
convolutional layers. Experiments on the PH2 dataset, using 8, 18, and 32 different batch
sizes with Adam, Adadelta, and SGD optimizers over 25, 50, 75, and 100 epochs, showed
the model performed best with a batch size of 8, Adam optimizer, and 75 epochs, achieving
96.27% accuracy, a Jaccard index of 96.35%, and a DSC of 89.01%.

To segment lesions with irregular shapes, low contrast, or blurred boundaries, Dai
et al. [196] proposed a multi-scale residual encoding and decoding network (Ms RED).
The network employs a Multiscale Residual Coding Fusion Module (MsR-EFM) in the
encoder and a Multiscale Residual Decoding Fusion Module (MsR-DFM) in the decoder to
adaptively fuse multiscale features. Additionally, a novel multi-resolution, multi-channel
feature fusion module (M2F2) is introduced to replace conventional convolutional layers in
both the encoder and decoder. For the first time in medical image segmentation, a Soft-pool
module is applied to retain more useful information during downsampling, resulting in
improved segmentation performance. Experimental results consistently showed that Ms
RED significantly outperforms its counterparts across five commonly used evaluation
criteria, requiring fewer labeled samples and yielding faster convergence during training.

4. Integration of Deep Learning with Traditional Techniques

The combination of traditional segmentation techniques, such as thresholding, edge
detection, and region-based methods, with deep learning has proven to be an effective
approach to addressing the challenges of medical image segmentation. Traditional methods
offer efficiency and interpretability but often struggle with complex or noisy images. Deep
learning models, on the other hand, excel at capturing intricate patterns from raw data but
require significant computational resources and large labeled datasets. Table 4 presents
a detailed comparison of five traditional and six deep learning-based segmentation tech-
niques, outlining their respective advantages, limitations, and best-suited applications in
medical image segmentation.

Table 4. Comparative analysis of traditional and deep learning techniques in medical image segmentation.

Technique Advantages Disadvantages Suitability for Specific
Medical Applications

Thresholding Simple, fast, computationally
efficient [204]

Limited by stray colors and intensity
variations, it does not work well for

complex images

Works well in high-contrast
regions (e.g., bones,

lungs) [205,206]

Edge-based
Segmentation

The effective detection
boundary is clear and
highly interpretable

Sensitive to noise and struggles with
weak or fuzzy edges [207]

Excellent for tumor boundary
detection in MRI and CT images

with sharp edges [208]

Region-based
Segmentation

Effectively detects
homogeneous regions and

excels at capturing
local continuity

Dependence on seed point selection
makes it difficult to deal with
heterogeneous regions [209]

Available for organ and tissue
segmentation with minimal

intensity variation, such as the
liver in CT [210]

Clustering-based
Segmentation

Can group similar pixels
without prior knowledge [211]

Sensitive to noise; may require
post-processing

Tumor segmentation where
intensity contrasts with

surroundings [212]

Graph-based
Segmentation

Handles global image context
well, flexible handling of
complex structures [213]

Computationally intensive and
sensitive to the quality of graph

construction [70]

Complex tissue structures (e.g.,
brain MRI) [214]

CNNs Learns spatial hierarchies
automatically, scalable [215]

Requires large labeled datasets and
high computational power [216]

Tumor segmentation, lesion
detection (e.g., brain, liver) [217]

FCNs
Pixel-level segmentation,

preserves spatial
resolution [218]

Sensitive to dataset size and
variability [219]

Accurate pixel-wise
segmentation (e.g., retinal

vessels) [220]
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Table 4. Cont.

Technique Advantages Disadvantages Suitability for Specific
Medical Applications

U-Net
Strong performance with small

datasets, effective in medical
images [221]

Memory-intensive, requires much
tuning for optimal performance [222]

Medical imaging, especially in
biomedical fields (e.g., prostate,

skin lesions) [195,223]

GANs Generates high-quality, refined
segmentations [224]

Challenging to train, requires large
datasets, prone to instability in

training [225]

Generating realistic medical
segmentations (e.g., skin

lesions) [189]

RNNs
Captures temporal

dependencies, can handle
sequential imaging data [226]

Difficult to train, prone to vanishing
gradient problems, computationally

heavy [227]

Volumetric image segmentation
(e.g., heart, liver) [228,229]

AEs
Excellent for feature learning

and dimensionality
reduction [230]

Limited for highly complex
segmentation tasks, lower accuracy

than CNN-based methods

Feature extraction, anomaly
detection (e.g., MRI, CT

scans) [231]

By integrating these two approaches, hybrid models leverage the strengths of each:
traditional methods provide a fast, interpretable starting point, while deep learning refines
the segmentation to enhance accuracy and robustness. This integration is particularly
useful in cases where traditional techniques fall short due to weak edges or intensity
variations. Session 4 will explore the practical applications of combining each traditional
segmentation technique with deep learning to improve performance in medical image
segmentation tasks.

4.1. Combining Thresholding Techniques with Deep Learning

Chen et al. [232] utilized a deep CNN for lung X-ray segmentation of contrast-
enhanced binarized images. Initially, a contrast enhancement technique specifically de-
signed for chest X-ray (CXR) images was applied, followed by adaptive image thresholding
to binarize the images, effectively separating the foreground from the background. The
thresholded images were then fed into a CNN-based architecture for segmentation. Experi-
mental results demonstrated that the proposed preprocessing approach was effective across
various CNN architectures, achieving segmentation accuracy comparable to state-of-the-art
methods. Additionally, this method significantly accelerated model training by up to
20.74% and reduced the storage space required for the CXR dataset by 94.6%.

Isunuri and Kakarla [233] proposed an optimized U-Net model that employs adaptive
thresholding as a post-processing step. The adaptive threshold is calculated as the average
threshold of the training dataset, designed to retain tumor pixels. During training, the
U-Net model is optimized with respect to weights and thresholds specific to the dataset. In
the testing phase, the test image is convolved using the optimized U-Net, and adaptive
thresholding is applied to generate the final tumor segments. This model demonstrated
competitive performance in terms of precision and accuracy, particularly when compared
to ResNet34.

Liu et al. [234] introduced a full-resolution network (FR-UNet) coupled with a dual-
thresholding iteration (DTI) algorithm for segmentation in retinal vascular and coronary
angiography images. In FR-UNet, a feature aggregation module integrates multi-scale
feature maps from neighboring stages, enhancing high-level contextual information. The
network’s modified residual block continuously learns multi-resolution representations
to deliver pixel-level accuracy in prediction maps. The DTI algorithm further improves
vascular segmentation by accurately extracting weak vascular pixels, thereby enhancing
vascular connectivity. Experimental results showed that FR-UNet combined with DTI
outperformed state-of-the-art methods, achieving the highest sensitivity, AUC, F1, and IoU
scores on most datasets, with fewer parameters and significantly improved sensitivity.
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Reddy et al. [235] proposed an efficient multilevel thresholding scheme for cardiac
image segmentation using a GAN. The GAN introduces noise to the images, simulating real-
time scenarios, and subsequently, both the original and generated images are segmented
through multilevel thresholding to identify regions of interest. This segmentation process
aids in predicting the accurate attack rate by considering multiple factors. The method
achieved an accuracy of 97.33% and a true positive rate of 90.97%.

4.2. Combining Edge-Based Methods with Deep Learning

To address the dynamic topological correlation between feature maps in deep learn-
ing frameworks, which often hampers the efficient capture of channel representations, Li
et al. [236] proposed a dual-encoder-based dynamic channel map convolutional network
with edge enhancement (DE-DCGCN-EE) for retinal vessel segmentation. The model
introduces several key innovations. First, a dual encoder is integrated with edge detec-
tion to preserve vessel edges during downsampling. Second, a dynamic channel map
convolutional network maps image channels into a topological space, synthesizing the
features of each channel on this topological map, thereby addressing the under-utilization
of channel information. Finally, an edge enhancement module is employed to fuse edge
and spatial features within the dual encoder, significantly improving the accuracy of fine
vessel segmentation. Experimental results on five retinal image datasets demonstrate that
DE-DCGCN-EE outperforms state-of-the-art methods in segmentation accuracy.

Shi et al. [237] proposed a multi-channel CNN-based fuzzy active contour model for
medical image segmentation. In this approach, medical images are first meshed and labeled
using the superpixel SLIC method. These gridded images are then used as a dataset to train
the multi-channel CNN, which segments the hyperpixels at organ boundaries. The seed
points of these hyperpixels are connected to form a rough segmentation boundary. Using
this rough boundary as the initial contour, the final organ boundaries are determined by
applying a fuzzy active contour segmentation technique. Comparative experimental results
demonstrate that this method provides superior segmentation robustness and effectiveness.

Wang et al. [238] introduced an iterative edge attention network (EANet) for medical
image segmentation, incorporating several innovative components. The Dynamic Scale
Sensing Context (DSC) module dynamically adjusts the receptive field to efficiently capture
multi-scale contextual information. The Edge Attention Preservation (EAP) module focuses
on eliminating noise, enabling the edge flow to concentrate on boundary-related informa-
tion. Additionally, the Multilevel Pairwise Regression (MPR) module combines comple-
mentary edge and region information to refine ambiguous structures, facilitating better rep-
resentation learning and more accurate saliency maps. Extensive experiments across four
challenging medical segmentation tasks—including lung nodule segmentation, COVID-19
infection segmentation, lung segmentation, and thyroid nodule segmentation—revealed
that EANet achieves superior performance compared to state-of-the-art methods.

Allah et al. [239] developed the Edge U-Net model, a deep convolutional neural
network (DCNN) for brain tumor segmentation. The architecture, inspired by U-Net,
incorporates an encoder-decoder structure designed to enhance tumor localization by inte-
grating boundary-dependent MRI data with primary brain MRI data. In the decoder stage,
boundary-dependent information from MRIs at different scales is merged with neighboring
contextual information. The model introduces a novel loss function that incorporates
boundary information, improving the learning process and enhancing segmentation accu-
racy. Experimental results indicate that the Edge U-Net model achieves high Dice score
values, demonstrating strong brain tissue differentiation performance. Specifically, the Dice
scores were 88.8% for meningiomas, 91.76% for gliomas, and 87.28% for pituitary tumors,
comparing favorably to state-of-the-art models.

4.3. Combining Region-Based Methods with Deep Learning

Liu et al. [240] introduced a deep U-Net architecture that incorporates superpixel
region merging for edge enhancement, optimizing segmentation performance. Unlike
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traditional deep learning-based segmentation, this model evolves segmentation from
hyperpixel region merging through U-Net training, offering rich semantic information
beyond mere grey similarity. Additionally, a bilateral filtering module is applied at the
network’s input to reduce external noise and improve soft tissue contrast along pathological
edges. To prevent overfitting and enhance sensitivity to model parameters, a normalization
layer is inserted after each convolution layer at varying feature scales. The model was
validated across lung CT, brain MR, and coronary CT datasets, with cross-validation
and hyperpixel methods confirming its effectiveness. Empirical results indicated that a
four-layer network offered an optimal balance between precision, recall, F-measure, and
runtime efficiency.

Ren et al. [241] proposed ReGANS, a semi-automatic region-growing algorithm for
lung nodule segmentation. This approach builds on the traditional Region-growing method
by optimizing pixel growth conditions, allowing for automated execution using EP, AvgS,
and initial coordinate points. This improvement addresses the limitation of the original
method, which required manual pixel growth range settings that often led to inaccurate
segmentation. ReGANS enables rapid and accurate segmentation of lung nodules in CT
images based on initial manual points.

Khan et al. [242] developed a lightweight CNN model architecture paired with
watershed-based region growth segmentation for chest X-rays. This approach utilizes
watershed-based segmentation to isolate regions of interest within the images. The
lightweight CNN, consisting of just seven convolutional layers, requires significantly
less computational power compared to previous state-of-the-art models. Its efficiency
makes it suitable for practical applications, including multimodal COVID-19 detection
using both X-ray and CT scan images.

4.4. Combining Clustering-Based Methods with Deep Learning

Nithya et al. [243] employed artificial neural networks (ANNs) and multi-kernel K-
means clustering for kidney disease detection and segmentation in ultrasound images. A
median filter was first used to remove noise from the images. Following noise removal,
Grey Level Co-occurrence Matrix (GLCM) features were extracted from each image. To
improve classification accuracy and reduce complexity, the Crow Search Optimization
Algorithm (CSOA) was applied to select the most important features. These selected
features were then used by the ANN to classify the images as normal or abnormal. If
classified as abnormal, the image proceeded to the segmentation stage, where the multi-
kernel K-means algorithm was applied. Experimental results indicated that the system,
which combined linear and quadratic segmentation, achieved a maximum accuracy of
99.61%, outperforming other methods.

Khan et al. [244] utilized K-means clustering and deep learning, along with synthetic
data augmentation, for brain tumor segmentation and classification. The approach involved
converting each input MRI modality into slices, followed by statistical normalization of
intensities. K-means clustering was used to segment brain tumors and identify regions of
interest (ROIs) for accurate feature extraction. The brain tumors were then classified as
either benign or malignant using a fine-tuned VGG-19 CNN model trained with synthetic
data augmentation techniques. The results demonstrated superior accuracy compared to
previous methods.

Nawaz et al. [245] proposed a deep learning approach for early-stage skin melanoma
segmentation, combining Faster Region-Based Convolutional Neural Network (RCNN)
with Fuzzy K-means clustering (FKM). The method first preprocesses the dataset images
to address noise and illumination issues and enhance visual information. Next, Faster
RCNN was applied to extract a fixed-length feature vector. FKM was then used to segment
melanoma-affected skin regions with varying sizes and boundaries. The results showed
that the proposed method outperformed state-of-the-art techniques, achieving average
accuracies of 95.40%, 93.1%, and 95.6% on the ISIC-2016, ISIC-2017, and PH2 datasets,
respectively, demonstrating its robustness for skin lesion identification and segmentation.
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Fooladi et al. [246] introduced a segmentation method for brain tumors, combining
CNNs with Fuzzy K-means clustering. The method involved three stages: image pre-
processing to reduce computational complexity, attribute extraction and selection, and
segmentation. First, the images were preprocessed using an adaptive filter and wavelet
transform to mitigate noise and reduce complexity. Next, a deep neural network was
employed for feature extraction, followed by Fuzzy K-means clustering to segment the
tumor regions. Validation on the BRATS dataset yielded an accuracy of 98.64%, with 100%
sensitivity and 99% specificity, demonstrating the method’s efficacy.

4.5. Combining Graph-Based Methods with Deep Learning

Li et al. [247] introduced a fully automated method based on a graph-cutting frame-
work, where a multiscale convolutional neural network (MS-CNN) is employed to learn the
potentials of a graph on the surface mesh of the left atrium (LA). The MS-CNN efficiently
integrates local and global texture information, significantly enhancing the segmentation
accuracy of the graph-cutting method. Further improvements are achieved by balancing the
contributions between the t-link and n-link weights of the graph. The proposed approach
achieves an average accuracy of 0.856 ± 0.033 and an average Dice score of 0.702 ± 0.071
for LA scar quantification.

Mishra et al. [248] developed a graph-based algorithm combined with deep learning-
derived data for automatic retinal layer segmentation. The method utilizes a shortest path
framework along with U-Net to enhance performance. The algorithm achieves sub-pixel
accuracy for vitreous warts, reticular pseudodrusen (RPDs), and 11 other retinal layers,
demonstrating high robustness and precision across this dataset.

Zhang et al. [249] proposed a novel adversarial method based on convolutional neural
networks (ARPM-net), enhanced by an MRF for segmentation of the prostate and organs
at risk in pelvic CT images. The segmentation network integrates an MRF block into a
modified multi-residual U-Net. The discriminator processes the product of the original CT
and the predicted or true value, classifying the input as false or true. The segmentation
and discriminator networks can be jointly trained or fine-tuned, with adversarial training
improving the accuracy of segmentation. ARPM-net achieves state-of-the-art results in
segmenting multiple organs in CT images, offering significant potential for routine pelvic
cancer radiation treatment planning.

5. Discussion and Conclusions

This review has examined traditional, deep learning-based, and hybrid approaches to
medical image segmentation, highlighting their respective strengths and limitations. Tradi-
tional methods, such as thresholding, edge detection, and region-based techniques, have
long been valued for their computational simplicity and interpretability. These methods are
efficient and easy to deploy, particularly in resource-constrained environments with limited
computational power and smaller datasets. However, their reliance on predefined rules lim-
its their ability to manage the complexity of modern medical images, especially in noisy or
heterogeneous clinical datasets. This underscores the need for more adaptive approaches.

Deep learning has transformed medical image segmentation by enabling automatic fea-
ture extraction and learning directly from raw medical images, often surpassing traditional
methods in accuracy. Techniques such as CNNs, U-Nets, FCNs, RNNs, GANs, and AEs
have proven highly effective for segmenting complex anatomical structures, including brain
tumors, liver tumors, lungs, prostate glands, and more. These models can manage both
high-level and low-level features, making them particularly suitable for medical images,
which often contain irregular shapes, weak boundaries, and varying intensity levels.

Despite these advantages, deep learning models present significant challenges, partic-
ularly in their high computational demands and need for large, annotated datasets. Current
strategies, including model optimization, transfer learning, and semi-supervised learning,
offer viable solutions to mitigate these challenges. For instance, transfer learning allows
models pre-trained on large datasets to be fine-tuned for specific medical applications,
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reducing the amount of required data. Additionally, model compression techniques, such
as pruning, quantization, and knowledge distillation, make models more lightweight and
computationally feasible for clinical deployment. However, further research is needed to
simplify and adapt these solutions for real-world use, particularly in hospitals with limited
computational resources.

The issue of interpretability remains critical, especially when deep learning models
are used in high-stakes healthcare decisions. Clinicians need to understand how these
models reach their conclusions to ensure trust and reliability in the decision-making process.
Explainable AI (XAI) techniques, such as attention maps or heat maps, can enhance the
transparency of deep learning models by highlighting the regions of the image that con-
tribute most to the model’s predictions. For example, saliency maps in GAN or CNN-based
models can provide insights into the most relevant regions for tumor segmentation. These
features increase confidence in model outputs and align them with clinical needs, where
interpretability is essential for informed decision-making.

Hybrid approaches, which combine traditional segmentation techniques with deep
learning, show great promise. These methods often leverage traditional techniques as pre-
or post-processing steps, enabling deep learning models to focus on the more complex
aspects of segmentation. For instance, edge detection or region-growing methods can help
delineate boundaries before applying deep learning algorithms, significantly improving
segmentation accuracy in cases where deep learning models alone may struggle, such as
with weak edges or variable intensities. Traditional methods can also be used as post-
processing tools to refine deep learning outputs, smoothing boundaries or enhancing
anatomical coherence. Although hybrid models currently represent a smaller portion of
research, they offer a compelling solution to the limitations of both traditional and deep
learning methods. Future research should focus on optimizing these hybrid techniques,
particularly for clinical environments where both adaptability and computational efficiency
are crucial.

Looking ahead, developing resource-efficient deep learning models will be a key
direction for future research. Clinical environments often have limited access to high-
performance computing, making it necessary to create models that can operate on lower-
specification hardware. Techniques such as federated learning, which allows multiple
institutions to collaborate on model training without sharing sensitive patient data, can help
reduce data burdens and improve generalization across diverse patient populations. Cloud-
based deep learning solutions can also alleviate computational requirements, enabling
smaller hospitals and clinics to access advanced AI tools without requiring significant
on-premises infrastructure.

It is evident that hybrid models, integrating traditional and deep learning-based
approaches, will play a central role in advancing medical image segmentation. However,
making these models more accessible and interpretable in real-world clinical settings should
be a top priority. This includes embedding interpretability as a core feature and addressing
concerns about the reliability of deep learning outputs, especially when deployed in varied
and unpredictable clinical environments. Validating models across multi-institutional
datasets will be essential to ensure robustness and generalizability across different imaging
modalities, patient populations, and clinical contexts.

In conclusion, while deep learning has driven significant progress in medical image
segmentation, its future success will depend on overcoming challenges related to inter-
pretability, computational efficiency, and data availability. Hybrid approaches, which
combine the strengths of both traditional and deep learning techniques, provide a pathway
to more adaptable, accurate, and clinically feasible solutions. As the field evolves, it is
essential that researchers focus on these areas to fully realize the potential of AI in medical
imaging and ensure its benefits are translated into everyday clinical practice.
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