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Abstract: This study proposes a new wheel-leg mechanism concept and formulations for the kine-
matics and dynamics of a stair-climbing robot utilizing the rotating leg locomotion of curved spokes
and rolling tires. The system consists of four motor-driven tires and four curved-spoke legs. The
curved-spoke leg is semicircle-like and is used to climb stairs. Once the spoke leg rolls on the surface,
it lifts and pulls the mating wheel toward the surface, owing to the kinematic constraint between the
spoke and the wheel. Single-wheel climbing is a necessary condition for the stair climbing of whole
robots equipped with front and rear axles. This study proposes the design requirements of a spoke
leg for the success of single-wheel climbing in terms of kinematic inequality equations according to
the scenario of single-wheel climbing. For a design configuration that enables single-wheel climbing,
the required minimum friction coefficient for the static analysis of the stair-climbing wheeled robots is
demon-strated. Thereafter, the stair-climbing ability is validated through the dynamic equations that
enable the frictional slip of the tires, as well as the curved-spoke legs. Lastly, the results revealed that
the rotating locomotion of the well-designed curved-spoke legs effectively enables the stair climbing
of the whole robot.

Keywords: stair climbing; wheel climbing; curved spoke; wheel legged; locomotion

1. Introduction

Stair climbing is a very challenging task for an autonomous robot, and stair-climbing
robots have been studied over decades through several types of platforms, such as wheelchairs,
robots, and ground robots. These are often categorized based on their own locomotion
mechanisms, and review articles have categorized these into four or five, including tracked,
legged, wheel-linkage, and wheel-legged platforms [1–4]. The track-based mechanism
enables the effective up-and-down climbing of robots [5–8] and may be less sensitive to
the size and shape of a stair. Tracked robots are sometimes equipped with several track
modules or flippers to overcome the slip problem of tracks during stair climbing; however,
tracks are known to be inefficient for driving on normal flat road.

If well-equipped with sensors and actuators, legged robots can demonstrate excellent
stair-climbing performance, but they require a highly complicated control scheme and
hardware [9–16]. Particularly, they require a significant degree of freedom to mimic the lo-
comotion of animals and humans, which can effectively achieve stair climbing. Two-legged,
four-legged, and even six-legged robots have been reported to demonstrate excellent
stair-climbing performance. It is well known that rolling wheels are the most effective
mechanism for transport on a flat road. Therefore, the combination of efficient and simple
stair-climbing mechanisms and rolling wheels is still highly recommended in autonomous
mobile platforms for both indoor and outdoor uses.

The wheel-linkage mechanism can allow for the high efficiency required for driving
on a flat surface and for climbing stairs [17–23]. Typically, this platform lifts each wheel
to the higher surface of the stair by the articulation of linkages or the rotation of wheel
clusters [17–21]. An example of this mechanism is the rocker–bogie mechanism [22,23],
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which utilizes the friction of the rolling wheel on the riser of a stair, making it impossible
to climb the stair without the riser. Generally, one drawback of this mechanism is the
relatively low stair-climbing speed owing to the slow speed of the linkage actuators.

The wheel-leg mechanism is a prominent mechanism among the locomotion mech-
anisms, owing to its good stair-climbing ability and relatively lower complexity [24–37].
Examples include the curved spoke and starfish-like spoke, which are designed for legs to
rotate on and climb a stair. The curved leg rotates and touches down on the higher surface
of the stair and lifts the whole body by rolling on the surface. A well-defined design of
the size and geometry of the spoke is crucial to the success of stair climbing on stairs with
various shapes and sizes.

In this study, we developed a new design mechanism, and its design strategy was
based on the form of simple wheel-leg mechanisms, which are efficient in stair climbing
and driving on flat road. The design was equipped only with in-wheel motor-driven tires
and curved-spoke legs, which are significantly less complex in terms of system design and
implementation. However, the main issue with this system is the design of the configuration
of the motor-driven wheel and the curved-spoke leg for efficient stair climbing on stairs
with various geometries.

Therefore, we present both kinematic and dynamic models to demonstrate the feasi-
bility of the system for stair-climbing missions. To this end, first, we derived the kinematic
constraint equations for a single wheel to climb the stair using the curved-spoke leg and
broadly investigated the success of the kinematic model for stair climbing as a function of
the stair geometry, such as the width and height of a stair. To validate the design configura-
tion based on the kinematic equations of single-wheel climbing, the dynamic equations of
motion were derived for the entire robot equipped with four in-wheel motor-driven tires
and curved-spoke legs. Thereafter, the dynamic stair-climbing simulation of the entire sys-
tem was demonstrated, such that the front and rear axles of the robot can effectively climb
stairs even with the slips of tire and spoke legs if the design configuration is well defined.

2. Materials and Methods

One of the main design goals of the proposed robot was a high driving performance
on an outdoor flat road. Therefore, the center of gravity (CG) was set to be the geometric
center between the front and rear axles for a higher lateral driving stability. In addition,
the robot consisted of four motor-driven tires and corresponding curved-spoke legs near
them, as seen in Figure 1a. This design was simplified into a two-dimensional plane motion
model as shown in Figure 1 by assuming that it climbs the left and right symmetrical stairs
and that the left and right actions are also symmetric. The curved-spoke legs were rotated
by motors attached to spoke joints and generated torque to push and roll on the higher
surface and bring the nearby wheels to the surface if necessary. Therefore, the role of the
curved-spoke leg was to assist the nearby wheel with climbing the obstacle until the wheel
rode on it. We do not presently classify this conceptual robot as either a legged or wheeled
stair-climbing robot. In the end, however, it will turn out to be one of them, depending on
the design constraints in terms of the friction coefficient required for stair climbing.

The equations of motion (EOMs) derived for the system with curved-spoke legs
pushing the surface, as shown in Figure 1b, can be expressed as follows:

m
..
xi + m

..
yj = N1 + T1 + N2 + T2 + ND1 + TD1 + ND2

+TD2 − mgj
, (1)

IG
.
ω = rC1/G × (N1 + T1) + rC2/G × (N2 + T2)

+rD1/G × (ND1+TD1)+rD2/G × (ND2+TD2)
, (2)

where i, j, and k are the direction vectors in the x, y, and z axes, rC/G denotes the position
vector from position C to position G, and ω =

.
φk.
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Figure 1. Robot with motor-driven tires and rotating curved-spoke legs; (a) configuration of the 
system; (b) free body diagram.  

The equations of motion (EOMs) derived for the system with curved-spoke legs 
pushing the surface, as shown in Figure 1b, can be expressed as follows: 
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+ = + + + +
−

i j N T N T N T N
T j

 
, (1)

( ) ( )
( ) ( )

1 2

1 2

/ 1 1 / 2 2

/ D1 D1 / D2 D2

G C G C G

D G D G

I = × + + × +
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, (2)

where i, j, and k are the direction vectors in the x, y, and z axes, /C Gr  denotes the posi-
tion vector from position C to position G, and ϕ=ω k . 

In the EOM, the tire contact forces jN  and jT  are the normal and traction forces, 
respectively, acting on the surface profile, which is discretized by a continuous function 

( )k ky f x= , as illustrated in Figure 2. To measure the deflection and the speed of the 
contact point of tire A, the distance function between the wheel center A and the discre-
tized contact point is defined as 

( ) ( ){ }1/22 2
( )A A A

k A k A kd x x y f x= − + − , (3)

subject to 

(a) 

(b) 

Figure 1. Robot with motor-driven tires and rotating curved-spoke legs; (a) configuration of the
system; (b) free body diagram.

In the EOM, the tire contact forces Nj and Tj are the normal and traction forces,
respectively, acting on the surface profile, which is discretized by a continuous function
yk = f (xk), as illustrated in Figure 2. To measure the deflection and the speed of the contact
point of tire A, the distance function between the wheel center A and the discretized contact
point is defined as

dA
k =

{(
xA − xA

k

)2
+
(

yA − f (xA
k )
)2
}1/2

, (3)

subject to
j =

{
k|dk

A < R1

}
, k = 1, 2, · · · , Ng,

where Ng is the total number of discretized points of the surface profile function.
The contact nodal normal and tangential loads at a discretized contact node of tires A

and B are defined in the combination of the linear spring and damping elements in terms
of the contact radial deflection δ as

Nj ≡ Njnj =
1
2
(

N j +
∣∣N j
∣∣)nj, (4)

N j =
(

kc∆ljδj + cc∆lj
.
δj

)
nj·lj, (5)

Tj = µNjtj, (6)

where the tangential stiffness load is neglected, tj is the unit tangential vector at the j-th
contact node, lj is the unit direction vector between the tire center and the j-th contact node,
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kc and cc are the linear contact stiffness and damping constant per unit contact length of
the tire, µ is the friction coefficient, and

δj = R − dj, (7)

∆lj =
{(

xj+1 − xj
)2

+
(

f j+1 − f j
)2
}1/2

, (8)

.
δj = −

(
ω× rA/G +

.
rG
)
·nj, (9)
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Figure 2. Contact penalty method for tire A.

The contact loads of the curved-spoke leg are also defined in the normal and tangential
directions when the part of the spoke is in contact with the surface profile, as shown in
Figure 3. For this, the position vector of contact node C is described in the given coordinate
systems as

r =
[

x
y

]
= rG + R0

1s
′
J/G + R0

2s
′′
E/J + rC/E, (10)

where s, s′, s′′, and sr denote the vector described in the global xyz, robot body-fixed x′y′z′,
spoke-fixed J-origin x′′y′′z′′, and spoke-fixed E-origin xryrzr coordinates, respectively, and

rC/E = R0
2sr

C/E = R0
2

[
xr

yr

]
, (11)

s’
J/G =

[
a − L1

−hG − (hA − h1)

]
, (12)

s”
E/J =

[
r1
0

]
, (13)

where RI
m is the transformation matrix by rotation from the I-th to the m-th coordinate

defined in Figure 3. Therefore, the contact nodal position C can be expressed in the spoke-
fixed E-origin xryrzr coordinate as

sr
C/E =

[
xr

yr

]
=
(
R0

2
)T
{[

x
y

]
−
(

rG + R0
1s

′
J/G + R0

2s
′′
E/J

)} (14)
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Figure 3. Contact penalty method for the contact forces of the curved-spoke leg; F0, F1, and F2 denote
coordinate system xyz (global), x′y′z′ (robot body-fixed), and x′′y′′z′′ (spoke-fixed), respectively.

Next, the j-th contact nodes shown in the red dot in Figure 3 are defined if the dis-
cretized nodes of the surface profile are within the contact regime of the curved-spoke leg,
satisfying the following two conditions as

j = j(1) ∩ j(2), (15)

where  j(1) =
{

k|(xk − xE)
2 + ( fk − yE)

2 < r1

}
j(2) =

{
k| − π < tan−1

(
yr(xk , fk)
xr(xk , fk)

)
< αtip

} ,

and where k = 1, 2, · · · , Ng. Consequently, the corresponding contact nodal normal and
tangential loads at the detected j-th contact node of the curved-spoke leg are obtained using
the same method used to calculate the tire contact loads:

ND
j ≡ ND

j nD
j =

1
2

(
ND

j +
∣∣∣ND

j

∣∣∣)nD
j , (16)

ND
j =

(
kD∆lD

j δD
j + cD∆lD

j

.
δ

D
j

)
nD

j ·l
D
j , (17)

TD
j = µD ND

j tD
j , (18)

where the scalar and vector notations are the same as the tire contact model, and the sub-
and super-script D denote the contact between the curved-spoke leg and the surface profile.

Next, we focused on the stair-climbing mechanism. To model a stair-climbing robot,
the surface profile of a stair was defined as a continuous function, which can be expressed
as follows:

f =
Ns

∑
i=1

(
Hi
2

tanh

(
sa

(
x −

i

∑
k=1

Wk

))
+

Hi
2

)
, (19)

where Ns is the number of steps, and Hi and Wi are the height and width of the i-th step,
respectively, as shown in Figure 4. The corresponding normal and tangential unit vectors
at contact node C can be expressed in terms of the surface profile function as

nj =

(
−∂ f

∂x
, 1
)

/

√(
∂ f
∂x

)2
+ 1

∣∣∣∣∣∣
x=xC

j

, (20)
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tj =

(
1,

∂ f
∂x

)
/

√(
∂ f
∂x

)2
+ 1

∣∣∣∣∣∣
x=xC

j

. (21)
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essential task is to determine the design and control parameters of the proposed locomo-
tion and mechanism to enable the robot to climb the arbitrary stair geometry. For this, 
three phases of the locomotion scheme are proposed, as illustrated in Figure 5. After the 
motor-driven tire meets the wall of the stair at a contact point WC , the curved-spoke leg 
rotates until it touches down on the contact point UC  of the higher surface, as shown in 

Figure 4. Surface profile function for an arbitrary stair geometry.

Consequently, the four motor-driven tires with the rotating locomotion of curved-
spoke legs can be simulated using Equations (1)–(20). Thus, the remaining and essential
task is to determine the design and control parameters of the proposed locomotion and
mechanism to enable the robot to climb the arbitrary stair geometry. For this, three phases
of the locomotion scheme are proposed, as illustrated in Figure 5. After the motor-driven
tire meets the wall of the stair at a contact point CW , the curved-spoke leg rotates until
it touches down on the contact point CU of the higher surface, as shown in phase 1 of
Figure 5a. Owing to the constrained length between J and the wheel center, the rolling of the
spoke leg around E in phase 2 of Figure 5b can produce a translation of the curved-spoke
leg from left to right on the higher surface, resulting in the translation of the wheel from the
lower to the higher surface, except in the case of an excessive slip between the spoke and
the higher surface. To realize the proposed single-wheel climbing scenario, the following
kinematic relations between the wheel, spoke leg, and stair geometry are introduced.
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Figure 5. Scenario of single-wheel climbing locomotion; (a) phase 1: the tire rolls on the lower surface
up to the wall of the stair and the spoke rotates and touches down on the higher surface; (b) phase
2: the wheel is elevated from the lower to the higher surface owing to the pulling of the spoke leg
during spoke rolling; (c) phase 3: both the wheel and spoke leg roll on the higher surface.
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First, the relative motions of the wheel and spoke leg for the joint position J in Figure 5
are calculated from the following kinematic constraint as∥∥rJ − rA

∥∥ ≡ l = const., (22)

where the position vector rJ is defined in terms of the rotation angle β′ of the curved-spoke
leg in Figure 6a, corresponding to the configuration of phases 1, 2, and 3, which can be
expressed as

rJ =

[
xE0 − r1β′ + r1 cos(βU + π + β′)

yE0 + r1 sin(βU + π + β′)

]
, (23)

and where the wheel center A lies on the three position candidates rolling on the stair
surface, such that

rA =

[
0

uy

]
, 0 ≤ uy ≤ h − R1, (24)

for vertical translation in phases 1 and 2, and

rA = rQ +

[
−R1 cos θR
R1 sin θR

]
, 0 ≤ θR ≤ π/2, (25)

for curving on edge Q in phase 2, and

rA = rQ +

[
ux
R1

]
, 0 ≤ ux ≤ W − R1, (26)

for rolling on a higher surface in phase 3, where

rQ =

[
R1

h − R1

]
. (27)
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Figure 6. Configuration of the curved-spoke leg relative to the wheel, (a) the joint position J (J′x, J′y)
and rotation angle β′ with respect to the body frame x’-y’-z’, and (b) the determination of joint
position J for the success of the single-wheel climbing when the tire was in contact with the wall at CW .
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From the above kinematic equation with pure rolling, the transition from phase 1 to
phase 3 in Figure 5 can be numerically calculated in the geometric design stage to examine
the success of the single-wheel climbing. The position of the wheel pulled by the rolling
curved-spoke leg toward the higher surface was evaluated with respect to the rolling angle
β’ of the spoke. It was observed that the single-wheel climbing under the kinematic relation
was performed by the pure rolling assumption. To validate its actual climbing operation,
the dynamic equations considering the slip of the rolling wheels and spokes on the surface
of stairs were also applied.

Second, kinematic inequality equations are proposed for the initial design of the
curved-spoke geometry and its relative position (J′x, J′y) to the nearby wheel for the success
of the single-wheel climbing using the rolling and pulling constraints of the curved-spoke
leg. For this, the operating angle of the curved-spoke leg with respect to x′-y′-z′ (robot
body-fixed) in Figure 6a is given as

β′ = β − φ, (28)

where

β = tan−1
(

yE − Jy

xE − Jx

)
. (29)

From Figure 6b, we measured the initial spoke angle βU when the wheel made contact
with the wall and the spoke leg touched down on the higher surface in phase 1, denoting
that

βU = tan−1
(

yE0 − Jy

xE0 − Jx

)
, (30)

where
xE0 =

√
r2

1 −
{

r1 −
(

Jy − (H − R1)
)}2

+ Jx. (31)

If 2r1 > Jy − (H − R1) > 0 in Equation (31), then the real solution for the contact
position can be derived; otherwise, there is no solution. This implies that the semicircle-like
curved-spoke leg does not climb the stair if the height of the spoke joint is lower than that
of the higher surface, that is, Jy < (H − R1) and 2r1 > Jy − (H − R1).

In addition, the inequality dC0 > dslip > 0 in Figure 6b guarantees that the spoke leg
can touch down on the higher surface and start rolling at dC0 on the higher surface in phase
1. Because the slip of the curved-spoke leg during rolling on the higher surface in phase 2
may occur due to gravity, the margin dslip allowing the slip distance was applied to prevent
the fall of the spoke leg from the higher surface. The inequality W − r1 > d0 in Figure 6b
prevents the blockage of the wall of the next step on the rolling spoke leg.

Consequently, the wheel-climbing requirement for phase 1 can be summarized as

2r1 > Jy − (H − R1) > 0 for φ ∈ [0, φmax], (32)

W − r1 > dC0 > dslip > 0 for φ ∈ [0, φmax], (33)

0 < dC0 < W − r1, (34)

where
dC0 = xE0 − R1

=
√

r2
1 −

{
r1 −

(
Jy − (H − R1)

)}2
+ Jx − R1

(35)

[
Jx
Jy

]
=

[
J′x cos φ − J′y sin φ

J′x sin φ + J′y cos φ

]
, (36)

and where the maximum body pitch angle is assumed to be the slope of the stair
φmax = tan−1 H/W, and dslip is the margin allowing for the slip distance of the curved-
spoke leg on the surface of a stair.
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The wheel-climbing requirement for phase 2 may be also proposed as an arc length of
the spoke leg longer than that required for bringing the wheel to the vertex Q, as illustrated
in Figure 7

π − αtip > θrot +
π

2
− βUfor φ ∈ [0, φmax], (37)

subject to ∥∥∥∥rJ −
(

rQ +

[
0

R1

])∥∥∥∥ = l, (38)

where rJ is the function of the angle θrot = βU − β in Equation (23) and (J′x, J′y), and this
inequality equation is numerically calculated in terms of (J′x, J′y).
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Figure 7. Configuration of the kinematic inequality condition for wheel climbing to vertex Q along
with the trajectory of translational motion; the spoke rotates with θrot = βU − β while maintaining
the constrained length l and pulling the wheel.

The four kinematic inequality Equations (32)–(34) and (37) may provide the design
requirement for the geometry of the wheel and curved-spoke leg and the relative position
for the success of single-wheel climbing on the prescribed stair geometry. It should be noted
that the kinematic inequality conditions are derived from the geometric relations under
no-slip conditions. Therefore, this kinematic design configuration for single-wheel climbing
was validated in the next section through the dynamic equations of motion considering
frictional slip.

This conceptual robot aims to enable stair climbing with a zero required minimum
friction coefficient. It can climb a stair as a legged robot if the curved-spoke leg is well-
defined under the kinematic inequality conditions in Equations (32)–(34) and (37), and the
wheelbase is adjusted to nearly the hypotenuse of several steps. In this case, the wheel
climbing of the front and rear axles was synchronized, as illustrated in Figure 8. If the static
friction coefficient is µs ≡ µ = µD, the balance equation for the static state can expressed as

ND1 + ND2 =
mg

1 + µ2
s

, (39)

where the ND1 and ND2 of the spoke legs can be produced by the joint torque of the spokes.
This implies that the static state in Equation (39) holds even if the static friction coefficient
µs is zero; thus, the required minimum friction coefficient turns out to be zero, as in the
static analysis of the wheeled or rocker–bogie stair-climbing robots [38]. It should be noted
that legged robots typically have zero required minimum friction coefficients because their
legs hop rather than roll during stair climbing. Therefore, the proposed mechanism can
also be categorized as a stair-climbing legged robot, given that wheels are additionally
attached to the legged robot for flat road driving.
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3. Results

A well-defined kinematic configuration between the wheel and curved-spoke leg is
critical for the successful stair climbing of the proposed robot. The kinematic inequality
conditions of wheel climbing are the necessary conditions for the single wheel of the
robot to climb stairs. First, the parametric boundary for satisfying the kinematic inequality
conditions was determined to determine the system’s geometric configuration for successful
single-wheel climbing. After the specific design parameters were selected, the stair-climbing
simulation based on the dynamic model was conducted to validate the stair-climbing
performance of the whole robot.

3.1. Kinematic Results for the Single-Wheel Climbing

In the subsequent analysis, we focused on the kinematic model for a single wheel to
climb a stair with the aid of the locomotion of a curved-spoke leg, and the configuration of
the kinematic model is described in Figures 6 and 7. The system parameters of the robot,
which are listed in Table 1, are applied to the single wheel and its nearby curved-spoke
leg. The friction coefficient was set to 0.3 for this simulation, which is relatively low for tire
dynamics. Nevertheless, the simulation results demonstrated the stair-climbing ability of
the single wheel at a low friction coefficient, as explained in the required minimum friction
coefficient of the static analysis in Figure 8. The stair geometry, such as the width and
height of the stair, was assumed to be constant in the simulation.

Table 1. System parameters of stair-climbing robot.

Symbol Value Unit

m 30 kg

R 0.08 m

r 0.11 m

H 0.15 m

W 0.25 m

kc 1.0 × 106 N/m2

kD 1.0 × 106 N/m2
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Table 1. Cont.

Symbol Value Unit

Cc 2.5 × 105 Ns/m2

CD 2.5 × 105 Ns/m2

µ 0.3 -

µD 0.3 -

To determine the kinematic inequality conditions, the geometric boundary of the spoke
joint position satisfying the inequality conditions was calculated. The spoke joint position
relative to a wheel in the body-fixed frame is important for the spoke leg to successfully
roll onto the higher surface and bring the nearby wheel to the surface. We observed that
the pitch angle of the robot changed when it climbed onto the slope of the stair. Therefore,
the joint position for stair climbing in the body-fixed frame should differ from that in the
ground-reference frame. For a fixed slope of a stair to be climbed, the joint position should
satisfy the kinematic inequality conditions of the robot driving on both the flat ground
and a slant stair. Figure 9a shows the joint position requirement to satisfy the kinematic
inequality conditions when the front wheel climbs the first step at the zero-pitch angle.
As the robot drives onto the slant of the stair for steady-state climbing, the body pitch
changes to the slope of the stair, and the joint position requirement relative to the wheel
also changes, as illustrated in Figure 9b. The intersection of the two requirements was
selected as the joint position candidate relative to the wheel in the body-fixed frame, as
shown in Figure 9c.
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Figure 9. The regime of joint positions of the spoke leg relative to the wheel satisfying the kinematic
inequality conditions at (a) φ = 0◦ and (b) φ = tan−1 H/W = 31◦, and the (c) regime satisfying the
inequality conditions for both pitch angles.
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In the subsequent analysis, the joint position at the intersection of the two requirements
was chosen to be

(
J′x, J′y

)
= (0.1, 0.1) in the body-fixed frame, as in the case of the joint

position satisfying the two requirements. Figure 10a demonstrates that the wheel at the
zero-pitch angle can be translated up to the vertex Q of the stair as the curved-spoke leg
rolls on the higher surface. Figure 10b shows that the wheel can also kinematically climb
up to the vertex Q in the slant body case of φ = tan−1 H/W = 31◦.
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3.2. Dynamic Results for the Stair Climbing of the Whole Robot

In this section, the dynamic response of the stair climbing of the whole robot was
estimated through dynamic equations of motion, as expressed in Equations (1) and (2).
For the dynamic simulation of the whole system, the front and rear axles were included.
Therefore, the stair climbing of the system required the simultaneous climbing of the front
and rear wheels with the aid of the locomotion of both the front and rear curved-spoke legs.
One important parameter for the synchronization of the front and rear wheel-climbing
was the wheelbase, which is the distance between the front and rear axles. In reference [1],
numerous stair-sensing techniques for stair climbing were reviewed. Using LiDAR, stereo
cameras, proximity sensors, and other technologies, the size of the stairs can be measured
in real-time. When the hypotenuse of two steps is measured, it is assumed that a variable
wheelbase mechanism is equipped and controlled to adjust before encountering the next
two steps. The wheelbase was assumed to be the hypotenuse of two steps. The speed of
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the curved-spoke legs was set to be linearly varied with the slope γ =
(

ω f − ωo

)
/ε within

a certain range ε of rotation angles to reduce chattering and impact.

.
β = γ(β − βL)− ωo or

.
β = −γ(β − βU)− ωo. (40)

Figure 11 shows the dynamic sequence of the stair climbing of the whole body. As
the wheelbase was set to be the hypotenuse of several steps, the sequential motion of the
front and rear wheels and their curved-spoke legs was synchronized and similar to the
kinematic sequence of the single wheel in Figure 10.
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The dynamic trajectory of the CG was traced during stair climbing as illustrated in
Figure 12a. After the robot climbs the first step, its trajectory during the steady state climb-
ing oscillates as a cycloid according to the periodic profile of the stair. The corresponding
velocity of CG varies periodically in Figure 12b as the stair climbing acts as the periodic
motion. When the robot meets the wall of each step, the horizontal speed drops to zero. As
the wheel climbs each step, the vertical speed increases to a certain value but drops back to
zero as the robot drives on the flat surface of each step.

The rotating angle and speed of the curved-spoke leg were controlled by the pre-
defined speed profile in Equation (40). The rotating speed of the spoke leg increased when
the spoke leg rotated freely in the air, but decreased as the spoke leg rolled onto the higher
flat surface of each step. Figure 13a,b show the variations per one revolution of the rotating
angle and speed of the spoke leg during stair climbing. The joint torques of the front and
rear spoke legs required to climb each step are also demonstrated in Figure 13c. With an
increase in the friction coefficient, the required joint torque for stair climbing decreased,
because the wheel traction on the wall of the stairs reduced the normal loads of the curved
spoke legs on the higher surface.
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4. Discussion

This study proposed a simple wheel-leg mechanism for stair climbing, as well as flat
road driving. Stair climbing was achieved using the locomotion of the motor-driven tires
and curved-spoke legs. Particularly, the design configuration requirements of the motor-
driven tire and curved-spoke leg for various stair geometries were proposed. Thereafter,
the stair-climbing ability was validated through a dynamic model that allowed for frictional
slips. The following conclusions were drawn from these results:

− Wheel climbing can be achieved by utilizing a curved-spoke leg.
− Wheel climbing is a necessary condition for the stair climbing of the whole robot.
− The spoke position relative to a wheel should be carefully determined for both the flat

and slant robot using the proposed kinematic inequality constraints.
− The proposed robot could effectively climb a given stair geometry if the curved-spoke

leg is well defined under the kinematic inequality conditions, and the wheelbases are
adjusted to the hypotenuse of several steps.

− The required minimum friction coefficient for the static state of stair climbing is
very low for wheel-spoke leg locomotion if the kinematic wheel-climbing conditions
are met.
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