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Abstract: Asian sand dust (ASD), generated from the deserts of China and Mongolia, affects Korea
and Japan during spring and autumn, causing harmful effects on various bio-organs, including the
respiratory system, due to its irritants such as fine dust, chemicals, and toxic materials. Here, we
investigated the therapeutic effects of silibinin against ASD-induced airway inflammation using
mouse macrophage-like cell line RAW264.7 and a murine model. ASD was intranasally admin-
istered to mice three times a week and silibinin was administered for 6 days by oral gavage. In
ASD-stimulated RAW264.7 cells, silibinin treatment decreased tumor necrosis factor-α production
and reduced the expression of p-p65NF-κB, p-p38, and cyclooxygenase (COX)-2, while increasing
heme oxygenase (HO)-1 expression. In ASD-exposed mice, silibinin administration reduced inflam-
matory cell count and cytokines in bronchoalveolar lavage fluid and decreased inflammatory cell
infiltration in lung tissue. Additionally, silibinin lowered oxidative stress, as evidenced by decreased
8-hydroxy-2’-deoxyguanosin (8-OHdG) expression and increased HO-1 expression. The expression of
inflammatory-related proteins, including p-p65NF-κB, COX-2, and p-p38, was markedly reduced by
silibinin administration. Overall, silibinin treatment reduced the expression of p-p65NF-κB, COX-2,
and p-p38 in response to ASD exposure, while increasing HO-1 expression both in vitro and in vivo.
These findings suggest that silibinin mitigates pulmonary inflammation caused by ASD exposure by
reducing inflammatory signaling and oxidative stress, indicating its potential as a therapeutic agent
for ASD-induced pulmonary inflammation.

Keywords: silibinin; Asian sand dust; pulmonary inflammation; p-p65; Heme oxygenase-1

1. Introduction

Asian sand dust (ASD), mainly generated from the deserts of Mongolia and China,
affects East Asia, including China, Japan, and the Republic of Korea [1,2]. In particular, ASD
occurs in spring and autumn, periods when respiratory diseases develop frequently due
to decreased immunity caused by temperature changes, further increasing the prevalence
of respiratory diseases and worsening underlying respiratory diseases such as allergic
asthma and chronic obstructive pulmonary disease [3,4]. Due to rapid industrialization,
ASD contains heavy metals and nanomaterials harmful to organisms, threatening human
health [5,6]. Therefore, ASD is a very important issue for human respiratory health in
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these regions. In the Republic of Korea, information on air quality is released to the
public every day, and recommendations on wearing masks and refraining from going out
are implemented.

Silibinin is the main component of Silybum marianum (milk thistle), which is mainly
distributed throughout Europe, Russia, and Central Asia [7]. Currently, milk thistle is
used as a functional food against various diseases due to its pharmacological properties [8].
Furthermore, the anticancer, anti-inflammatory, antioxidative, and antifibrotic effects of
silibinin have been proven by many experimental studies [9–11]. Thus, silibinin has been
used to treat various diseases, including cancer, diabetes, Alzheimer’s disease, and hepatic
diseases [7]. Additionally, silibinin is used to treat many inflammatory diseases, including
dermatitis, sepsis, hepatitis, and arthritis [12–15]. Recently, silibinin has demonstrated
therapeutic properties for various pulmonary diseases, including chronic obstructive pul-
monary disease, asthma, lung fibrosis, and airway inflammation induced by metals and
nanoparticles [16–20]. Consequently, we hypothesized that silibinin would be effective
against ASD-induced pulmonary inflammation.

While previous studies have suggested the respiratory toxicity of ASD, studies fo-
cusing on the use of protective agents against ASD-induced airway inflammation remain
limited. This study investigated the therapeutic effects of silibinin on ASD-induced pul-
monary inflammation using in vivo and in vitro experimental models. Additionally, we
elucidated the underlying mechanism of silibinin by analyzing the expression of proteins
related to oxidative stress and inflammatory responses.

2. Materials and Methods
2.1. Physical and Chemical Characteristics of ASD

The morphology and composition of Asian sand dust (ASD; Powder Technology Inc.,
Arden Hills, MN, USA) were measured using transmission electron microscopy (TEM;
JEM-2100 F, JEOL, Tokyo, Japan) and scanning electron microscopy (SEM; Zeiss Gemini500,
Carl Zeiss Meditec AG, Jena, Germany), respectively. Its chemical elements consist of
34.0–40.0% SiO2, 26.0–32.0% Al2O3, 17.0–23.0% Fe2O3, 3.0–7.0% MgO, 0.0–3.0% CaO, and
0.0–4.0% TiO2. The ASD’s purity was evaluated using energy dispersive X-ray spectroscopy
(X-Max N 150 mm2 silicon drift detector equipped with a Zeiss Gemini500 SEM; Oxford
Instrument, Abingdon, UK). The hydrodynamic size of ASD was evaluated using ELS-8000
(Otsuka Electronic, Tokyo, Japan).

2.2. Procedure for Animal Experiment

C57BL/6 male mice (6 weeks old, Samtako Co., Osan, Republic of Korea) were housed
at a temperature of 22 ± 2 ◦C, humidity of 55 ± 5%, and a photoperiod of 12 h night/day,
and feed and water were provided ad libitum. The animals were divided into the following
4 groups (n = 7 per group): a normal control group (NC group), an ASD-induced pul-
monary inflammation group (ASD group), and silibinin-treated groups (Sil 20 group and
Sil 40 group). The murine model of pulmonary inflammation induced by ASD exposure
was established according to a previous study’s methodology [2]. The instillation dose
of ASD (0.8 mg/mouse) used in this study was 13.3 times higher than the approximately
60 µg associated with 100% deposition, according to the Korean national air quality stan-
dard for suspended particulate matter (PM) [21]. However, during high-ASD-level days
in the Republic of Korea, the national air quality standard for suspended PM generally
exceeds 150 µg/m3 [22]. Therefore, the instillation dose of ASD was 5.3 times higher.
ASD (0.8 mg/mouse in 50 µL of phosphate buffered saline ((PBS)) was administered to
animals in the ASD and Sil groups via intranasal instillation on days 1, 3, and 5 under
slight anesthesia. The NC group was intranasally instilled with 50 µL of PBS. Silibinin
(20 and 40 mg/kg in PBS) was administered to animals in the Sil groups daily from days 1
to 6 by oral gavage. The animals were sacrificed 48 h after their last ASD exposure.

To collect the bronchoalveolar lavage fluid (BALF) from animals, we performed tra-
cheostomy on each animal, according to the methodology of a previous study [23]. First,
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the trachea of the animal was incised and then an endotracheal tube was inserted. The lung
was lavaged twice with 0.7 mL of phosphate-buffered saline (PBS, total volume: 1.4 mL),
which was then centrifuged at 1500 rpm for 5 min at 4 ◦C. The supernatant was collected
and stored at −80 ◦C to analyze inflammatory cytokines, including interleukin (IL)-1β, IL-6
and tumor necrosis factor (TNF)-α, using enzyme-linked immunosorbent assay (ELISA)
kits (BD Biosciences, San Jose, CA, USA) according to the manufacturer’s protocols. The
amount of inflammatory cytokines was calculated according to the measured absorbance
using the standard curve. The absorbance was measured at 450 nm using a spectropho-
tometer (Thermo Fisher Scientific, San Diego, CA, USA). The pellet was used to determine
the number of inflammatory cells in the BALF. The pellet was resuspended in PBS and the
number of total inflammatory cells in the BALF was determined using an automated cell
counter (Countess II, Thermo Fisher Scientific, San Diego, CA, USA). To count the number
of differential inflammatory cells in the BALF, a resuspended pellet (200 µL) was attached
onto a glass slide using a cytospin (Hanil Scientific Inc., Gimpo, Republic of Korea) and then
stained with Diff-Quik agent (Sysmex, Kobe, Japan). The number of inflammatory cells,
including neutrophils, macrophages, eosinophils and lymphocytes, were counted under a
light microscope (Leica Microsystem, Heidelberg, Germany), and the ratio of differential
inflammatory cells out of the total inflammatory cells was determined.

The procedure for the animal experiment was checked by the Chonnam National
University Institutional Animal Care and Use Committee (CNU IACUC-YB-2022-123).
The animals were cared for in accordance with the Guideline for Animal Experiments of
Chonnam National University.

2.3. Histological Examination

The left lung, after BALF sampling, was fixed and neutralized in 4% formalin for
3 days at room temperature. The tissues were embedded in a paraffin block, cut into 4 µm
thick sections, deparaffinized using xylene, and dehydrated using ethanol. Following a
5 min wash with distilled water, tissue sections were stained with hematoxylin and eosin
stain (H&E; Sigma-Aldrich, St. Louis, MO, USA). To investigate the protein expression
related to oxidative stress, we performed immunohistochemistry (IHC) analysis according
to a previous study’s methodology [24]. IHC was performed using a commercial kit (Vector
Laboratories, Burlingame, CA, USA) and the following primary antibodies were used: anti-
rabbit heme oxygenase (HO)-1 (Abcam, Cambridge, UK) and anti-mouse 8-OHdG (Santa
Cruz Biotechnology, Santa Cruz, CA, USA). To perform immunohistochemistry (IHC)
analysis, deparaffinized and dehydrated tissues were washed with PBS-T (PBS containing
0.05% Tween 20) and incubated for 20 min with goat serum at room temperature to block
nonspecific protein binding. The tissues were incubated with primary antibodies for 2 h at
room temperature, washed 3 times, and incubated with biotinylated secondary antibody
for 1 h at room temperature. Tissues were then incubated with an avidin–biotin–peroxidase
complex (Vector Laboratories, Burlingame, CA, USA) for 1 h at room temperature and
further incubated with diaminobenzidine (DAB, Abcam, Cambridge, UK) for 5 min be-
fore visualizing using a light microscope (Leica Microsystem). The representative figures
for histological examination were obtained using a slide scanner (Motic, Richmond, BC,
Canada) and the quantification of respiratory inflammatory responses and protein expres-
sion were carried out using an Image and Microscope Technology (IMT) i-Solution, as
an image analyzer (IMT i-Solution Inc., Vancouver, BC, Canada). For the quantitative
analysis of inflammation, we evaluated the inflammatory response for the total area (cap-
tured on 200× magnification). The quantitative value was expressed as a percentage (%,
inflammation or mucus secretion area vs. arranged area). In addition, we performed an im-
munofluorescence analysis to evaluate p-p65 expression using anti-mouse p-p65 (1:200; Cell
Signaling, Danver, MA, USA) according to a previous study’s methodology [25]. The slides
were mounted using Prolong Gold antifade with 4’,6-diamidino-2-phenylindole (DAPI,
Thermo Fisher Scientific, San Diego, CA, USA) and evaluated using confocal microscopy
(Carl Zeiss, Oberkochen, Germany).
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2.4. Western Blot Analysis

The right lung tissue was homogenized (1/10 w/v) in tissue lysis/extraction reagent
(Sigma-Aldrich, St. Louis, MO, USA) supplemented with protease inhibitors (Sigma-
Aldrich, St. Louis, MO, USA) to determine protein expression and pathways. Western
blotting was performed as described previously [25]. Each sample (30 µg/well) was
separated using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to 0.25 µm polyvinylidene difluoride (PVDF) membranes (Millipore,
Burlington, MA, USA). The membranes were then blocked with 5% skimmed milk at
room temperature for 2 h, before being incubated with primary antibodies overnight. The
following primary antibodies were used: phospho-p38 (1:1000; Cell Signaling, Danvers,
MA, USA), p-p65 (1:1000; Cell Signaling, Danvers, MA, USA), cyclooxygenase (COX)-
2 (1:1000; Abcam, Cambridge, UK), HO-1 (1:1000 dilution, Abcam, Cambridge, UK),
and β-actin (1:1000; Cell Signaling, Danvers, MA, USA). Then, the membranes were
incubated with a horseradish peroxidase (HRP)-conjugated secondary antibody (1:10,000;
Jackson Immuno Research, West Grove, PA, USA) for 2 h, and finally developed using
an enhanced chemiluminescence kit (Thermo Fisher Scientific, San Diego, CA, USA). The
densitometric values of the protein band expressions were assessed using ChemiDoc
(Bio-Rad Laboratories, Hercules, CA, USA).

2.5. Cell Culture

RAW264.7 cells were cultured using Dulbecco’s modified Eagle’s medium (Sigma-
Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS, Sigma-
Aldrich, St. Louis, MO, USA) and 1% antibiotics (Sigma-Aldrich, St. Louis, MO, USA)
at 37 ◦C in a 5% CO2 incubator (Thermo Fisher Scientific, San Diego, CA, USA). Cell
viability was evaluated using EZ-Cytox (DAELIL lab, Seoul, Republic of Korea). The cells
(1 × 104 cells/well) were seeded in 96-well plates and incubated for 24 h. Fresh medium
and various concentrations of silibinin (20, 10, 5, 2.5, 1.25, and 0.725 µg/mL) were added
after 24 h. Each well was treated with EZ-Cytox agent and incubated for 4 h, and then
absorbance was measured at 450 nm using a spectrophotometer (Thermo Fisher Scientific,
San Diego, CA, USA).

2.6. Measurement of TNF-α in ASD-Stimulated RAW264.7 Cells

The cells (1 × 104 cells/well) were seeded in 6-well plates and treated with various
concentrations of silibinin. After 1 h, ASD (20 µg/mL) was added to each well and
incubated for 24 h. The supernatants of cells were collected to measure the production of
TNF-α (R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s procedure.
The absorbance was measured at 450 nm using a spectrophotometer (Thermo Fisher
Scientific, San Diego, CA, USA).

2.7. Measurement of p-p65 Expression in ASD-Stimulated RAW264.7 Cells

Double-immunofluorescence (IF) analysis was conducted to determine p-p65 expres-
sion, as previously described [25], using an anti-p-p65 (1:100; Abcam, Cambridge, UK)
antibody. RAW264.7 cells were seeded in 12-well plates with plastic coverslips (SPL Life
Sciences, Pocheon, Republic of Korea). The cells attached to the plastic coverslip were
exposed to ASD, and the cells cultured for 6 h were used for double IF. The cells were
incubated with the primary antibody overnight at 4 ◦C and the secondary antibody for
2 h at room temperature. After 3 washes in PBS, the cells were incubated with anti-rabbit
fluorescein isothiocyanate (FITC) secondary antibody (Sigma-Aldrich, St. Louis, MO, USA).
The cells were mounted on slides and the nuclei were visualized with 4’,6-diamidino-2-
phenylindole (DAPI) present in the ProLong Gold Antifade Mounting Medium (Invitrogen,
Carlsbad, CA, USA). Immunofluorescence imaging was performed on a laser scanning
confocal microscope (Carl Zeiss, Oberkochen, Germany) using a Leica 63× (N.A. 1.4) oil
objective lens.
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2.8. Statistical Analysis

The results are expressed as mean ± standard deviation. Statistical significance was
determined using Dunnett’s test after a one-way ANOVA was conducted using GraphPad
Prism 8 (GraphPad Software, San Diego, CA, USA). A p value of <0.05 indicated statistical
significance (# vs. NC and * vs. ASD).

3. Results
3.1. Characteristics of ASD

The shape and size of ASD particles were analyzed using SEM and TEM (Figure 1A,B,
respectively). The constituent elements of ASD were 48.82% O, 43.40% Si, 4.73% Al, 2.15%
Fe, 0.36% Mg, 0.30% Ca, and 0.24% Ti (Figure 1C,D). The autocorrelation function and
intensity distribution of ASD were measured using the zeta potential (Figure 1E). The
average negative zeta potential was −19.25 (mV) (Figure 1F).
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Figure 1. Characteristics of Asian sand dust (ASD). (A) Representative figure of scanning electron
microscopy (SEM) for ASD, (B) representative figure of transmission electron microscopy (TEM)
for ASD, (C) representative figure of ASD composition analyzed using X-ray spectroscopy on SEM
images, (D) quantitative analysis of ASD composition, (E) average particle size of ASD in distilled
water, and (F) surface charge of ASD as measured using zeta potential.

3.2. Silibinin Decreased Inflammatory Responses in ASD-Stimulated RAW264.7 Cells

Based on the results of the silibinin and ASD cell viability test (Figure 2A,B, respec-
tively), we determined 20 and 500 µg/mL to be the highest concentrations. ASD-stimulated
RAW264.7 cells treated with a concentration of 500 µg/mL showed a significantly in-
creased production of TNF-α compared to non-stimulated RAW264.7 cells. By contrast,
silibinin treatment significantly decreased TNF-α production caused by ASD exposure in
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a concentration-dependent manner (Figure 2C). ASD-stimulated RAW264.7 cells had a
significantly elevated expression of p-p38, p-p65, and COX-2 compared to non-stimulated
RAW264.7 cells. However, silibinin treatment markedly decreased the expression of p-p38,
p-p65, and COX-2 (Figure 2D,F, respectively). HO-1 expression was markedly increased in
ASD-stimulated RAW264.7 cells compared with non-stimulated RAW264.7 cells, which was
increased even further by silibinin treatment. Additionally, ASD-stimulated RAW264.7 cells
showed the increased translocation of p65 into the nucleus, compared with non-stimulated
RAW264.7 cells. However, silibinin treatment decreased this translocation induced by ASD
stimulation (Figure 2E).
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Figure 2. Effects of silibinin on inflammatory responses in ASD-stimulated RAW264.7 cells.
(A) silibinin cell viability, (B) ASD cell viability, (C) level of TNF-α, (D) Western blot analysis Re-sults,
(E) representative figure showing immunofluorescence for p-p65, (scale bar: 50 µm), and (F) densito-
metric value of protein expression. The data are shown as the mean ± standard deviation. ##, vs. NC,
*,**, vs. ASD-stimulated RAW264.7 cell, p < 0.05 and <0.01, respectively.

3.3. Silibinin Reduced Inflammatory Mediators of BALF of ASD-Exposed Mice

ASD-exposed mice showed markedly increased total numbers of inflammatory cells
in the BALF compared with controls (Figure 3A). Furthermore, the number of neutrophils,
macrophages, and lymphocytes were markedly elevated in ASD-exposed mice compared
to controls (Figure 3B–D, respectively). In contrast, the silibinin-treated groups demon-
strated a significantly decreased number of inflammatory cells in the BALF, in a dose-
dependent manner, compared with those of ASD group. The levels of IL-6, IL-1β, and
TNF-α in the BALF were markedly increased in ASD-exposed mice compared with the con-
trols (Figure 3E–G, respectively). However, silibinin-treated groups showed significantly



Antioxidants 2024, 13, 1187 7 of 13

decreased levels of IL-6, IL-1β, and TNF-α in the BALF, in a dose-dependent manner,
compared with those of ASD-exposed mice.
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Figure 3. Effects of silibinin on inflammatory cell counts and cytokines in the BALF of ASD-exposed
mice. (A) Total cells, (B) neutrophils, (C) macrophages, (D) lymphocytes, (E) level of IL-6, (F) level
of IL-1β, and (G) level of TNF-α. NC, PBS intranasal instillation + PBS; ASD, ASD intranasal
instillation + PBS; Sil 20 and 40, ASD intranasal instillation + silibinin (20 and 40 mg/kg, respectively).
The data are presented as the mean ± standard deviation (n = 7). p < 0.01; *, **, vs. ASD, p < 0.05 and
<0.01, respectively.

3.4. Silibinin Decreased Inflammatory Response and Oxidative Stress in the Lung Tissue of
ASD-Exposed Mice

ASD-exposed mice showed extensive inflammatory cell infiltration in the lung tissue,
which was significantly decreased by silibinin (Figure 4A,B). The expression of 8-OHdG
and HO-1 in the lung tissue markedly increased in ASD-exposed mice compared to controls
(Figure 4A,C,D). However, the silibinin-treated group showed a significantly decreased
expression of 8-OHdG and an increased expression of HO-1 compared with those of
ASD-exposed mice.

3.5. Silibinin Suppressed Inflammatory Signaling in ASD-Exposed Mice

ASD-exposed mice showed markedly increased p-p65 expression compared to controls
(Figure 5A–C). However, silibinin-treated mice significantly decreased the expression of
p-p65 compared with that of ASD-exposed mice. Furthermore, the expression of p-p38,
COX-2, and HO-1 was markedly increased in ASD-exposed mice compared to controls
(Figure 5B,C, respectively). Silibinin treatment also significantly decreased the expression
of p-p38 and COX-2 and increased the expression of HO-1.
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Figure 4. Effects of silibinin on inflammatory responses and oxidative stress in ASD-exposed
mice. (A) Representative figures for H&E stain and IHC analysis (8-OHdG and HO-1), (B) in-
flammation index, (C) 8-OHdG expression value, and (D) HO-1 expression value. NC, PBS in-
tranasal instillation + PBS; ASD, ASD intranasal instillation + PBS; Sil 20 and 40, ASD intranasal
instillation + silibinin (20 and 40 mg/kg, respectively). The data are presented as the mean ± stan-
dard deviation (n = 7). Lung tissue of a mouse captured at 4× magnification (scale bar: 300 µm)
and 100× magnification (scale bar: 100 µm). ##, vs. NC, p < 0.01; *, **, vs. ASD, p < 0.05 and
<0.01, respectively.
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Figure 5. Effects of silibinin on the signaling pathway related to inflammation and oxidative stress
in ASD-exposed mice. (A) Representative figure of p-p65 expression in the lung tissue, (scale bar:
50 µm), (B) Western blot analysis results, and (C) densitometric value of protein expression. NC, PBS
intranasal instillation + PBS; ASD, ASD intranasal instillation + PBS; Sil 20 and 40, ASD intranasal
instillation + silibinin (20 and 40 mg/kg, respectively). The data are presented as the mean ± standard
deviation (n = 7). ##, vs. NC, p < 0.01; *, **, vs. ASD, p < 0.05 and <0.01, respectively.

4. Discussion

ASD affects China, Japan, and the Republic of Korea, threatening people’s respiratory
health and worsening underlying diseases [26,27]. Currently, ASD is regarded as an
important social problem, and each country is responding by establishing policies to solve
various problems caused by ASD exposure [28]. However, the use of therapeutic agents to
treat the toxic effects of ASD on the respiratory tract is limited. In this study, we investigated
the therapeutic effects of silibinin on pulmonary inflammation induced by ASD exposure.
The silibinin treatment resulted in a significant reduction in inflammatory cell counts in
the BALF, including neutrophils, macrophages, and lymphocytes, which was accompanied
by the decreases in the production of IL-1β, IL-6, and TNF-α. In histological analysis,
silibinin treatment resulted in a reduction in the inflammatory responses of the respiratory
tract induced by ASD exposure. In addition, silibinin treatment demonstrated antioxidant
properties, including the elevation of HO-1 expression and a reduction in 8-OHdG, as
well as anti-inflammatory properties, including reductions in the expression of p-p38,
p-p65, and COX-2 in lung tissue. These events were consistent with the results of in vitro
experiments. Silibinin treatment resulted in a significant reduction in the production of
TNF-α in ASD-stimulated RAW264.7 cells, as well as an elevation in HO-1 expression and
decreases in the expression of p-p38, p-p65, and COX-2.

ASD contains not only sand grains but also various substances such as heavy
metals, nanoscale particles, and organic chemicals generated by rapid industrial de-
velopment [2]. Therefore, ASD exposure causes various harmful conditions in many
organs and worsens underlying diseases [29]. In particular, exposing the respiratory
tract to ASD induces inflammatory responses and aggravates underlying respiratory dis-
eases, such as asthma and chronic obstructive pulmonary disease [23,30]. In acute lung
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inflammation, neutrophils migrate from the blood vessels into the lung parenchyma,
where they directly engulf pathogens and stimulate the production of pro-inflammatory
cytokines by phagocytic cells [31]. Pro-inflammatory cytokines, including IL-1, IL-6,
IL-8, and TNF, mediate the inflammatory response [32]. Exposure to ASD has been
shown to increase the production of pro-inflammatory cytokines in both mouse and
human respiratory cell lines [24,28,33], and similar effects have been observed with
exposure to silica nanoparticles, which constitute the majority of ASD [20]. In this study,
ASD exposure induced pulmonary inflammation, with an elevation in inflammatory
cell counts and inflammatory cytokines. However, silibinin treatment alleviated the
pathophysiological alterations induced by ASD exposure. In previous studies, silibinin
suppressed the progression of inflammatory responses in various inflammation-related
conditions under experimental conditions, such as periodontitis, acute liver injury, and
dermatitis [34–36]. Additionally, silibinin has also been shown to alleviate inflammation
in various respiratory inflammatory conditions [17–20,37]. Therefore, our results indi-
cated that silibinin effectively inhibits the inflammatory responses of pulmonary tissue
caused by ASD exposure.

The inflammatory response is a defense mechanism used to protect the body from
various stimuli, reducing harmful effects on the body. However, an excessive inflammatory
response induces the development of various diseases and aggravates underlying diseases
related to damaged lesions. During the progression of inflammation, various signaling
pathways are involved [38]. Specifically, the NF-κB signaling pathway acts as a pivotal
player [39]. NF-κB is phosphorylated by many stimuli and translocated into the nucleus,
which eventually produces the proteins related to the inflammatory process, such as
cytokines and chemokines [40]. A previous study showed the activation of NF-κB in
response to ASD exposure [41]. Therefore, the control of p-p65 is an important therapeutic
target to reduce inflammatory response. In this study, ASD induced the aforementioned
phosphorylation and translocation into the nucleus, with an elevation in the expression
of p-p38 and COX-2, which were diminished by silibinin treatment in both in vivo and
in vitro experiments. These results indicated that silibinin inhibited the expression of p-
p65 caused by ASD exposure. These were consistent with previous reports [9,19,42,43].
Silibinin exhibited protective or therapeutic effects on inflammatory conditions caused by
lipopolysaccharide via the suppression of p-p65 expression [42]. Therefore, our results
suggested that the therapeutic effect of silibinin against pulmonary inflammation caused
by ASD exposure is related to the reduction it causes in p-p65 expression.

Due to the various irritating components of ASD, it induces oxidative stress on dam-
aged lesions via the production of reactive oxygens species (ROS) [2]. The excessive
generation of ROS induces an imbalance between oxidant and antioxidant systems, which
leads to harmful effects on cellular molecules including DNA, lipids, and proteins, resulting
in the alteration of normal cellular structure and functions [44]. Exposure to ASD has been
shown to increase ROS production in human lung fibroblast cells [41]. Bio-organisms have
various antioxidant defense mechanisms to prevent oxidative stress, among which HO-1
is an important signaling pathway for reducing oxidative stress [45]. HO-1 catalyzes the
initial and rate-limiting steps in the degradation of heme to bilirubin, which has potent
antioxidant activity [24]. Therefore, the elevation of HO-1 in pathological conditions in-
duces a therapeutic effect by reducing oxidative stress [46]. In this study, silibinin markedly
decreased the expression of oxidative stress marker 8-OHdG, and elevated HO-1 expression
in pulmonary tissue. These results are supported by those of a previous study [47]. Silibinin
reduced cognitive impairment in models of Alzheimer’s disease, and this is related to its an-
tioxidant properties, which increase HO-1 expression [47]. Therefore, our results indicated
that silibinin suppressed oxidative stress caused by ASD exposure via the enhancement of
HO-1 expression.
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5. Conclusions

Overall, silibinin treatment reduced the expression of p-p65, NF-κB, COX-2, and p-
p38 in response to ASD exposure, while simultaneously increasing HO-1 expression both
in vitro and in vivo, indicating that silibinin effectively suppresses pulmonary inflamma-
tion and oxidative stress caused by ASD exposure. Our results suggest that silibinin may
therefore be a potential therapeutic material for treating pulmonary inflammation caused
by ASD exposure.
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