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Abstract: This review examines recent advancements in electrochemical immunosensors for the
detection of organophosphate pesticides, focusing on strategies to enhance sensitivity and selectivity.
The widespread use of these pesticides has necessitated the development of rapid, accurate, and
field-deployable detection methods. We discuss the fundamental principles of electrochemical
immunosensors and explore innovative approaches to improve their performance. These include the
utilization of nanomaterials such as metal nanoparticles, carbon nanotubes, and graphene for signal
amplification; enzyme-based amplification strategies; and the design of three-dimensional electrode
architectures. The integration of these sensors into microfluidic and lab-on-a-chip devices has enabled
miniaturization and automation, while screen-printed and disposable electrodes have facilitated
on-site testing. We analyze the challenges faced in real sample analysis, including matrix effects and
the stability of biological recognition elements. Emerging trends such as the application of artificial
intelligence for data interpretation and the development of aptamer-based sensors are highlighted.
The review also considers the potential for commercialization and the hurdles that must be overcome
for widespread adoption. Future research directions are identified, including the development of
multi-analyte detection platforms and the integration of sensors with emerging technologies like the
Internet of Things. This comprehensive overview provides insights into the current state of the field
and outlines promising avenues for future development in organophosphate pesticide detection.

Keywords: nanomaterial-based amplification; microfluidic devices; aptasensors; signal transduction;
environmental monitoring

1. Introduction

Organophosphate pesticides (OPs) have been widely used in agriculture for decades
due to their high efficacy in pest control [1]. However, the extensive application of these
compounds has raised significant concerns regarding their impact on human health and
the environment. OPs are known to inhibit acetylcholinesterase, a crucial enzyme in
the nervous system, leading to potential neurotoxic effects in humans and wildlife [2,3].
The persistence of OPs in soil and water systems further exacerbates their environmental
footprint, necessitating robust and sensitive detection methods to monitor and regulate
their presence [4,5]. The development of highly sensitive and selective analytical techniques
for OP detection has become a critical area of research in recent years. Traditional methods
such as chromatography and mass spectrometry, while effective, often require complex
sample preparation, expensive instrumentation, and specialized expertise [6–8]. These
limitations have driven the search for more accessible, rapid, and field-deployable detection
methods. In this context, electrochemical immunosensors have emerged as a promising
alternative, offering advantages such as high sensitivity, real-time detection capabilities,
and the potential for miniaturization and on-site analysis [9–12].
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The detection of organophosphate pesticides has been a subject of intense research
in recent years, given their widespread use and potential environmental and health im-
pacts. Numerous reviews have explored various aspects of organophosphate detection,
highlighting the diversity of approaches and technologies available. For instance, Kumar-
avel et al. [13] provided a comprehensive overview of different sensor types, including
colorimetric, fluorescence, and electrochemical methods, emphasizing the advantages of
nanomaterial integration in sensor performance. Kumaran et al. [2] expanded this per-
spective by discussing novel biosensing platforms such as organ-on-chip models, which
offer insights into the effects of organophosphates on specific cellular systems. Bhattu
et al. [5] focused on the development of portable sensors, comparing colorimetric, fluo-
rescence, and electrochemical techniques for field applications. More specialized reviews
and studies have also emerged, such as Chaudhari et al. [14] work on fiber-optic particle
plasmon resonance biosensors, Arsawiset et al.’s [15] exploration of nanozyme paper-based
analytical devices, Wang et al.’s development of a catalytic hairpin self-assembly-based
fluorescent immunosensor, and Li et al.’s [16] innovative hydrogel test kit for on-site detec-
tion. While these reviews and studies have significantly contributed to our understanding
of organophosphate detection methods, there remains a need for a focused examination of
recent advancements in electrochemical immunosensors. This specific class of sensors offers
unique advantages in terms of sensitivity, selectivity, and potential for miniaturization
and field deployment. Electrochemical immunosensors combine the high specificity of
antibody–antigen interactions with the sensitivity and simplicity of electrochemical detec-
tion methods, making them particularly well-suited for the challenges of organophosphate
analysis in complex environmental and biological matrices.

Electrochemical immunosensors utilize antibodies or antibody fragments, immobi-
lized on an electrode surface, as recognition elements [17]. The binding of the target OP
analyte to the antibody triggers an electrochemical signal, which can be measured and
correlated with the concentration of the pesticide. The inherent amplification mechanisms
in electrochemical reactions, coupled with the high specificity of antibody–antigen inter-
actions, make these sensors particularly well-suited for trace-level detection of OPs in
complex matrices. Figure 1 shows a scheme of a common electrochemical immunosensor
for OP detection. Recent advancements in nanomaterials, surface chemistry, and fabrication
techniques have significantly enhanced the performance of electrochemical immunosen-
sors for OP detection. Researchers have explored various strategies to improve both the
sensitivity and selectivity of these devices. Nanomaterial-based signal amplification, using
substances such as metal nanoparticles and carbon nanomaterials, has proven effective
in lowering detection limits [18,19]. Novel electrode modifications and enzyme-based
amplification strategies have further pushed the boundaries of sensor sensitivity [20].
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Electrochemical immunosensors can be broadly categorized into two main types:
labeled and label-free. Labeled immunosensors utilize various signal-generating tags to
amplify the detection signal [11]. These tags are typically attached to either the antigen
or the detection antibody and can include enzymes, metal nanoparticles, or redox-active
compounds. When the immunoreaction occurs, these labels generate a measurable electro-
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chemical signal, often resulting in enhanced sensitivity. In contrast, label-free immunosen-
sors directly measure changes in electrical properties upon antigen binding, without the
need for additional labeling steps [21]. These sensors often rely on detecting alterations in
electrode capacitance, charge transfer resistance, or other intrinsic electrical properties that
occur when the target analyte binds to the immobilized antibodies. While label-free ap-
proaches offer simplicity and avoid potential interference from labels, they may sometimes
suffer from limited sensitivity compared to their labeled counterparts. In the context of OP
detection, both labeled and label-free electrochemical immunosensors have been explored,
each finding specific applications based on the required sensitivity, sample complexity, and
analytical setting.

The integration of electrochemical immunosensors into novel sensing platforms has
opened up new possibilities for practical applications. Microfluidic and lab-on-a-chip
devices offer the potential for automated [22,23], high-throughput analysis, while screen-
printed and disposable electrodes provide cost-effective solutions for routine testing [24–26].
The development of wearable and flexible sensors points towards future applications
in personal exposure monitoring and environmental surveillance [27,28]. Despite these
advancements, several challenges remain in the widespread adoption of electrochemical
immunosensors for OP detection. Issues such as sensor stability, reproducibility, and
performance in complex real-world samples need to be addressed. Additionally, the path
to commercialization and regulatory approval presents hurdles that must be overcome for
these technologies to transition from the laboratory to practical field applications.

Our review aims to fill this gap by providing an in-depth analysis of the latest innova-
tions in electrochemical immunosensors for organophosphate detection. We explore recent
developments in electrode materials, nanomaterial-based signal amplification strategies,
and novel sensing platforms specifically tailored for immunosensing applications. By fo-
cusing on this rapidly evolving subset of organophosphate detection technologies, we offer
researchers and practitioners a comprehensive understanding of the current state of the art,
persistent challenges, and promising future directions in the field. This targeted approach
complements broader reviews by providing specialized insights into a technology with sig-
nificant potential for advancing organophosphate monitoring in agriculture, environmental
protection, and public health. Through this focused examination, we aim to stimulate fur-
ther research and development in electrochemical immunosensors, ultimately contributing
to more effective and accessible methods for organophosphate detection and analysis.

2. Fundamentals of Electrochemical Immunosensors for OP Detection
2.1. Principles of Electrochemical Detection

Electrochemical detection forms the cornerstone of immunosensors designed for OP
analysis. This method relies on measuring electrical signals generated by redox reactions
occurring at the electrode–solution interface. When OPs interact with the sensor surface,
they induce changes in electrical properties such as current, potential, and impedance,
which can be quantified to determine analyte concentration. The three primary types
of electrochemical detection techniques employed in immunosensors are amperometry,
voltammetry, and impedance spectroscopy. Amperometric detection involves applying a
constant potential to the working electrode and measuring the resulting current, which is
proportional to the analyte concentration. For example, Liu et al. [29] developed a label-free
amperometric immunosensor for direct detection of paraoxon using a single-walled carbon
nanotube (SWNT)-modified glassy carbon electrode (GCE). The amperometric immunosen-
sor provided rapid, sensitive detection without the need for labeling, making it suitable
for on-site monitoring of OPs. Voltammetric techniques, such as cyclic voltammetry and
differential pulse voltammetry, involve scanning the potential over a defined range and
recording the current response. For example, Dong et al. [30] developed an electrochemical
immunosensor for detecting OPs using broad-spectrum antibodies and one-step electrode-
position. Gold nanoparticles were coupled with antibodies to form AuNP-Abs probes,
which were then co-deposited with Prussian blue onto screen-printed carbon electrodes
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(SPEs). DPV was employed to measure the electrochemical response, providing a sensitive
and selective detection method for OPs. The use of voltammetric techniques allowed
for rapid and sensitive detection of OPs, with the ability to detect multiple pesticides
simultaneously due to the broad-spectrum antibodies.

These methods provide rich information about redox processes and are particularly
useful for multi-analyte detection. Electrochemical impedance spectroscopy (EIS) mea-
sures the impedance of the electrode system over a range of frequencies, offering insights
into both Faradaic and non-Faradaic processes at the electrode surface. For example,
Ding et al. [31] developed a portable pesticide residue detection instrument based on
an impedance immunosensor. The immunosensor utilized novel multi-layer films of
Au nanoparticles and polyaniline/carboxylated multi-wall carbon nanotube–chitosan
nanocomposites. The detection principle relied on EIS to measure changes in impedance
resulting from antigen–antibody interactions. The integrated system combined the im-
munosensor with a signal detection circuit for rapid on-site testing. Compared to existing
portable devices using enzyme inhibition methods, this EIS-based instrument provided
quantitative results more quickly and with less interference.

The specificity of electrochemical immunosensors for OP detection is derived from
the highly selective interactions between antibodies and their target antigens. Antibodies
are Y-shaped proteins produced by the immune system and have variable regions at their
tips that recognize and bind to specific molecular structures called epitopes on antigen
surfaces. In the context of OP detection, antibodies are typically raised against hapten–
protein conjugates that mimic the structure of the target pesticide [32]. Antibody–antigen
binding is governed by a combination of hydrogen bonding, van der Waals forces, and
electrostatic interactions [33]. The strength of this interaction is characterized by the affinity
constant, which plays a crucial role in determining the sensitivity and dynamic range of the
immunosensor [34]. High-affinity antibodies are desirable for detecting low concentrations
of OPs but may limit the sensor’s linear range.

2.2. Common Electrode Materials and Immobilization Strategies

The choice of electrode material and immobilization strategy significantly influences
the performance of electrochemical immunosensors. Common electrode materials include
gold and carbon materials. Each material offers unique properties in terms of conductivity,
surface area, and compatibility with different immobilization techniques.

Gold electrodes are widely used due to their excellent conductivity and ease of surface
modification through thiol chemistry. For example, Arduini et al. [35] developed an
acetylcholinesterase (AChE) biosensor for detecting OPs based on enzyme inhibition. The
researchers immobilized AChE on gold SPEs (Au-SPEs) using a self-assembled monolayer
(SAM) of cross-linked cysteamine and glutaraldehyde (Figure 2A). Ferricyanide was used
as an electrochemical mediator in solution to detect the enzymatic product thiocholine.
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Carbon-based electrodes offer a wide potential window and low background current,
making them suitable for sensitive detection. For example, Shi et al. [36] developed an
electrochemical immunosensor for detecting O,O-dimethyl OPs using a phage mimotope
and horseradish peroxidase (HRP). The GCE was modified with nitrogen and boron-doped
carbon quantum dots and graphene oxide (NBCQDs@GO) to enhance conductivity and
provide a large surface area. The sensor utilized a competitive binding mechanism between
OPs and phage-mimotope M31 for antibody binding sites. HRP catalyzed the formation of
insoluble precipitates, amplifying the impedance signal (Figure 2B).

Immobilization of antibodies on the electrode surface is a critical step in immunosen-
sor fabrication. Common strategies include physical adsorption, covalent binding, and
affinity-based immobilization. Physical adsorption is simple but may result in the random
orientation and denaturation of antibodies [37]. Covalent binding, often achieved through
carbodiimide chemistry or click reactions, offers more stable immobilization but can affect
antibody activity if not carefully controlled [38]. Affinity-based methods, such as the biotin–
streptavidin system [39] or protein A/G-mediated immobilization [40], allow for oriented
antibody attachment, potentially improving sensor performance.

2.3. Signal Generation and Amplification Approaches

Signal generation in electrochemical immunosensors for OP detection can be broadly
categorized into label-free and labeled approaches. Label-free methods rely on direct
measurement of changes in electrical properties upon antigen binding, such as alterations
in electrode capacitance or charge transfer resistance [41]. While these methods offer
simplicity, they often suffer from limited sensitivity. For example, Hu et al. [42] developed
a label-free electrochemical immunosensor for detecting quinalphos. The sensor was
fabricated by immobilizing anti-quinalphos nanobodies directly onto a functionalized
polyvinyl alcohol/gelatin–gold nanoparticle nanofiber membrane (PVA/G-AuNPs NFM)
electrode (Figure 3). The label-free approach simplified the assembly process and avoided
potential inactivation of binding sites. Under optimized conditions, the immunosensor
exhibited a wide linear range (LDR) of 0.06–1000 ng/mL and a low detection limit (LOD) of
50.74 pg/mL for quinalphos. It demonstrated good specificity, with cross-reactivity below
12% for analogues. The sensor maintained over 90% activity after five regeneration cycles
and about 90% activity after 6 weeks of storage. In spiked food samples, recoveries ranged
from 89.68% to 110.88% with coefficients of variation of 1.65–7.81%. The results correlated
well with UPLC-MS/MS analysis (R2 = 0.9859). The nanofiber membrane provided a
large surface area for nanobody immobilization, with covalent binding increasing from
12.36 µg/cm2 to 40.07 µg/cm2 after glutaraldehyde activation. Wang et al. [37] developed a
label-free impedimetric immunosensor for sensitive detection of fenvalerate in tea samples.
They fabricated the sensor by modifying a GCE with chitosan and glutaraldehyde to
immobilize fenvalerate antibodies. The label-free approach allowed for simple, rapid, and
cost-effective detection without the need for expensive labeling reagents. Under optimized
conditions, the sensor exhibited an LDR for fenvalerate concentrations from 1.0 × 10−3 to
1.0 × 10−1 mg/L, with an LOD of 0.8 µg/L. When applied to real tea samples, the method
achieved an average recovery of 103%, with a 3.9% relative standard deviation, comparable
to GC-MS results.

Labeled approaches employ various signal-generating tags to amplify detection sig-
nals. Enzyme labels, such as horseradish peroxidase or alkaline phosphatase, catalyze redox
reactions that generate measurable electrochemical signals. For example, Yin et al. [43]
developed an electrochemical immunosensor for detecting parathion in food samples.
The sensor utilized a cross-linked PVC/citric acid NFM (PVA/CA NFM)-modified SPE
and a horseradish peroxidase (HRP)-labeled anti-parathion nanobody (Figure 4). The
PVA/CA NFM provided an ideal microenvironment for biomolecule immobilization and
facilitated rapid electron transfer. Under optimized conditions, the immunosensor ex-
hibited excellent sensitivity, with a linear detection range of 0.01–100 ng/mL and a low
detection limit of 2.26 pg/mL. It demonstrated good specificity against parathion analogs,
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with cross-reactivity below 11.31%. The sensor retained over 85% of its initial activity after
9 weeks of storage and could be regenerated up to three times while maintaining 85%
performance. When applied to spiked food samples, the immunosensor achieved recov-
eries of 96.20–114.61% with coefficients of variation of 1.06–5.28%, correlating well with
UPLC results (R2 = 0.9964). The use of nanobody labels enhanced the sensor’s stability and
sensitivity compared to conventional antibodies. Similarly, Wang et al. [44] developed an
immunochromatographic electrochemical biosensor (IEB) for rapid and sensitive detection
of trichloropyridinol (TCP), a metabolite biomarker of exposure to OPs like chlorpyrifos
(CPF). The IEB combined a lateral flow immunoassay strip with electrochemical detection
using a screen-printed carbon electrode. HRP was used as an enzyme label to amplify
the electrochemical signal. Under optimized conditions, the IEB achieved a wide linear
range of 0.1–100 ng/mL and a low detection limit of 0.1 ng/mL for TCP. The total assay
time was only 15 min. The IEB was successfully applied to detect TCP in rat plasma
samples after in vivo exposure to chlorpyrifos-oxon. Compared to traditional ELISA, the
IEB provided comparable results but with higher sensitivity, faster speed, and better porta-
bility. The use of the HRP enzyme label enabled sensitive electrochemical detection of the
captured immunocomplexes.
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Nanoparticle labels, including metal nanoparticles and quantum dots, can enhance
electron transfer or serve as carriers for multiple enzyme molecules, further amplifying the
signal. For example, Lu et al. [45] developed a disposable electrochemical immunosensor
for detecting organophosphorylated butyrylcholinesterase (OP-BChE), a biomarker for OP
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nerve agent exposure. The immunosensor utilized zirconia nanoparticles to capture OP-
BChE and quantum dot-tagged antibodies for signal amplification. The use of nanoparticle
labels significantly enhanced sensitivity, achieving a detection limit of 0.03 nM. The sensor
demonstrated a linear response range from 0.1 to 30 nM OP-BChE with good reproducibility
(4.5% relative standard deviation). Analysis of spiked human plasma samples yielded
recoveries between 91.5% and 103.0%, indicating high accuracy and low matrix effects. The
immunosensor was validated using in vitro exposure studies, showing a linear increase
in OP-BChE adducts with increasing diisopropyl fluorophosphate concentrations up to
83 nM. This nanoparticle-based approach provided a simple, sensitive, and quantitative
tool for rapid diagnosis of organophosphorus exposure, with potential applications in field
testing and point-of-care (POC) diagnostics.

Signal amplification strategies play a crucial role in pushing the LOD of electrochemical
immunosensors for OPs. Enzyme-based amplification cascades, where multiple enzymes
work in tandem to generate a signal, have shown promising results [46]. Sun et al. [47]
developed an electrochemical immunoassay for detecting CPF using a novel platform
and signal amplification strategy. They created a three-dimensional sensor platform by
modifying a GCE with quinone-rich polydopamine nanospheres. For signal amplification,
they synthesized a multi-enzyme label consisting of HRP and secondary antibodies at-
tached to flake-like Fe3O4-coated carbon nanotubes (Figure 5). This multi-enzyme label
provided enhanced catalytic activity and a large surface area for immobilizing antibodies
and enzymes. Under optimized conditions, the immunosensor exhibited an LDR of 0.01
to 1000 ng/mL and an LOD of 6.3 pg/mL for CPF. Compared to using only HRP-labeled
secondary antibodies, the multi-enzyme label significantly improved sensitivity, expanding
the LDR and lowering the LOD from 13.5 pg/mL to 6.3 pg/mL. The immunosensor showed
good specificity; reproducibility, with coefficients of variation below 4.34%; and stability,
retaining over 93% of the signal after 15 days of storage. When applied to spiked lake and
pond water samples, it achieved recoveries between 96.7 and 110%, demonstrating its po-
tential for sensitive CPF detection in real water samples. Nanomaterial-based amplification,
using carbon nanotubes or graphene oxide as signal enhancers, for example, leverages the
unique electronic properties of these materials to boost sensor performance [48–50].
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2.4. Broader Applications of Electrochemical Immunosensing Principles

While this review focuses on organophosphate detection, it is important to recognize
that the fundamental principles, strategies, and techniques discussed have broad applica-
bility across the field of electrochemical immunosensing. The approaches developed for
organophosphate detection can be adapted and applied to a wide range of target analytes,
including other environmental contaminants, biomarkers, and food safety targets. The
principles of electrochemical detection discussed in Section 2.1 are fundamental to all
electrochemical immunosensors, regardless of the target analyte. For instance, the ampero-
metric, voltammetric, and impedance spectroscopy techniques used in organophosphate
detection are equally applicable to sensing other small molecules, proteins, and even whole
cells. As an example, Carneiro et al. [51] applied similar electrochemical principles to
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develop a nanostructured label-free immunosensor for detecting α-synuclein, a biomarker
for Parkinson’s disease.

The electrode materials and immobilization strategies outlined in Section 2.2 have
broad relevance beyond organophosphate sensing. Gold electrodes and carbon-based
materials, for instance, are widely used in electrochemical immunosensors for various
targets. The covalent binding and affinity-based immobilization techniques discussed are
applicable to a range of antibodies and recognition elements. For example, Boonkaew
et al. [52] used similar immobilization strategies on paper-based electrodes to develop a
cost-effective immunosensor for ferritin detection, demonstrating the versatility of these
approaches. The signal generation and amplification approaches described in Section 2.3
are particularly transferable to other sensing applications. Enzyme labels like horseradish
peroxidase and alkaline phosphatase are widely used across various electrochemical im-
munosensing platforms. Nanomaterial-based amplification strategies, such as the use of
metal nanoparticles and carbon nanomaterials, have been successfully applied to enhance
sensitivity in detecting numerous analytes. The challenges faced in real sample analysis,
such as matrix effects and non-specific adsorption, are common across many areas of elec-
trochemical immunosensing. Solutions developed for organophosphate detection, like the
use of blocking agents or specialized sample preparation techniques, can often be adapted
for other analytes. The emerging trends discussed, such as the integration of artificial
intelligence for data analysis and the exploration of aptamer-based sensors, have potential
applications far beyond organophosphate detection.

Novel sensing platforms like microfluidic devices and lab-on-a-chip systems, while
discussed here in the context of organophosphate sensing, are being increasingly applied to
a wide range of analytical challenges. For example, Surappa et al. [53] reviewed the appli-
cation of similar microfluidic platforms for the isolation and analysis of cancer biomarkers,
highlighting the broad utility of these approaches. By recognizing the wider applicability
of these principles and techniques, researchers working on electrochemical immunosensors
for various targets can draw valuable insights from the advancements made in organophos-
phate detection. This cross-pollination of ideas and approaches across different sensing
applications has the potential to accelerate progress in the broader field of electrochemical
immunosensing, leading to more sensitive, selective, and practical sensors for a wide range
of analytical challenges.

In conclusion, electrochemical immunosensors offer several key advantages for organo-
phosphate detection, including high sensitivity, selectivity, and the potential for rapid, on-
site analysis. The combination of specific antibody–antigen interactions with sensitive
electrochemical detection methods provides a powerful platform for quantifying these im-
portant environmental contaminants. The versatility in electrode materials, immobilization
strategies, and signal amplification approaches allows for tailoring these sensors to meet
the demanding requirements of organophosphate analysis in complex real-world samples.

3. Enhancing Sensitivity
3.1. Nanomaterial-Based Signal Amplification

Nanomaterials have revolutionized the field of electrochemical immunosensors, of-
fering unprecedented opportunities for signal amplification and enhanced sensitivity in
OP detection. The unique physical and chemical properties of nanomaterials, including
high surface area-to-volume ratios, excellent conductivity, and catalytic activity, make them
ideal candidates for improving sensor performance [48–50].

3.1.1. Metal Nanoparticles

Metal nanoparticles, particularly gold and silver, have been extensively employed
in electrochemical immunosensors. These nanoparticles serve multiple roles, acting as
electron transfer mediators, catalysts, and immobilization platforms for antibodies [54,55].
AuNPs are especially popular due to their biocompatibility and ease of functionalization.
When incorporated into a sensor architecture, AuNPs can significantly enhance the elec-
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troactive surface area, facilitating faster electron transfer kinetics and resulting in amplified
electrochemical signals. Talan et al. [56] developed an electrochemical nanosensor for
detecting CPF using fluorine-doped tin oxide (FTO) electrodes modified with AuNPs and
anti-CPF antibodies (Figure 6). AuNPs were utilized to enhance electrical conductivity and
provide a platform for antibody immobilization, significantly improving the sensor’s sensi-
tivity and performance. The fabricated FTO–AuNP–antibody nanosensor exhibited an LDR
from 1 fM to 1 µM, with an impressive LOD of 10 fM. Cross-reactivity studies confirmed
high specificity for CPF. The nanosensor successfully detected CPF in real food samples,
including apples and cabbage at 10 nM and pomegranate at 50 nM. Dorozhko et al. [57]
developed an electrochemical immunosensor for detecting carbaryl pesticide residues using
copper nanoparticles (CuNPs) as labels. They synthesized a hapten–protein conjugate with
CuNPs (Hap-Car-BSA@CuNPs) and used it in a direct solid-phase competitive assay. The
CuNPs served as electrochemical labels, with the signal measured by linear sweep anodic
stripping voltammetry on a gold–graphite electrode. The immunosensor demonstrated
high sensitivity, with an LOD of 0.08 µg/kg and an LDR of 0.8–32.3 µg/kg in flour samples
from different crops. Compared to conventional enzyme immunoassays, this CuNP-based
approach proved cheaper, faster, and more user-friendly. The conjugate also exhibited
greater stability than enzyme-labeled haptens. Recovery rates ranged from 93.1% to 97.5%,
indicating minimal matrix interference and good accuracy. The intra-day coefficient of
variation was below 8%, while the interday coefficient was under 12%, demonstrating
good reproducibility.
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Du et al. [58] developed an electrochemical immunosensor for detecting OP-AChE.
The immunosensor utilized ZrO2 NPs to capture OP-AChE and lead phosphate–apoferritin-
labeled anti-AChE antibodies (LPA-anti-AChE) for detection. ZrO2 NPs selectively bound
phosphorylated AChE through metal chelation, overcoming the need for scarce phosphoserine-
specific antibodies. Apoferritin nanoparticles encapsulating lead phosphate amplified the
detection signal by encoding numerous metal ions. The sandwich immunoassay formed
ZrO2/OP-AChE/LPA-anti-AChE complexes on SPEs. Under optimized conditions, the im-
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munosensor exhibited a linear response from 0.05 to 10 nM OP-AChE, with a 0.02 nM LOD.
It demonstrated good reproducibility with intra- and inter-assay coefficients of variation
below 6%. The method achieved 96.4–106.7% recovery when detecting OP-AChE spiked
in rat plasma samples. By combining ZrO2 NPs and apoferritin-templated metallic tags,
this simple, sensitive approach enabled quantitative monitoring of OP exposure without
requiring OP-specific antibodies, offering advantages in selectivity, sensitivity, and poten-
tial field applications. Wang et al. [59] developed a Co3O4/polyaniline (PAn) magnetic
nanoparticle-modified electrochemical immunosensor for rapid detection of CPF residues
in agricultural products. The researchers utilized Co3O4 nanoparticles coated with PAn
to improve electrode conductivity and dynamic performance. The sensor demonstrated
high sensitivity and accuracy, with an LDR of 0–10 µg/mL and an LOD of 0.01 µg/mL.
Recovery rates in apple and vegetable samples exceeded 82%, with coefficients of varia-
tion below 5%. The immunosensor could be regenerated using glycine–HCl buffer while
maintaining reliable sensitivity. Co3O4/PAn nanocomposites, with particle sizes around
80 nm, enhanced the electrode’s conductivity and sensing capabilities. The use of sil-
ver nanoparticle-labeled secondary antibodies further amplified the signal, improving
sensitivity compared to traditional single-label methods.

Recent advancements in metal nanoparticle-based signal amplification include the
development of bimetallic nanoparticles. For instance, Zhang et al. [60] developed an
immunosensor for detecting OP-BChE. They synthesized Fe3O4@TiO2 magnetic nanopar-
ticles to selectively capture phosphorylated proteins, overcoming the limitation of scarce
OP-specific antibodies. These nanoparticles served as capture agents in a sandwich im-
munoassay, with quantum dot-tagged anti-BChE antibodies for secondary recognition. The
magnetic properties allowed easy separation from complex biological matrices (Figure 7).
The immunosensor exhibited a linear response range of 0.02–10 nM OP-BChE, with a
detection limit of 0.01 nM. This sensitivity was comparable to mass spectrometric methods,
capable of detecting less than 1% BChE inhibition. The method showed good reproducibil-
ity, with intra-assay coefficients of variation below 6.2% and inter-assay coefficients below
6.7%. When tested with spiked human plasma samples, recoveries ranged from 92 to 105%,
demonstrating reliability in complex matrices. The Fe3O4@TiO2 nanoparticles effectively
combined selective phosphoprotein enrichment with magnetic separation, enabling sensi-
tive and specific detection of OP exposure biomarkers in a portable, inexpensive format.
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3.1.2. Carbon Nanomaterials

Carbon nanomaterials, including carbon nanotubes (CNTs), graphene, biochar [61],
and carbon dots, have emerged as powerful tools for signal amplification in OP detection.
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These materials offer exceptional electronic properties, high surface areas, and versatile
functionalization options. Multi-walled carbon nanotubes (MWCNTs) and SWCNTs have
been extensively used to modify electrode surfaces, creating three-dimensional networks
that facilitate rapid electron transfer and provide numerous binding sites for antibody
immobilization. For example, a multi-analyte electrochemical immunosensor was devel-
oped for detecting pesticides like endosulfan and paraoxon using SWCNTs patterned on
GCE [62]. This approach utilized aryldiazonium salt chemistry for covalent attachment,
enabling efficient electron transfer between biomolecules and electrodes. The immunosen-
sor demonstrated high sensitivity and selectivity, with LODs of 0.05 ppb for endosulfan
and 2 ppb for paraoxon. The SWCNTs provided a stable interface, enhancing the sensor’s
performance and allowing simultaneous detection of multiple analytes. The immunosensor
exhibited linear responses over ranges of 0.05–100 ppb for endosulfan and 2–2500 ppb for
paraoxon, making it suitable for environmental monitoring. The research highlighted the
potential for using SWCNTs in portable devices for on-site pesticide detection, emphasiz-
ing the importance of stable and efficient interfaces in biosensor design. Chen et al. [63]
developed a method for AChE activity assay to monitor exposure to OPs. The approach
utilized selective immunocapture of AChE followed by electrochemical detection of en-
zyme activity. A disposable electrochemical sensor based on MWCNT-Au nanocomposites
was used to immobilize AChE-specific antibodies (Figure 8). MWCNT-Au nanocomposites
greatly enhanced electron transfer and electrocatalytic oxidation of thiocholine, improving
sensitivity. The method demonstrated a linear response for AChE concentrations from
0.1 to 10 nM, with an LOD of 0.05 nM. For paraoxon-dosed AChE solutions, inhibition
was proportional to the paraoxon concentration from 0.2 to 50 nM. The technique was
validated using in vitro paraoxon-exposed red blood cell samples, detecting less than 5%
AChE inhibition.
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Graphene and its derivatives, such as reduced graphene oxide (rGO), have gained
significant attention due to their unique two-dimensional structure and excellent conduc-
tivity. These materials can be easily functionalized and integrated into various sensor
architectures, serving as both signal amplifiers and carriers for other nanomaterials or
biomolecules [64–66]. The incorporation of graphene-based materials has enabled the
development of ultrasensitive immunosensors capable of detecting OPs at sub-picomolar
levels. For example, Metha et al. [67] developed a graphene-modified SPE immunosensor
for the sensitive detection of parathion. The sensor was fabricated by modifying SPEs with
graphene sheets, which were then functionalized with 2-aminobenzyl amine. This modifi-
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cation allowed the attachment of anti-parathion antibodies, creating a biosensor capable of
detecting parathion through electrochemical impedance spectroscopy. The sensor demon-
strated an LDR of 0.1–1000 ng/L and an LOD of 52 pg/L. It also showed high selectivity for
parathion even in the presence of other pesticides like malathion, paraoxon, and fenitroth-
ion. The use of graphene significantly enhanced the sensor’s sensitivity and selectivity due
to its high surface area and excellent electrical properties. In another work [68], the authors
focused on the development of a graphene QD (GQD)-modified SPE immunosensor for
detecting parathion. GQDs were utilized due to their excellent electron-accepting and
-donating capabilities, high stability, low toxicity, and ease of functionalization. The im-
munosensor demonstrated a dynamic linear response to parathion concentrations ranging
from 0.1 to 106 ng/L, with an LOD of 46 pg/L. Shrikrishna et al. [69] focused on developing
an electrochemical immunosensor for detecting monocrotophos. They designed the sensor
using antibodies specific to monocrotophos conjugated with graphene oxide (GO) and
layered onto a fluorine-doped tin oxide (FTO) electrode (Figure 9). This setup enhanced
the sensor’s performance, achieving a detection limit of 0.49 ppm. GO was utilized as an
electrochemical mediator, improving electron transfer efficiency and stability. The sensor
demonstrated specificity for monocrotophos, even in the presence of other pesticides like
malathion and methidathion. It also maintained stability for up to four weeks.
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Biochar has gained attention as a cost-effective and eco-friendly material that can
serve as both an electrochemical enhancer and an effective substrate for immobilizing
bioreceptors. For example, Cancelliere et al. [70] developed a label-free electrochemical
immunosensor for detecting Interleukin-6 (IL-6) in serum samples from psoriasis patients.
It utilized a sandwich-based format with two primary antibodies and screen-printed elec-
trodes modified with biochar. Biochar served both as an electrochemical enhancer and
an anchoring system for bioreceptor immobilization. The immunosensor demonstrated
robust analytical performance, with a wide linear detection range from 2 to 250 pg/mL
and an LOD of 0.78 pg/mL. It showed excellent reproducibility, with an RSD of less
than 7%. Validation with an ELISA kit on 25 serum samples confirmed strong correla-
tion in IL-6 concentration measurements, highlighting the device’s ease of use and rapid
detection capabilities.

3.2. Enzyme-Based Amplification Strategies

Enzyme-based amplification strategies continue to play a crucial role in enhancing the
sensitivity of electrochemical immunosensors for OP detection. These approaches leverage
the catalytic activity of enzymes to generate or amplify electrochemical signals. Common
enzymes used in these systems include HRP and glucose oxidase (GOx). For example,
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a sensitive electrochemical impedimetric immunoassay was developed for the determi-
nation of CPF using a nanogold-modified GCE [71]. The assay utilized HRP conjugated
with AuNPs and bovine serum albumin–CPF (BSA-CPF) as an analyte competitor. HRP
played a crucial role in signal amplification through a biocatalytic precipitation process,
which produced an insoluble compound that increased the Faradaic impedance of the
electrode. The immunoassay exhibited a linear detection range between 0.001 ng/mL and
10 ng/mL, with a detection limit of 0.070 pg/mL. The method was tested on artificially
spiked vegetables, achieving recovery rates between 85% and 110% and relative standard
deviations below 7.5%. The use of HRP and AuNPs enhanced the sensitivity and speci-
ficity of the assay, making it a promising tool for detecting low concentrations of CPF in
complex matrices like food and environmental samples. Keay and McNeil [72] reported
a separation-free electrochemical immunosensor for the rapid detection of the pesticide
atrazine in water samples. This innovative method employed a competitive ELISA format,
integrating disposable SPE modified with HRP and single-use atrazine immunomembranes.
The SPEs were created using carbon ink infused with HRP, and monoclonal antibodies
specific to atrazine were immobilized on Biodyne C membranes, which were then placed
over the electrode surface. The assay operated on a principle where free atrazine and
an atrazine–GOx conjugate competed for binding sites. In the presence of glucose, the
GOx produced hydrogen peroxide, which was reduced via enzyme channeling at the HRP
electrode, allowing for direct electron transfer at a potential of +50 mV versus Ag/AgCl.
The system showed excellent intra-electrode reproducibility, with a coefficient of variation
of less than 4% and a detection limit of 0.012 mg/L, which was significantly lower than
the maximum admissible concentration of 0.1 mg/L set by the European Community.
Field tests in Israel using river water samples spiked with atrazine revealed recovery rates
between 98% and 101%, indicating minimal matrix effects.

3.3. Three-Dimensional Electrode Architectures

Innovative electrode modifications have emerged as a key strategy for enhancing
electron transfer and improving the sensitivity of electrochemical immunosensors. These
modifications aim to increase the electroactive surface area, facilitate charge transfer, and
provide a suitable environment for antibody immobilization. Three-dimensional electrode
architectures, such as nanostructured metal oxides, conducting polymer networks, and
hierarchical carbon structures, have shown great promise in improving sensor perfor-
mance. These structures offer increased surface areas for antibody immobilization and
enhanced mass transport of analytes to the electrode surface. For example, Chansi et al. [73]
developed an electrochemical immunosensor utilizing a layered construction of a nanoim-
munohybrid embedded in a metal–organic framework (MOF) to detect total pesticide loads
in vegetable extracts. The sensor, comprising a BSA/Chi-AuNP-rIgG-BSA/MOF/ITO plat-
form, effectively integrated polyclonal antibodies with MOF-modified ITO substrates. The
3D porous morphology of MOF-5 enhanced the sensor’s performance by providing a large
surface area and abundant functional groups for pesticide screening (Figure 10A). This
design facilitated high sensitivity and selectivity, achieving a linear detection range from 4
to 100 ng/L. The sensor exhibited a rapid analysis time of just one minute, maintaining
stability for up to 25 days. Chen et al. [74] reported an electrochemical immunosensor
for detecting trace amounts of picloram using three-dimensional Au nanoclusters. The
three-dimensional Au nanoclusters were synthesized through a two-step electrodeposition
process, which enhanced the sensor’s performance by providing a large surface area and
facilitating electron transfer (morphology shown in Figure 10B). This method allowed for
the immobilization of BSA–picloram and subsequent competitive immunoreaction with
picloram antibodies. The sensor demonstrated a broad LDR from 0.001 to 10 µg/mL,
with a correlation coefficient of 0.996. It achieved an LOD of 0.0005 µg/mL. The innova-
tive use of 3D Au nanoclusters significantly contributed to the sensor’s high sensitivity
and wide linear range, proving its potential for practical environmental monitoring of
picloram. Rahmani et al. [75] developed an electrochemical sensor for detecting carbaryl
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using a modified three-dimensional graphene-gold (3DG-Au) nanocomposite. The 3DG
was synthesized with thiourea, introducing sulfur and nitrogen functional groups, and
subsequently modified with gold nanoparticles to enhance its electrochemical properties.
The sensor demonstrated a linear detection range for carbaryl from 0.004 to 0.3 µM with
an impressive detection limit of 0.0012 µM. Gokila et al. [76] developed a non-enzymatic
electrochemical impedance sensor using a ternary composite of Zr-MOF/ZrO2/MWCNT
(Figure 10C) for the selective detection of electro-inactive OPs. The ternary composite was
synthesized via a solvothermal process, showing an enhanced surface area of 1158 m2/g
compared to the pristine Zr-MOF’s 868 m2/g. The sensor demonstrated high selectivity
and sensitivity towards OPs containing both phosphorus and sulfur, with detection limits
of 2.02 nM for malathion, 2.8 nM for chlorpyrifos, 2.5 nM for dimethoate, 1.11 nM for
monocrotophos, and 2.01 nM for glyphosate.
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The various strategies discussed for enhancing sensitivity, from nanomaterial-based
amplification to innovative electrode architectures, demonstrate the significant progress
made in pushing the detection limits of electrochemical immunosensors for organophos-
phates. These advancements are crucial for meeting the increasingly stringent regulatory
requirements and for enabling the detection of trace levels of these compounds in envi-
ronmental and biological matrices. The improved sensitivity offered by these approaches
positions electrochemical immunosensors as highly competitive tools for organophosphate
monitoring compared to traditional analytical methods.

4. Novel Sensing Platforms and Fabrication Methods

The development of novel sensing platforms and fabrication methods has significantly
advanced the field of electrochemical immunosensors for organophosphate detection.
These innovations have not only enhanced sensor performance but also opened up new
possibilities for on-site, real-time monitoring of these pesticides in various environmental
and biological matrices.

4.1. Microfluidic and Lab-on-a-Chip Devices

Microfluidic and lab-on-a-chip devices represent a major leap forward in the minia-
turization and integration of electrochemical immunosensors [77]. These platforms offer
numerous advantages, including reduced sample and reagent consumption, faster analysis
times, and the potential for automation and high-throughput screening [56,78,79]. In the
context of OP detection, microfluidic devices have enabled the development of compact,
portable systems capable of performing complex analytical procedures in field settings.

Jia et al. [80] reported an electrochemical immunosensor integrated with a microfluidic
chip for the rapid detection of CPF. This innovative device utilized a microfluidic chip
with embedded gold interdigitated array microelectrodes (IDAMs), which were modified
using nanomaterials and protein A to bind antibodies. The binding of CPF to the antibody-



Biosensors 2024, 14, 496 15 of 25

modified IDAMs resulted in a detectable change in impedance, measured through EIS.
The microfluidic chip demonstrated several advantages, including an LDR from 0.5 to
500 ng/mL, with an LOD of 0.5 ng/mL. Islam et al. [81] developed a microfluidic-based
graphene field-effect transistor (graFET) for the sensitive detection of CPF (Figure 11).
The study aimed to create a robust immunobiosensor for real samples, utilizing a graFET
fabricated on a Si/SiO2 substrate. Anti-CPF antibodies were immobilized on the graphene
surface, allowing the sensor to detect CPF over an LDR from 1 fM to 1 µM, with an LOD
of 1.8 fM. The graFET biosensor demonstrated its potential for on-site applications and
could be integrated into electronic chips for detecting CPF and other OPs in food and
environmental samples.
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In the field of microfluidic devices for organophosphate detection, the choice of materi-
als plays a crucial role in determining the performance, cost-effectiveness, and applicability
of sensors. Polydimethylsiloxane (PDMS) has emerged as a widely used material for
fabricating microfluidic channels, offering several advantages that make it particularly
suitable for this application. The optical transparency of PDMS allows for easy visual
inspection and integration with optical detection methods, which is essential for many
immunoassay-based sensors. Its biocompatibility ensures that it does not interfere with
biological components such as antibodies or enzymes used in the sensing mechanism.
Furthermore, the ease of molding PDMS enables rapid prototyping and cost-effective pro-
duction of complex microfluidic structures, facilitating the development of intricate channel
designs for efficient sample handling and analyte detection. Glass substrates have also
maintained their importance in microfluidic immunosensor fabrication, particularly when
dealing with organophosphate pesticides. The excellent chemical resistance of glass makes
it ideal for applications involving organic solvents or harsh cleaning procedures, which are
often necessary when working with environmental samples potentially contaminated with
pesticides. In recent years, there has been a growing interest in paper-based microfluidic
devices, especially in resource-limited settings or for rapid on-site testing. These devices
leverage the capillary action of paper to move fluids without external pumps, significantly
reducing complexity and cost. The disposable nature of paper-based devices addresses
concerns about cross-contamination between samples, which is particularly important
when dealing with persistent organic pollutants like organophosphates.

4.2. Screen-Printed and Disposable Electrodes

SPEs have emerged as a cost-effective and versatile platform for the development of
electrochemical immunosensors for organophosphate detection. These electrodes are fabri-
cated by printing conductive inks onto various substrates, allowing for mass production
and customization of electrode designs [82,83]. The disposable nature of SPEs addresses
concerns about electrode fouling and cross-contamination, making them particularly suit-
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able for on-site environmental monitoring and POC diagnostics [84]. Pérez-Fernández
et al. [85] developed a direct competitive immunosensor for detecting imidacloprid (IMD)
using AuNP-modified SPEs (AuNP-SPEs). This innovative approach utilized monoclonal
antibodies immobilized on the modified electrodes, allowing free IMD in samples to com-
pete with enzyme-labeled IMD for antibody recognition (Figure 12). The sensor exhibited
an impressive analytical performance, with an LOD of 22 pM, which is below the regula-
tory limits. It demonstrated an LDR from 50 to 10,000 pM, high precision with a relative
standard deviation of 6%, and good accuracy with a relative error of 6%. The use of
AuNP-SPEs was pivotal, enhancing the electroactive surface area and facilitating electron
transfer, thus improving sensitivity and selectivity. El-Moghazy et al. [86] developed a
nanobody-based electrochemical immunosensor utilizing decorated nylon nanofibers for
POC monitoring of human exposure to pyrethroid insecticides. This sensor specifically
targeted 3-Phenoxybenzoic acid (3-PBA), a common biomarker for pyrethroid exposure,
by leveraging an SPE as a platform. The SPE was chosen for its ability to enable rapid,
real-time detection with high sensitivity and selectivity due to the specific antibody–antigen
interactions on its surface. The sensor demonstrated an LDR of 0.8 to 1000 pg/mL and a
remarkable LOD of 0.64 pg/mL.
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4.3. Integration of Artificial Intelligence (AI) and Internet of Things (IoT)

The integration of AI and IoT technologies with electrochemical sensors has opened
new avenues for enhancing sensitivity, selectivity, and real-time monitoring capabilities.
While these advancements have not yet been widely applied to electrochemical immunosen-
sors for OP analysis specifically, their potential impact on the field is significant and war-
rants discussion. AI, particularly machine learning algorithms, has shown promise in
improving the performance of electrochemical sensors. For instance, Ye et al. [87] devel-
oped a deep learning model to analyze voltammetric data from an electrochemical sensor
for heavy metal detection. Their convolutional neural network (CNN) approach signifi-
cantly improved the sensor’s ability to distinguish between different metal ions in complex
environmental samples, demonstrating how AI can enhance selectivity in electrochemical
sensing. In the realm of pesticide detection, although not specifically for OPs, Gómez
et al. [88] applied a support vector machine (SVM) algorithm to process data from an
electrochemical sensor array for multiple pesticide residues. The AI-assisted data analysis
allowed for the simultaneous quantification of several pesticides with overlapping elec-
trochemical signatures, showcasing the potential for improved multi-analyte detection in
complex matrices.

IoT integration has also shown potential in expanding the capabilities of electro-
chemical sensing systems. Ozer et al. [89] developed an IoT-enabled wearable device for
monitoring potassium ions in sweat, aimed at point-of-care applications. The IoT was
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utilized to enable real-time data acquisition and transmission from the wearable device to a
smartphone application. The device incorporated an Arduino-supported, Wi-Fi embedded
microcontroller, specifically the ESP32, which facilitated wireless communication. This
setup allowed the device to transmit potentiometric data via Wi-Fi to the smartphone app,
where the data could be processed and displayed on an OLED screen.

5. Challenges and Future Perspectives

Table 1 summarizes the sensing performance of electrochemical immunosensors for
OP detection. Despite significant advancements in electrochemical immunosensors for
organophosphate detection, several challenges persist in real sample analysis [9,54]. Ma-
trix effects from complex environmental and biological samples often interfere with sen-
sor performance, leading to reduced sensitivity and selectivity [55,90]. Non-specific ad-
sorption of interfering compounds on electrode surfaces can result in false positives or
negatives [91–93]. Additionally, the stability of biological recognition elements, such as
antibodies, in harsh environmental conditions remains a concern, potentially limiting the
shelf life and reliability of these sensors in field applications.

Emerging trends in electrochemical immunosensors for organophosphate detection
focus on overcoming these limitations. The integration of artificial intelligence and ma-
chine learning algorithms for data analysis and interpretation is gaining traction, enabling
more accurate and reliable detection in complex matrices [94–96]. Nanomaterial-based
aptasensors are emerging as alternatives to traditional antibody-based systems, offering
improved stability and the potential for regeneration [97–99].

The potential for commercialization of electrochemical immunosensors for organophos-
phate detection is significant, driven by the growing demand for rapid, on-site monitoring
tools in agriculture, environmental protection, and public health. Portable, user-friendly
devices that integrate sample preparation, analysis, and data interpretation are particularly
promising for field applications. However, challenges in scaling up production, ensuring
long-term stability, and meeting regulatory requirements need to be addressed. Collabo-
ration between academic researchers, industry partners, and regulatory agencies will be
crucial in translating laboratory prototypes into commercially viable products.

Future research in this field should focus on developing more robust and versatile
sensing platforms capable of detecting multiple organophosphates simultaneously in di-
verse environmental and biological samples. Efforts to improve the stability and shelf life of
biological recognition elements, possibly through the use of synthetic alternatives or encap-
sulation technologies, will be crucial. The exploration of novel nanomaterials and hybrid
nanocomposites for signal amplification and improved electron transfer kinetics remains
an active area of investigation. Additionally, research into sustainable and eco-friendly
materials for sensor fabrication aligns with growing environmental concerns. Integrating
these advanced sensors with emerging technologies such as IoT and cloud-based data
analytics could pave the way for widespread, networked environmental monitoring sys-
tems. Figure 13 shows an infographic summarizing the current challenges and future
perspectives discussed in this section.
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Table 1. Sensing performance of electrochemical immunosensors for OP detection.

Sensor Analyte LDR LOD Real Sample Ref.

GCE/SWNTs/PEG/
FDMA/paraoxon

hapten/anti-paraoxon IgG
Paraoxon 2 to 2500 ppb 2 ppb

Field water, lake water,
tap water, and
purified water

[29]

GCE/AuNPs/paraoxon
antibodies Paraoxon 24 to 1920 mg/L 12 mg/L River water samples [100]

Au-SPEs/SAM/AChE Paraoxon Up to 40 ppb 2 ppb
Drinking water

samples and a sample
from the Sacco River

[35]

GCE/SiSG/anti-carbofuran
antibody Carbofuran

1 ng/mL to
100 µg/mL and

from 50 µg/mL to
200 µg/mL

0.33 ng/mL Cabbage and lettuce [101]

GCE/DpAu/PB-MWCNTs-
CTS/Protein A Carbofuran 0.1 ng/mL to

1 µg/mL 0.021 ng/mL Cabbage and lettuce [102]

GCE/MWCNTs/GS-PEI-
Au/AuNPs-Ab Carbofuran 0.5 to 500 ng/mL 0.03 ng/mL

Cabbages, green
peppers, tomatoes,

Chinese chives,
and peaches

[103]

Au/L-Cys/GA/carbofuran
antibodies Carbofuran 0.1 to 1000 ng/mL 0.1 ng/mL Tomato, cabbage,

lettuce, soil, and water [104]

Au/L-Cys/GNPs/anti-
carbofuran/HRP Carbofuran 0.01 ng/mL to

50 ng/mL 0.01 ng/mL Cabbage and lettuce [105]

Au/DpAu/Protein
A/carbofuran antibodies Carbofuran

1 to 100 ng/mL
and 100 ng/mL to

100 µg/mL
0.1924 ng/mL Chinese chives and

celery cabbage [106]

GCE/GNPs/Fe3O4-FCNTs-
CS/anti-carbofuran antibody Carbofuran

1.0 ng/mL to
100.0 ng/mL and
100.0 ng/mL to

200 µg/mL

0.032 ng/mL Cabbage [107]

SPE/HRP/atrazine
antibody/Biodyne C

membranes
Atrazine - 0.012 mg/L

Water samples from
the Yarqon River

in Israel
[72]

SPE/AuNP/mAb IMD 50 to 10,000 pM 22 pM Tap water and
watermelon samples [85]

SPE/citric acid-decorated
nylon nanofibers/Nb-ALP

3-Phenoxybenzoic
acid 0.8 to 1000 pg/mL 0.64 pg/mL Human urine samples [86]

GCE/SWCNTs/antibodies Endosulfan and
paraoxon 2 to 2500 ppb. 0.05 ppb Environmental water

samples [62]

SPE/graphene/2-ABA/anti-
parathion antibodies Parathion 0.1 to 1000 ng/L 52 pg/L Tomato and carrot

samples [67]

SPE/GQDs/anti-parathion
antibodies Parathion 0.1 to 106 ng/L 46 pg/L Environmental and

food samples [68]

GCE/3D Au
nanoclusters/BSA–picloram Picloram 0.001 to 10 µg/mL 0.0005 µg/mL

Peach and excess
sludge supernatant

samples
[74]

FTO/GO/monocrotophos
antibodies Monocrotophos - 0.49 ppm Vegetable extracts and

pond water [69]

SPE/AuNP-Abs/PB OPs (not specific) 1.82 × 10−3 to
3.29 × 104 ng/mL

0.003 ng/mL Baby cabbages
and spinach [30]
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Table 1. Cont.

Sensor Analyte LDR LOD Real Sample Ref.

GCE/NBCQDs@GO/mAb3C9
antibody/phage-mimotope
M31/anti-M13 mAb-HRP

O,O-dimethyl OPs 0.005 to 500 ng/mL

0.003–0.014 ng/mL
for 9

O,O-dimethyl
OPs

Cucumber, cabbage,
and lettuce [36]

GCE/AuNPs/PANI/
MWCNTs/CS/anti-CPF

antibody
CPF - - Fruits and vegetables [31]

Ab/AuNP/HRP/GCE CPF 0.001 to 10 ng/mL 0.070 pg/mL Chinese cabbage
and lettuce [71]

GCE/Q-PDANSs/anti-CPF
antibody/multi-HRP-
CNTs@f-Fe3O4-Ab2

CPF 0.01 to 1000 ng/mL 6.3 pg/mL

Pond water from
farmland in South
China Agricultural

University

[47]

GraFET/Cr/Au CPF 1 fM to 1 µM 1.8 fM - [81]

IDAM/PDDA/AuNPs/Protein
A/anti-CPF CPF 0.5 to 500 ng/mL 0.5 ng/mL Cucumber, lettuce,

and pakchoi [80]

ITO/Co3O4/PAn/CPF-BSA
antigen and CPF

monoclonal antibodies
CPF 0 to 10 µg/mL 0.01 µg/mL Green vegetables

and apples [59]

FTO-AuNPs-chl-Ab CPF 1 fM to 1 µM 10 fM Apple, cabbage,
and pomegranate [56]

SPE/PVA/G-AuNPs
NFM/Nb8F Quinalphos 0.06 to 1000 ng/mL 50.74 pg/mL Lettuce and cucumber [42]

GCE/chitosan/glutaraldehyde/
fenvalerate monoclonal

antibodies
Fenvalerate 1.0 × 10−3 to

1.0 × 10−1 mg/L
0.8 µg/L Tea samples [37]

SPE/PVA/CA
NFM/VHH9-HRP Parathion 0.01 to 100 ng/mL 2.26 pg/mL Cucumber, orange,

and Chinese cabbage [43]

SPE/anti-TCP mouse
antibody/HRP conjugated

to HTCP
TCP 0.1 to 100 ng/mL 0.1 ng/mL

Rat plasma samples
from rats exposed to

CPF-oxon in vivo
[44]

GGE/Hap-Car-BSA@CuNPs
conjugate Carbaryl 0.8 to 32.3 µg/kg 0.08 µg/kg Wheat, corn, and oats [57]

SPE/ZrO2 NPs/Anti-BChE
antibody/QDs OP-BChE 0.1 to 30 nM 0.03 nM Human plasma

samples [45]

SPE/Fe3O4@TiO2/
QDs-anti-BChE OP-BChE 0.02 to 10 nM 0.01 nM Human plasma

samples [60]

SPE/ZrO2
NPs/LPA-anti-AChE OP-AChE 0.05 to 10 nM 0.02 nM Rat plasma samples [58]

SPE/MWCNTs-Au/anti-
AChE antibody OP-AChE 0.2 to 50 nM 0.05 nM Paraoxon-dosed red

blood cell samples [63]

SPE/ZrO2
NPs/QDs/anti-AChE

antibody
OP-AChE 10 pM to 4 nM 8.0 pM Human plasma [108]
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6. Conclusions

This review has explored the current trends and advancements in enhancing the sen-
sitivity and selectivity of electrochemical immunosensors for organophosphate pesticide
detection. The development of these sensors has been driven by the need for rapid, sen-
sitive, and on-site monitoring tools to address the widespread use of organophosphates
and their potential health and environmental impacts. Significant progress has been made
in improving sensor performance through various strategies, including nanomaterial-
based signal amplification, enzyme-based amplification cascades, and innovative electrode
modifications. The principles and techniques discussed in this review, while focused on
organophosphate detection, have broad implications for the field of electrochemical im-
munosensing as a whole. The strategies employed for enhancing sensitivity and selectivity
in organophosphate detection can be adapted and applied to a wide range of target an-
alytes. For instance, the use of metal nanoparticles and carbon nanomaterials for signal
amplification, as demonstrated in organophosphate sensors, can be equally effective for
detecting other environmental contaminants, biomarkers, and food safety targets. The
innovative electrode modifications and three-dimensional architectures explored here offer
promising approaches for improving the performance of electrochemical immunosensors
across various applications.

The integration of these sensors into novel platforms such as microfluidic devices and
lab-on-a-chip systems has opened up new possibilities for automated, high-throughput
analysis. These advancements in miniaturization and integration are not limited to
organophosphate detection but represent a broader trend in the development of portable,
user-friendly diagnostic tools. Similarly, the use of screen-printed and disposable elec-
trodes as cost-effective and versatile platforms for field applications can be extended to
numerous other sensing scenarios. Despite these advancements, challenges remain in
real sample analysis, including matrix effects and the stability of biological recognition
elements in harsh environmental conditions. These challenges are common across many
areas of electrochemical immunosensing and highlight the need for continued research
and innovation in the field. The emerging trends discussed, such as the integration of
artificial intelligence for data analysis and the development of aptamer-based sensors,
offer promising solutions that could benefit electrochemical immunosensors for a variety
of target analytes. The potential for commercialization of these sensors extends beyond
organophosphate detection. The demand for rapid, on-site monitoring tools in agriculture,
environmental protection, and public health is driving the development of versatile sensing
platforms that can be adapted for multiple analytes. The lessons learned from developing
organophosphate immunosensors can inform the design and optimization of sensors for
other targets, potentially accelerating progress across the field.
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Future research should focus on developing more robust and versatile sensing plat-
forms capable of multi-analyte detection in diverse environmental and biological samples.
Efforts to improve the stability and shelf life of biological recognition elements, possibly
through the use of synthetic alternatives or encapsulation technologies, will be crucial for
advancing not just organophosphate detection but electrochemical immunosensing as a
whole. The exploration of novel nanomaterials and hybrid nanocomposites for signal am-
plification and improved electron transfer kinetics remains an active area of investigation
with broad implications.

Additionally, research into sustainable and eco-friendly materials for sensor fabrication
aligns with growing environmental concerns and could lead to more widely applicable,
environmentally responsible sensing technologies. Integrating these advanced sensors with
emerging technologies such as the Internet of Things (IoT) and cloud-based data analytics
could pave the way for widespread, networked monitoring systems capable of detecting a
range of analytes in real time. While this review has focused on organophosphate detection,
the principles, techniques, and challenges discussed here are broadly applicable to the
field of electrochemical immunosensing. The advancements made in organophosphate
sensor development provide valuable insights and approaches that can be leveraged to
enhance the sensitivity, selectivity, and practicality of electrochemical immunosensors for a
wide range of applications. As the field continues to evolve, the cross-pollination of ideas
and techniques across different sensing applications will be crucial in driving innovation
and addressing complex analytical challenges in environmental monitoring, healthcare
diagnostics, and beyond.
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