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Simple Summary: The role of tertiary lymphoid structures (TLSs) in cancer has been extensively
studied, including predicting good prognosis and immunotherapy efficacy. Studies have shown that
the induction strategy for the formation mechanism of TLSs is a new direction for tumor therapy,
such as tumor vaccines against microorganisms. This article mainly describes the interaction between
TLSs and microorganism-related cancer and provides new ideas for the clinical application of TLSs.

Abstract: Tertiary lymphoid structures (TLSs) are ectopic lymphoid tissues formed by the accumu-
lation of lymphocytes and other components outside lymphoid organs. They have been shown to
be widespread in cancers and have predictive effects on prognosis and immunotherapy efficacy;
however, there is no standardized measurement guide. This paper provides a reference for future
research. Moreover, the induction strategy for the formation mechanism of TLSs is a new direction for
future cancer treatment, such as cancer vaccines for microorganisms. The effects of microorganisms
on cancer are dual. The role of microorganisms, including bacteria, parasites, viruses, and fungi,
in promoting cancer has been widely confirmed. However, the specific mechanism of their tumor
suppressor effect, particularly the promotion of TLS formation, is currently unknown. In this review,
we summarize the role of TLSs in cancer related to microbial infection and provide new ideas for
further understanding their mechanisms of action in cancer.

Keywords: tertiary lymphoid structures (TLSs); microorganism; cancer

1. Introduction

Cancer is a complex process, and therapeutic methods for cancer are also evolving. In
recent years, immunotherapy has gained more attention owing to the persistent response
of immune checkpoint inhibitors (ICIs) in cancer [1]. However, not all patients benefit from
this type of treatment, and more accurate biomarkers are urgently required. The tumor
microenvironment (TME) is strongly related to tumor invasion, metastasis, recurrence, and
drug resistance [2]. The active infiltration of some tumor-infiltrating lymphocytes (TILs)
may reflect a better prognosis and is related to the reaction of the immune checkpoint
blockade (ICB) [3,4]. These TILs and stromal cells exist as organized cellular clusters
referred to as tertiary lymphoid structures (TLSs), similar to secondary lymphoid organs
(SLOs) [5]. The predictive value of TLSs in judging prognosis and evaluating curative
effects has been confirmed in several types of solid tumors [6–9], whereas the discordant
state of TLSs in different tumors is attributed to the polymorphism of cell components,
structural characteristics, density, location, maturity, and function [10]. There is no complete
summary of the detection methods and classification standards.

Research on microorganisms and cancer has also become a hot topic in recent years.
Microorganisms have carcinogenic as well as preventive and therapeutic effects, mainly
because of their antigenic properties that regulate the host body lymphocytes involved in
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tumor immunity [11]. In addition, survival and immunotherapy outcomes are better in
microbially infected individuals than in uninfected individuals [12]; this may be related to
the formation and maturation of TLSs induced by microbial infection.

In this review, we first provide research ideas on TLSs, including how to identify and
group them. Second, the current research progress on microorganisms and cancer has
been generalized. Finally, the role of TLSs in microorganism-related cancer is summarized,
and the mechanism of microorganism-induced TLS formation is discussed. This paper
provides a theoretical basis for the microorganism-based TLS induction strategy as a new
opportunity for tumor treatment.

2. Overview of TLSs
2.1. Structure and Composition of TLSs

TLSs are ectopic lymphoid tissues formed by the accumulation of lymphocytes and
other components outside lymphoid organs. They do not exist under normal conditions
and can be observed in a variety of chronic inflammatory conditions such as autoimmune
diseases, infectious diseases, organ transplantation, and cancer [13–15].

TLSs mainly consist of aggregated CD20+ B cells as the core, with CD3+ T cells
wrapped around their outside [15–17] (Figure 1). Importantly, the activation and prolifera-
tion of Podoplanin (PDPN)-positive immune fibroblasts controlled by interleukin-13 (IL-13)
and IL-22 are necessary for the formation of TLSs [18], and the matrix network formed by
them provides structural support for TLSs. The peripheral mouse endothelial cell antigen-
79 (MECA79)+/peripheral node addressin (PNAd)+ high endothelial venules (HEVs) allow
lymphocyte extravasation due to their irregular cell height and strong deformability and
provide the basis for the initiation of TLSs by recruiting lymphocyte aggregates [19]. In
addition, CD68+ macrophages, interferon regulatory factor 7 (IRF7) nuclear-expressed
plasmacytoid dendritic cells (pDCs), and neutrophils are also scattered in TLSs [20–22].
It should be emphasized that chemokines and cell molecules with important functions
should not be ignored (Table 1).
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realm, CD83 + dendritic cells (DCs) and CD21+ follicular dendritic cells (FDCs) are the most frequent, 
followed by CD23+BCL6+ germinal center (GC) B cells and CD38+/CD138+ plasma cells. In the T-cell 
realm, CD8 + T cells and CD4+ T cells containing follicular helper T (TFH) cells and regulatory T (Treg) 
cells are mainly observed, whereas CD19+ regulatory B (Breg) cells are observed in some instances. 
Importantly, high endothelial venules (HEVs) can be observed in the periphery. CD68+ macrophages 
and neutrophils are also scattered in TLSs. Therefore, molecules with important functions should 
not be ignored. The figure was drawn using the MedPeer program. 
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Figure 1. Structure and composition of TLSs. Tertiary lymphoid structures (TLSs) mainly consist of
aggregated CD20+ B cells as the core and CD3+ T cells wrapped around the outside. In the B-cell
realm, CD83+ dendritic cells (DCs) and CD21+ follicular dendritic cells (FDCs) are the most frequent,
followed by CD23+BCL6+ germinal center (GC) B cells and CD38+/CD138+ plasma cells. In the T-cell
realm, CD8+ T cells and CD4+ T cells containing follicular helper T (TFH) cells and regulatory T (Treg)
cells are mainly observed, whereas CD19+ regulatory B (Breg) cells are observed in some instances.
Importantly, high endothelial venules (HEVs) can be observed in the periphery. CD68+ macrophages
and neutrophils are also scattered in TLSs. Therefore, molecules with important functions should not
be ignored. The figure was drawn using the MedPeer program.
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Table 1. Common components of TLSs and corresponding indicators.

Categories Components Immune Markers Gene Signatures Ref.

Immune cells
(CD45+)

T cells
(CD3+) TFH cells CD4+, CXCR5+,

CD40L+

CXCL13, CD200, FBLN7, ICOS,
SGPP2, SH2D1A,

TIGIT, PDCD1
[23]

Th1 cells CD45RO+

CD4, CCR5, CXCR3, CSF2,
IGSF6, IL2RA, CD38, CD40,
CD5, MS4A1, SDC1, GFI1,
IL1R1, IL1R2, IL10, CCL20,

IRF4, TRAF6, STAT5A

[24]

Treg cells CD4+ Foxp3+ NM [15]

CTLs CD8+,
CXCL-9,10,11,13 NM [25]

Dysfunctional/
Exhausted cells CD8+PD1+ NM [26]

B cells
(CD20+) BAPCs CD86highCD21low NM [27]

GC B cells CD38+BCL6+

AID+ Ki67+ NM [16]

Breg cells CD19+ NM [18]

Plasma cells CD38+/CD138+ TNFRSF17, IGJ [28]

Myeloid cells DCs CD83+DC-LAMP NM [16]

pDCs BDCA-2+ IRF7+ NM [20]

Macrophage CD68+ NM [22]

Neutrophilic
granulocyte

CD66b,
Myeloperoxidase NM [21]

Non-immune cells
(CD45−) Stromal cells FDCs CD21+/CD23+ NM [16]

Fibroblast PDPN+ NM [18]

Endothelial cells HEVs MECA79+ PNAd+ NM [19]

Other molecular
components

Chemokine and
cytokine

CXCL13, CCL2,
IL7, IL17

CXCL13, CCL21,
IL7, IL17

CCL2, CCL3, CCL4, CCL5,
CCL8, CCL18, CCL19, CCL21,

CXCL9, CXCL10,
CXCL11, CXCL13

[29]

NM, not mentioned; TFH cells, T follicular helper cells; Th cells, T helper cells; Treg cells, regulatory T cells; CTLs,
cytotoxic T lymphocytes; BAPCs, antigen-presenting B cells; GC, germinal center; Breg cells, regulatory B cells;
DCs, dendritic cells; pDCs, plasmacytoid dendritic cells; FDCs, follicular dendritic cells; HEVs, high endothelial
venules; CXCR, C-X-C chemokine receptor type; CXCL, CXC-chemokine ligand; IL, interleukin; CCL, C-C motif
chemokine ligand; PD1, programmed cell death protein 1; TLR7, toll-like receptor 7; PDPN, Podoplanin; MECA79,
mouse endothelial cell antigen-79; PNAd, peripheral node addressin; Ref., Reference.

2.2. Identification and Detection of TLSs

TLSs contain several cell types and have complex structures. Identifying and quantify-
ing TLSs in an organization is an urgent problem to be addressed. The common methods
used are introduced here (Table 2).

We can identify dense lymphoid tissue aggregates stained with hematoxylin and eosin
(HE). Mature TLS-containing germinal centers (GCs) can be clearly defined, and the number,
size, morphology, and location of TLSs can be directly observed based on histomorphology;
however, the borderline between B-cell zones and T-cell zones cannot be recognized, nor can
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atypical TLS structures or other non-TLS lymphocyte aggregates be observed. Lymphoid
follicles (LFs) are the most easily detected organized TLSs through HE staining. Recently,
the rapid development of artificial intelligence and digital pathology provide a highly
efficient method for automatic identification and quantification. Barmpoutis et al. observed
that the minimal area and minimal number of lymphocytes in TLSs were 6.245 µm2 and
45, respectively. The average density of lymphocytes in TLSs was 0.0128 µm2, which was
approximately three times that of the non-TLS region which was 0.004 µm2 [30–32].

Table 2. Comparison of TLS detection methods.

Method Source Target Single Cell Characterization Quantification Localization

HE FFPE Tissue No Yes Yes Yes

IHC/mIHC FFPE Protein No Yes Yes Yes

IF/mIF Fresh tissues
FFPE Protein No Yes Yes Yes

FCM Fresh tissues
Peripheral blood Protein Yes Yes Yes No

RNA-seq
Fresh tissues

FFPE
Peripheral blood

mRNA No Yes Yes No

scRNA-seq Fresh tissues
Peripheral blood mRNA Yes Yes Yes No

ST Frozen tissue
FFPE mRNA No Yes No Yes

HE, hematoxylin and eosin; FFPE, formalin-fixed and parrffin-embedded; IHC, immunohistochemistry; mIHC,
multiplex immunohistochemistry; IF, immunofluorescence; mIF, multiplex immunofluorescence; FCM, flow
cytometry; RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA sequencing; ST, spatial transcriptomics.

We can selectively label immune cells within TLSs and analyze their contents and
locations using immunohistochemistry (IHC) and immunofluorescence (IF). They both
can visually characterize the TLS structure. The tissue sections can be digitized into a
whole-slide image (WSI) and analyzed using image analysis software to assess the density,
location, and other information of TLSs [33], which provides strong support for studying
the interaction between cells. They are the commonly used technologies in TLS research [34].
Flow cytometry (FCM) can be used to separate target components from fresh tissues, verify
the results of IHC, and explore the function of the cells by detecting the content of related
cytokines [35,36].

Although the most common method to detect TLSs is HE combined with IHC or IF,
with the advances in sequencing methods, TLS analysis has accessed the transcriptome level.
TLS-related gene signatures can be obtained through RNA sequencing and transcriptome
analysis [23,24,28]. For instance, B-cell and chemokine signatures have been detected in
Merkel cell carcinoma (MCC) and head and neck squamous-cell carcinoma (HNSCC),
respectively [12,37]. Furthermore, a 12-chemokine gene signature in multiple cancers has
been confirmed to correlate with survival and ICB efficacy [29,38]. The current signatures
of TLSs and their related chemokines are multiple because of tumor and population
heterogeneity. Notably, Andersson invented a method for identifying gene expression-
based TLSs using a linear regression model that extracts genetic features from model
parameters and predicts clinical outcomes based on TLS scores [39].

In conclusion, the detection methods of TLSs in tumors are diverse, and each has
advantages and disadvantages. Reasonably integrating these methods and determin-
ing an effective measurement method is particularly important, which can ensure that
the future application of TLSs in predicting prognosis and judging efficacy will become
more standardized.
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2.3. Classification of TLSs
2.3.1. Presence, Quantity, and Density

It should be determined whether TLSs exist initially (Figure 2); TLS-negative status
was determined when there were no immune cells in or around the tumor and there
were focally distributed immune cells without aggregation [16]. At present, there is no
uniform standard for the definition of TLS positivity; some defined two or more lymphoid
aggregates as TLS-positive [40], and some marked lymphocyte aggregation areas greater
than 400-fold the microscopic field of view (0.03125 mm2) as TLS-positive [41]. In a recently
published cohort study, patients with >50 lymphocytes were included in the TLS-positive
group [42]. In existing studies, differences in the results of some studies cannot be ruled
out because of the non-standardized definition of TLS positivity (Table 3). There are two
main methods for grouping TLSs according to quantity. One has been classified into two
classes: one or more [43]. The other was classified into three classes: no TLSs (TLS0), one
to four TLSs (TLS1–4), and more than five TLSs (TLS≥5) [44]. The results of the former
showed that the number of TLSs was related to good prognosis, while the latter showed no
correlation. In addition, some scholars have combined the number and size of TLSs as a
grouping standard [45]. The density of TLSs and their components can be evaluated using
software [42]. The former refers to the number per square millimeter.

Table 3. Detection, classification, and prognostic and predictive value of TLSs.

Tumor
Type

Detection
of TLSs

Presence
and

Prognosis

Quantity,
Density,

and
Prognosis

Location
and

Prognosis

Differentiation
and Prognosis

Composition
and

Prognosis

Predictive
Value Ref.

Melanoma
HE;

IHC; mIF;
scRNA-seq

Favorable NM
Favorable

(intra-
tumoral)

No impact NM

Gene
signature
associated

with
efficacy of

ICB

[29]

Metastatic
melanoma

HE;
mIF Favorable NM NM No impact

Favorable
(low

fractions of
CD21+ B

cells)

NM [46]

Lung
squamous-

cell
carcinoma

HE;
IHC;

IF
NM Favorable Favorable Favorable NM NM [47]

HER2-
positive
breast
cancer

HE;
IHC Favorable NM NM NM NM NM [39]

Endometrial
cancer

HE;
IHC Favorable No impact No impact Favorable

Favorable
(number of

CD20+ B cell)
NM [41]

Clear-cell
renal-cell
carcinoma

HE;
IHC NM NM NM NM

Poor
(abundance
of CXCL13+

CD8+ T cells)

NM [36]
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Table 3. Cont.

Tumor
Type

Detection
of TLSs

Presence
and

Prognosis

Quantity,
Density,

and
Prognosis

Location
and

Prognosis

Differentiation
and Prognosis

Composition
and

Prognosis

Predictive
Value Ref.

Kidney
clear-cell

carcinoma

HE;
IHC Poor NM NM NM NM NM [48]

Bladder
cancer

HE;
IHC Favorable NM NM NM NM NM [48]

Stage II and
III

colorectal
cancer

HE;
mIF NM Favorable NM Favorable NM NM [49]

Hepatocellular
carcinoma HE NM NM

Favorable
(intra-

tumoral)
Favorable NM NM [50]

Pancreatic
cancer

HE;
IHC;

IF
Favorable NM NM Favorable NM NM [40]

Gastrointestinal
stromal
tumors

HE;
mIHC Favorable Favorable No impact NM NM NM [43]

Glioblastoma HE;
mIF NM NM NM NM

Favorable
(intratumoral
densities of

proliferating
CD8+ T cells
and higher
CD8/CD4

ratios)

NM [51]

Non-
functional
pancreatic
neuroen-
docrine
tumors

HE;
IHC;
mIF

Favorable No impact NM NM NM NM [44]

Epithelioid
pleural

mesothe-
lioma

HE;
IHC Favorable NM NM NM

Favorable
(number of

B cells)
NM [52]

Epithelioid
malignant
peritoneal
mesothe-

lioma

HE No impact NM NM NM NM Associated
with NC [45]

HE, hematoxylin and eosin; IHC, immunohistochemistry; mIHC, multiplex immunohistochemistry; IF, im-
munofluorescence; mIF, multiplex immunofluorescence; scRNA-seq, single-cell RNA sequencing; CXC-chemokine
ligand 13, CXCL13; ICB, immune checkpoint blockade; NC, neoadjuvant chemotherapy; NM, not mentioned;
Ref., Reference.
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phoid structures (TLSs) exist. TLS-negative status was determined when there were no immune 
Figure 2. Detection and classification of TLSs. First, it should be determined whether tertiary
lymphoid structures (TLSs) exist. TLS-negative status was determined when there were no immune
cells in or around the tumor and there were focally distributed immune cells without aggregation.
The main detection method of TLSs is hematoxylin and eosin (HE) staining, by which the quantity,
density, and location can be observed. There are two types of location-based classification. The first
is that TLSs can be divided into intratumoral and peritumoral based on the spatial location, and
the former can be further subdivided into parenchymatous and stromal. The second is that TLSs
can be divided into superficial and deep layers based on the infiltration location. Combined with
immunohistochemistry (IHC) or immunofluorescence (IF) based on HE, TLS differentiation can be
divided into lymphocyte cluster, immature follicle, and mature follicle. In addition, TLSs can be
studied at the cellular and gene levels using flow cytometry (FCM) and sequencing technology. At
present, evidence of intercellular interaction and multiple gene signatures have been obtained. The
figure was drawn using the MedPeer program.

2.3.2. Location

First, TLSs can be divided into intratumoral and peritumoral, according to their spatial
location [29,41,42,53], and the former can be further subdivided into parenchymatous and
stromal [44,54]. It should be emphasized that the definition of the invasive margin of
the tumor was either area-based [54] or distance-based [42]. In a study on intrahepatic
cholangiocarcinoma, it was found that intratumoral TLSs are associated with a favorable
prognosis, whereas peritumoral TLSs are associated with a poor prognosis, indicating that
TLSs located in different domains may play a role in tumor suppression or promotion
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through different immune mechanisms [55]. Second, TLSs can be divided into superficial
and deep layers, based on their infiltration location. The former has a more pronounced T
helper (Th) cell enrichment and a lower proportion of mature follicles [54].

2.3.3. Differentiation

The development of TLSs has undergone continuous maturation, and the differen-
tiation process of TLSs has been preliminarily defined [15,41,43,46,56]. The initial stage
shows lymphocyte clusters containing only T cells, B cells, and HEVs; thus, dendritic cells
(DCs) participate to form immature follicles with early structure. Finally, they develop into
mature follicles containing follicular dendritic cells (FDCs) and GCs, namely mature TLS.
Studies have shown that patients with mature TLS have lower recurrence rates [49,50] and
longer survival [42] in certain tumors. Interestingly, only immature TLS was observed in
the study of early liver cancer and precancerous lesions, accompanied by overexpression of
immunosuppressive molecules [57]. These results indicate that mature TLS has stronger
antitumor function.

2.3.4. Composition

The components of TLSs tend to be more refined owing to the popularity of sequencing
technology. Programmed cell death protein 1 (PD1)+ CD8+ T cells [26,53,58,59], PD-1+ C-
X-C chemokine receptor type 5 (CXCR5)− CD4+ Th cells [60], and circulating T follicular
helper (cTFH) cells [61], by recruiting B cells, play a humoral immune function to promote
longer survival. Additionally, tumor-infiltrating follicular regulatory T (TFR) cells, which
have been found to have high inhibitory capacity in multiple tumors, can reduce patient
survival, possibly because of the high expression of immune checkpoint molecules, which
weakens the immunotherapy response [62]. B cells participate in antigen presentation.
Studies have found that there is a B cell subset defined as antigen-presenting B cells (BAPCs)
with CD86high and CD21low that interact with T cells to fight tumors [27]. Researchers have
also defined different wetting patterns of TILs in TME, except the previous introductions
about components of TLSs and their functions and gene signatures. According to the
presence and infiltration sites of TLSs, T and B lymphocytes in the TME, TILs are divided
into immune structured, immune excluded, immune dispersed, and immune desertic [16].
Based on the location and number of infiltrating lymphocytes, they may be classified as
type A, type B, or type C [51]. Moreover, some scholars have scored their immunoreactivity
using a semi-quantitative method, which divides them into three groups (scoring 0–3) [52].

3. Microorganisms and Cancer
3.1. Carcinogenic Microorganisms

In recent years, cancer microbiology has attracted the attention of many researchers.
At present, there are 12 known carcinogens, including bacteria, parasites, and viruses [63].
Helicobacter pylori (H. pylori) can generate stomach neoplasms or mucosa-associated lym-
phoid tissue (MALT) lymphoma through NF-kB/RASAL2/β-catenin, signaling axis, and the
macrophage NLRC5 signaling pathway [64,65]. In addition to carcinogenicity, it also affects
the results of anti-PD-1 and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA4),
possibly by inhibiting antitumor CD8+ T cells due to abnormal DC activation [66]. Ex-
cept for bacteria, schistosomiasis and clonorchis sinensis can induce bladder cancer and
cholangiocarcinoma, respectively [11]. Of course, the most common carcinogenic microor-
ganisms are still viruses. The expression of viral oncogenes and the host immune response,
including inflammation and damage, can lead to cell mutations that induce cancer. Hu-
man papilloma virus (HPV) infection is a common pathogenic factor in genital tumors
and HNSCC. The most common subtype is HPV16. Vaccines against HPV infection have
been widely used in clinical practice. Recent studies have shown that E2 and E5 can be
used as vaccine antigens in addition to the classic pathogenic genes E6 and E7 owing to
their ability to evoke specific CD8+ T cell responses [26,67]. The combination of Merkel
cell polyomavirus (MCPyV) DNA and the cancer genome may be the etiology for most



Cancers 2024, 16, 3464 9 of 21

MCCs [68]. Epstein-barr virus (EBV) infection is significantly associated with nasopha-
ryngeal carcinoma (NPC), gastric cancer, and lymphoma. It can establish lifelong latency
in the host to evade the host immune response [69]. Not all viruses rely on oncogenes.
Chronic infection with the hepatitis virus gradually results in cirrhosis and liver cancer.
Recurrent tissue damage due to viral replication, integration, and immune inflammatory
responses, as well as liver regeneration and mutations, are important predisposing factors
for liver cancer [70]. Human immunodeficiency virus (HIV) infection increases cancer risk
and reduces survival, possibly because HIV destroys lymphocytes that can inhibit tumor
replication [71]. In summary, the relationship between carcinogenic microorganisms and
cancer has been a concern for decades, but there are still many questions to be addressed.
For example, viruses with oncogenes, such as HPV, can lead to the occurrence of cervical
cancer, but some patients can heal themselves after infection, whereas others develop
cervical intraepithelial neoplasia (CIN) or cancer.

It is noteworthy that carcinogenic microorganisms have a wide range of carcinogenic
effects and act as antigens to activate the immune system against tumors. Studies have
found that HPV status in HNSCC is different, and there is a significant difference among
the immune spectra, which may be caused by an increase in CD4+ follicular helper T (TFH)
cells and B cells infected by the virus, for which antitumor immunity is enhanced [72].
Infected patients have better prognosis and immunotherapy response than non-infected
patients [37,55]. The mechanism of this dual interaction between microorganisms and
cancer requires further investigation.

3.2. Other Microorganisms

Several microorganisms, although not clearly defined carcinogens, can cause cancer
through synergism [73]. Escherichia coli (E. coli) can promote tumor progression by produc-
ing the toxic metabolite colitoxin [74]. Fusobacterium nucleatum (F. nucleatum) can mediate
the activation of glycolysis and cell proliferation by upregulating specificity protein 1 (SP1)
expression and selectively targeting specific enolase1-intronic transcript 1 (ENO1-IT1), sug-
gesting that gut microbiota and metabolism interact during tumorigenesis [75]. F. nucleatum
can also induce alpha-kinase 1 (ALPK1) to stimulate the NF-κB pathway, leading to the
upregulation of intercellular adhesion molecule 1 (ICAM1) and metastasis of colorectal
cancer (CRC) [76]. Except for digestive system tumors, a fixed value for F. nucleatum present
in breast cancer can induce lymphocyte apoptosis through lectin Fap2, resulting in tumor
growth [77]. In addition to flora, carcinogenic fungi have recently received considerable
attention. Researchers have found that the relative abundance of Malassezia increased
significantly in pancreatic cancer patients and accelerated tumor progression through the
activation of mannose-binding lectin (MBL) [78]. Another study on pancreatic cancer
showed that fungal flora can drive the secretion of IL-33 to recruit and activate Th2 and
innate lymphoid cells 2 (ILC2), stimulate the secretion of IL-13, and ultimately promote
tumor growth [79]. A recent pan-cancer analysis also revealed a broad link between fungi
and cancer, such as Blastomyces in lung cancer and Candida in gastrointestinal tumors,
which are associated with inflammation and metastasis, and Candida also predicts poor
prognosis [80]. Intratumoral Phaeosphaeriaceae or related Phaeosphaeria genera are related
to shortened progression-free survival (PFS) in ovarian cancer [81]. Capnodiales and the
genus Cladosporium show a significant increase in metastatic melanoma patients who have
no response after immunotherapy [81]. Notably, the interactions between fungi and bac-
teria are closely correlated with tumors. They can stimulate the occurrence of CRC by
upregulating d-arginine and d-ornithine or stimulating the butyrate metabolic pathway,
indicating its potential as a new biomarker [82].

In contrast, some microorganisms can exert a protective effect and inhibit tumor
progression. Reuterin inhibits CRC growth by altering redox balance and metabolite ex-
change [83]. Streptococcus thermophilus can secrete β-galactosidase to activate oxidative
phosphorylation, downregulate Hippo pathway kinase, promote cell cycle retardation,
and promote tumor cell apoptosis, thus playing a tumor-suppressor role [84]. Bacteroides
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and Parabacteroides in Rnf5−/− Mice inhibited melanoma growth by affecting DC activa-
tion [85].

Furthermore, intestinal microorganisms are involved in tumor immune regulation
through their metabolites. Polyamines can inhibit anticancer immunity by inhibiting the
proliferation of lymphocytes and inducing the production of tumor-derived proteases,
thereby enhancing the invasiveness of tumor cells. Lipoteichoic acid (LTA) inhibits anti-
tumor immunity by promoting prostaglandin E2 (PGE2) production via overexpression
of cyclooxygenase-2 (COX2) [86]. In contrast, short-chain fatty acids (SCFAs) increase
antitumor activation of cytotoxic T lymphocytes (CTLs) and CD4+ effector T cells [25,87].
Huang et al. found that ginseng polysaccharides (GPs) gain an antitumor reaction to αPD-1
monoclonal antibody (mAb) by increasing intestinal flora metabolites, such as valerate [88].

4. TLSs in Microorganism-Associated Cancer
4.1. Virus-Associated

A study on MCC found no correlation between the presence or number of TLSs
and MCPyV infection. Both are independent prognostic factors [37]. In a study of EBV-
associated gastric cancer, TILs and TLSs were found to be independent prognostic factors for
EBV-negative gastric cancer rather than EBV-associated gastric cancer [89]. PD-1+ CXCR5−

cells can be used as components of TLSs to improve the prognosis of EBV-associated NPC. In
addition, in EBV-positive gastroesophageal adenocarcinoma (GOA), CD8+ T cells are mainly
located in the tumor center rather than the margin and express programmed death ligand
1 (PD-L1) as highly as tumor cells [90]. HPV infection is a common cause of cervical cancer
and HNSCC. A study on cervical cancer found that the number of TLSs was significantly
correlated with HPV infection, whereas the formation was correlated with preferable
prognosis [91]. In the study of HNSCC, HPV-specific immunocytes appeared in HPV+

patients, and they may both participate in TLS formation and increase survival through GC
response and GC B cell—TFH cell interaction [12,26,67,72]. A more pronounced soakage
of TLSs, particularly CD8+ PD1+ T cells, was found in chronic hepatitis virus-infected
hepatocellular carcinoma (HCC) tumors than in non-infected ones and was associated
with increased CTL failure [92]. Hepatitis B virus (HBV) infection and intratumoral TLSs
in intrahepatic cholangiocarcinoma are associated with good prognosis. HBV infection
may counteract excessive myeloid inflammation and re-activate antitumor immunity. TLS-
positive tumors enriched with T and B cells specifically downregulate G2M checkpoints,
inflammatory responses, and epithelial–mesenchymal transition (EMT) pathways, while
upregulating metabolic and peroxisome pathways, suggesting that immune activation is
beneficial to the efficacy of ICIs [93].

4.2. Bacteria-Associated

The implantation of Helicobacter hepaticus (H. hep) can induce H. hep-specific TFH cells
and promote the maturation of TLSs adjacent to the tumor [94]. A recent study on muscle-
invasive bladder cancer (MIBC) found that urinary pathogenic symbiotic bacteria, especially
E. coli with inherent immunogenicity and tumor invasion ability, can stimulate specific TFH
and B-cell reactions. The density of TFH-like cells correlated with TLS formation and PFS. E.
coli-specific TFH and IgG can predict clinical outcomes with neoadjuvant pembrolizumab
treatment [95]. Wong-Rolle et al. analyzed the bacterial burden of TME cells in lung cancer
patients and found that tumor cells had the highest bacterial burden compared to TLSs and
adjacent normal tissues, which was positively correlated with gene enrichment of multiple
carcinogenic pathways such as Wnt/β-catenin, hypoxia, and angiogenesis [96].

In summary, there are significant differences in the results of TLS studies on
microorganism-associated cancers (Table 4). Most of the results support that microorgan-
isms induce the formation and maturation of TLSs and correlate with good prognosis and
immunotherapy response, which is consistent with the study of TLSs in pan-cancer [37,72].
TILs and other components of TLSs are involved in the composition of TME. Although the
various types of cells in TLSs, especially TILs, have their own functions, it is necessary to
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consider TLSs as a special structure as a whole while emphasizing the spatial location and
relationship between specific cells within TLSs [97,98] (Figure 3). For example, immature
TLSs mainly consist of T cells, DCs, and follicles without GCs. In immature TLSs, high
levels of PD-L1 on regulatory B (Breg) cells can cause T cell failure and inactivation, thereby
inhibiting antitumor immunity [17]. In addition, Breg cells accelerate tumor growth by in-
hibiting interferon gamma (IFNγ) produced through CD8+ T cells [99] and also differentiate
CD4+ T cells into the regulatory T (Treg) cell phenotype by producing transforming growth
factor-beta (TGF-β) [100]. Microorganisms can promote the maturation of TLSs. After
microbial infection, CXC-chemokine ligand 13 (CXCL13) produced by CD4+ TFH cells can
guide the migration of CXCR5+ B cells, promote the formation of GCs in TLSs, recognize
antigens, and release antibodies to participate in humoral immunity. Simultaneously, B
cells can communicate with CD8+ T cells to achieve their functions of antigen presentation
and tumor killing [101]. IgD− IgG+ CD27− CD38− CD20+ B cells in tumor-margin TLSs can
also directly damage tumors by releasing granzyme B (GRzB) and TNF-related apoptosis-
inducing ligand (TRAIL) [102]. Studies have shown that tumors with a mature TLS have
a higher percentage of IgG-stained tumor cells, which are more likely to observe CD68+

macrophages and are significantly associated with a higher ICI response and longer PFS,
indicating that macrophages may play an effector cell role through antibody-dependent
cell-mediated cytotoxicity (ADCC) [34]. At the same time, tumor-associated macrophages
in TME are also the main donors of PD-L1 [53]. Interestingly, more CD8+PD1+ T cells are
present in microorganism-associated cancer [26]. In addition, activated antigen-presenting
cells (APCs) can induce differentiation and expansion of PD-1+CXCR5−CD4+ Th-CXCL13
cell subsets through the TGF-β1 signaling pathway [60]. These results confirmed the corre-
lation between microorganisms and the infiltration or exhaustion of CTLs and the existence
of a cellular mechanism for blocking the response to PD-1, suggesting their potential as
new biomarkers.
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Figure 3. TLSs in microorganism-related cancer (×400). Representative images of tertiary lymphoid
structures (TLSs) detected in formalin fixation with paraffin-embedding (FFPE) tumor sections via
hematoxylin and eosin (HE) staining or immunohistochemistry (IHC) staining showing CD3+ T
cells, CD20+ B cells, CD21+ follicular dendritic cells (FDCs), and CD23+ germinal centers (GCs).
These tumor tissues contained human papilloma virus (HPV)-associated head and neck squamous-
cell carcinoma (HNSCC) and Epstein-barr virus (EBV)-associated gastric cancer, and there was no
significant difference in the morphological structure of TLSs. These histological images are original,
unpublished images from the authors’ examination of tumors.
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Table 4. TLSs in microorganism-related cancer.

Microorganism Tumor Type TLSs and
Prognosis

Classification of
TLSs and

Prognostic Value

Microorganisms
and Prognosis

TLSs and
Microorganisms Ref.

MCPyV MCC Favorable Presence Favorable NC [37]

EBV Gastric cancer Favorable Presence NC NM [24]

EBV NPC Favorable
Composition

(PD-1+ CXCR5−

CD4+Th cells)
NM NM [60]

EBV GOA NM NM NM NM [90]

HPV CESC Favorable Presence NM PC [91]

HPV HNSCC Favorable

Presence;
Differentiation;
Composition (B

cell)

NM PC [12]

HPV HNSCC Favorable Composition (CD4+

TFH) Favorable NM [72]

HBV/HCV HCC Favorable
Composition (CD4+

TCM; CD20+ B
cells)

NM PC [92]

HBV ICC Favorable
Presence;
Location

(intratumoral)
Favorable NM [93]

H. hep CRC NM NM NM PC [94]

E. coli MIBC Favorable Composition
(CD4+ TFH) Favorable NM [95]

MCPyV, Merkel cell polyomavirus; EBV, Epstein-barr virus; HPV, human papilloma virus; HBV, hepatitis B virus;
HCV, hepatitis C virus; H. hep, Helicobacter hepaticus; E. coli, Escherichia coli; MCC, Merkel cell carcinoma; NPC,
nasopharyngeal carcinoma; GOA, gastroesophageal adenocarcinoma; CESC, cervical squamous-cell carcinoma;
HNSCC, head and neck squamous-cell carcinoma; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangio-
carcinoma; CRC, colorectal cancer; MIBC, muscle-invasive bladder cancer; PD1, programmed cell death protein 1;
CXCR5, C-X-C chemokine receptor type 5; Th, T follicular helper; TFH, follicular helper T; TCM, central memory T;
NM, not mentioned; NC, no correlation; PC, positive correlation; Ref., Reference.

However, irrelevance between TLSs and microbes has also been reported. The rea-
son for this difference may be related to the lack of literature, heterogeneity of the tu-
mor, or mechanisms of action after different microbial infections. It is worth noting that
microorganism-associated cancers usually have a better prognosis than uninfected cancers,
while TLSs have a tumor-promoting effect in some tumors [103,104]. TLSs in clear-cell renal-
cell carcinoma (ccRCC) are associated with poor prognosis and resistance to anti-angiogenic
drugs after disease recurrence. This may be due to genetic changes in the PI3K-mTOR
pathway components that produce many pro-inflammatory and pro-angiogenic cytokines.
Although these abundant cytokines can recruit lymphocytes to form TLSs, excessive cy-
tokines can also create an immunosuppressive environment [48]. Increased TLS abundance
has been found in advanced gastric cancer [105], high-grade bladder cancer [106], and
high-grade breast cancer [107], indicating that TLSs are associated with higher grade and
stage. In addition, it was also detected that tumor cells infiltrated into TLSs and were asso-
ciated with lymph node metastasis [106,107], indicating that TLSs may provide favorable
conditions for lymph node metastasis of tumors.
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5. Generation Mechanism and Induced Strategy of TLSs
5.1. Generation Mechanism of TLSs

TLSs are not ubiquitous in tumors, indicating that their occurrence requires specific
conditions. Previous studies suggest that TLSs have the same occurrence process as SLOs
because of their similar structures [15]. Inflammation-related molecules such as CXCL13
attract the aggregation of lymphoid tissue inducer (LTi) cells, which communicate with
stromal cells through LTα1β2-LTβR, TNF-TNFR1, IL7-IL7R, and IL17-IL17R signaling
pathways to promote the excretion of vascular endothelial growth factor C (VEGFC) to
irritate HEV production. Then, the excretion of chemokines such as C-C motif chemokine
ligand 19 (CCL19) and adhesion factors such as vascular cell adhesion molecule 1 (VCAM1)
induce the homing of peripheral lymphocytes to the HEVs and control their entry into
specific areas to form TLSs [5,108]. Th17 [109] and B cells [110] can replace LTi cells. Certain
immune or stromal cells can secrete CXCL13 to act like lymphoid tissue organizer (LTo)
cells, such as CD8+ T cells [58] in non-small-cell lung cancer (NSCLC), TFH cells [111], and
fibroblasts [112] in breast cancer. It is noteworthy that the secretion of chemokine CXCL13
can induce the expression of lymphotoxin-α1β2 (LTα1β2) on B cells or LTi cells through the
CXCL13-CXCR5 axis and form a positive feedback loop, driving the expansion of stromal
cells such as cancer-associated fibroblasts (CAFs) and TLSs [5].

Except for the classical pathway, the mechanism of microbially induced TLS formation
has been gradually understood. Studies have shown that oncolytic adenoviruses can
promote vascular normalization and the formation of non-classical TLSs through stimulator
of interferon genes (STING)-mediated DC activation [113]. The existence of GC in mature
TLS suggests that antigen recognition may also be involved in driving TLSs. HPV and H.
hep can induce significant increases in TFH cells and the formation and maturation of TLSs
in HNSCC and CRC, respectively, thereby increasing antitumor immunity [12,67,72,94].
In contrast, the number of TLSs decreased rapidly after the removal of pathogens in mice
infected with influenza virus or in patients infected with H. pylori [13,114]. The above
results indicate that the formation and maturation of microbial-driven TLSs are closely
related to the antigen recognition involved in TFH cells, which may be because TFH cells
can produce TLS-dependent CXCL13 to recruit B cells. A study on TFH cells provides
evidence that it can drive TLS formation, with researchers using a mouse model finding
that TGF-β-mediated special AT-rich sequence binding protein 1 (SATB1) silencing leads to
increased differentiation of TFH cells, formation of intratumoral TLSs, and reduced tumor
growth [115]. In conclusion, lymphotoxin signaling is not the only pathway that drives
TLS formation (Figure 4). An in-depth understanding of the diverse origins of TLSs allows
us to better understand the TLS heterogeneity detected in different tumors.

5.2. Induced Strategy of TLSs

Contraposing to the positive action of TLSs on protracting patient prognosis and
strengthening immunotherapeutic effects, targeted induction of TLSs has received extensive
attention and may become a new hope for future cancer treatment. A large number of
animal experiments have proven that, according to the mechanism of TLSs, it is feasible
to induce TLSs via intratumoral injection or biomaterial implantation of cytokines and
chemokines such as lymphotoxin, CXCL13, and CCL21 [116,117]. Direct infusion of LTo
cells into mice can also promote TLS formation [118]. Moreover, studies have indicated
that PD-L1 blockade combined with anti-angiogenic therapy leads to HEV conversion
and TLS formation [119]. After intramuscular injection of the HPV vaccine in patients
with high-grade squamous intraepithelial lesions (HSILs) of the cervix, mature TLS can be
formed in the vicinity of the original lesion, whereas no TLSs were observed in patients
without the vaccine [120]. After intradermal injection of a tumor vaccine combined with
cyclophosphamide in patients with pancreatic cancer, TLSs can be formed in tumors and
prolong the survival time of patients. In patients without vaccine treatment, only a small
amount of lymphocyte infiltration is observed [121]. These results indicate that treatment
induction, vaccination, or a combination of both can drive the occurrence of TLSs (Figure 4).
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Figure 4. Generation mechanism and induced strategy of TLSs. Inflammation-related molecules
such as CXC-chemokine ligand 13 (CXCL13) attract aggregation of lymphoid tissue inducer (LTi)
cells which communicate with stromal cells through LTα1β2-LTβR, TNF-TNFR1, IL7-IL7R, and
IL17-IL17R signaling pathways to promote the excretion of vascular endothelial growth factor C
(VEGFC) to irritative high endothelial venules (HEV) production. Then, the excretion of chemokines
and adhesion factors induce the homing of peripheral lymphocytes to the HEVs and control their
entry into specific areas to form tertiary lymphoid structures (TLSs). It is noteworthy that the secretion
of CXCL13 can induce the expression of lymphotoxin-α1β2 (LTα1β2) on B cells or LTi cells through
the CXCL13-CXCR5 axis and form a positive feedback loop, driving expansions of stromal cells such
as cancer-associated fibroblasts (CAFs) and TLSs. Except for the classical pathway, the mechanism of
microbially induced TLS formation has been elucidated gradually. The formation and maturation of
microbial-driven TLSs are closely related to the antigen recognition involved in follicular helper T
(TFH) cells, which may be because TFH cells can produce TLS-dependent CXCL13 to recruit B cells.
Based on the mechanism of TLSs, it is feasible to induce TLSs through intratumoral injection or
biomaterial implantation of cytokines and chemokines. Direct infusion of lymphoid tissue organizer
(LTo) cells and intramuscular injection of vaccines may also promote TLS formation. The figure was
drawn using the MedPeer program.
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Notably, decreased TLS density and GC deficiency were observed in patients with
lung cancer treated with neoadjuvant chemotherapy (NC) and chemotherapy combined
with steroids [47], indicating that TLS induction is not always positive or effective. Given
the role of TLSs in autoimmune diseases, this negative outcome may be caused by the
pro-inflammatory effects of mass-proliferating T and B cells in TLSs. Therefore, full account
should be taken of the possible immunotoxicity during the therapeutic induction of TLSs,
and reasonable assessments and controls should be made.

6. Conclusions

The role of TLSs in predicting prognosis and immunotherapy efficacy in cancer has
been widely reported, but there is no standardized measurement guide. This study pro-
vides a reference for future research. Moreover, the induction strategy for the formation
mechanism of TLSs is a new direction for future cancer treatment, such as cancer vaccines
for microorganisms. The effect of microorganisms on cancer is dual, and the cancer-
promoting functions of microorganisms have been widely demonstrated. However, the
specific mechanism of its tumor suppressor effect, particularly the promotion of TLS forma-
tion, is unknown. In addition to the known communication between immune cells, whether
they are also related to microbial metabolism has not been specifically reported. Future
studies on TLSs in microorganism-related cancers should be supplemented by expanding
the types and sample sizes of cancers and microorganisms, such as newly discovered fungi.
Exploring the relationship between TLSs and microorganisms in cancer, especially the
molecular network between them, will be helpful to fully understand the etiology and
immune environment of cancer and empower the search for effective biomarkers and
new treatments.
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