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ABSTRACT  Objective: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neurodevel-
opmental disorder with a prevalence ranging from 6.1 to 9.4%. The main symptoms of ADHD are inattention,
hyperactivity, impulsivity, and even destructive behaviors that may have a long-term negative influence
on learning performance or social relationships. Early diagnosis and treatment provide the best chance
of reducing and managing symptoms. Currently, ADHD diagnosis relies on behavioral observations and
ratings by clinicians and parents. Medical diagnosis of ADHD was reported to be delayed because of a
global shortage of well-trained clinicians, the heterogeneous nature of ADHD, and combined comorbidities.
Therefore, alternative ways to increase the efficiency of early diagnosis are needed. Previous studies used
behavioral and neurophysiological data to assess patients with ADHD, yielding an accuracy range from
56.6% to 92%. Several factors were shown to affect the detection rate, including methods and tasks used
and the number of electroencephalogram (EEG) channels. Given that children with ADHD have difficulty
sustaining attention, in this study, we tested whether data from multiple tasks with different difficulties and
prolonged experiment times can probe the levels of brain resources engaged during task performance and
increase ADHD detection. Specifically, we proposed a Deep Neural Network-based (DNN) fusion model of
multiple tasks to enhance the detection of ADHD. Methods & Results: Forty-nine children with ADHD and
thirty-two typically developing children were recruited. Analytic results show that the fusion of multi-task
neurophysiological data can increase the separation rate to 89%, whereas a single data type can only achieve
a best accuracy of 81%. Moreover, the use of multiple tasks helps distinguish between children with ADHD
and typically developing children. Our results suggest that different neurophysiological models from multiple
tasks can provide essential information to assist in ADHD screening. In conclusion, the proposed model
offers a more efficient, and accurate alternative for early clinical diagnosis and management of ADHD.
The application of artificial intelligence and multimodal neurophysiological data in clinical settings sets a
precedent for digital health, paving the way for future advancements in the field.

INDEX TERMS Attention-deficit/hyperactivity disorder, assessment, deep learning, multi-model fusion,
virtual reality.

Clinical and Translational Impact Statement— By employing a DNN-based fusion model that integrates
data from multiple neurophysiological tasks, the study achieves an 89% accuracy in ADHD detection. The
proposed model offers a more objective, efficient, and accurate alternative, facilitating early clinical diagnosis
and management of ADHD. The application of artificial intelligence and multimodal neurophysiological data
in clinical settings sets a precedent for digital health, paving the way for future advancements in the field.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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I. INTRODUCTION
TTENTION-DEFICIT/HYPERACTIVITY Disorder
(ADHD) is a neurodevelopmental disorder that usually

occurs in childhood. The prevalence of ADHD in children

aged 3 to 12 years around the world ranges from 6.1 to 9.4%

estimated in October 2020 [1]. Characterized by difficulty

concentrating, hyperactivity, impulsivity, and even destruc-
tive behaviors, ADHD may be associated with other problems
like learning difficulties and behavior disorders [2]. ADHD is
usually diagnosed before school age but symptoms can persist
into adolescence and even adulthood if not treated effectively
and in a timely manner [3]. Therefore, early diagnosis and
treatment is critical as it provides the best chance of reducing
symptoms. Currently, the assessment of ADHD relies on
behavioral observations and ratings by clinicians and parents.

No standard objective laboratory tests (blood, urine, x-ray

or psychological analysis) can be used to further support the

diagnosis of ADHD [4]. As a result, medical diagnosis of

ADHD was reported to be delayed because of the heteroge-

neous nature of ADHD, the presence of comorbidities with

similar symptoms [5], and a global shortage of well-trained
clinicians [6]. Children with ADHD may struggle with paying
attention, get easily distracted, display impulsive or overly
active behaviors, and appear restless compared to their age-
matched peers [3]. These challenges can lead to academic,
family, and life difficulties, so early diagnosis and treatment
are crucial [7]. Furthermore, an increasing rate of ADHD
misdiagnosis with other types of brain disorders was also
reported [6], [8]. It was suggested that the development of
alternative and objective ways to increase early diagnosis
efficiency is important. Previous studies for objective ADHD
assessment and detection employed neuropsychological tests,

Behavioral Rating Scales (BRS), or Continuous Performance

Test (CPT) [9], yielding an accuracy range from 56.6 %

[10] to 92% [11]. In 2020, we used neuro-behavioral data

during a CPT in a virtual classroom to separate children with

ADHD from typically developing children with an accuracy

of 83.6% [12]. We recently demonstrated the use of EEG

features during a virtual classroom-based CPT with irrelevant
distractions to help diagnose ADHD and accuracy increased
to 85.45% [13]. In this study, we examined whether a fusion
of multi-modal data from multiple tasks can further enhance

ADHD detection.

The paper is organized as follows: Section II discusses
previous studies on physiological information assessment and
their shortcomings. Then, the advantage and contribution of
our work is mentioned. Section III describes the flow of
our experiment. In Section IV, observations and experiment
results are discussed. Section V concludes our work and
informs future research.

Il. RELATED WORK

ADHD is a common neurodevelopmental disorder in chil-
dren. Children with ADHD may exhibit structural immatu-
rity in subcortical and cortical areas, such as the nucleus
accumbens, amygdala, caudate, hippocampus, putamen,
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prefrontal, parietotemporal cortex and cerebellum [14], [15],
[16], [17]. Behavioral symptoms include inattention, impul-
siveness, and hyperactivity [3]. To diagnose ADHD, clin-
icians used the reference guide known as the Diagnostic
and Statistical Manual of Mental Disorders — 5th Edition
(DSM-5). In addition to the above-mentioned medical diag-
nosis, behavioral or neuronal data have been used as a
supportive measure in the evaluation of ADHD. Advantages
include faster diagnostic decisions, shorter clinical consulta-
tion times and higher clinician confidence in the diagnosis,
compared to standard clinical assessment [18]. The CPT, for
instance, has been used in the assessment of ADHD based on
behavioral performance of task, including correct response,
reaction time, omission errors, and commission errors [19],
[20], [21]. Importantly, with advances in VR techniques,
it was reported that using VR-based CPT can help diag-
nose ADHD with increased accuracy when compared with
traditional CPT [10], [22] and even provide additional infor-
mation for treatment. Miihlberger et al. [23] used a virtual
classroom test to examine the influence of methylphenidate
on task performance in children with ADHD and reported
that ADHD children off-medication displayed a significantly
higher omission-error rate and longer mean reaction time
compared to on-medication and neurotypical children.
Additionally, EEG features in time domain, i.e., event-
related potentials (ERPs), and in frequency domain, i.e.,
frequency-specific signal power, during different tasks were
reported to provide an objective assessment of ADHD.
See [24] for a review. For instance, an examination of two
ERPs, N2 and P3, during a GO/NOGO task, a variation
of CPT, revealed that NOGO-P3 was most likely related
to response inhibition and NOGO-N2 may reflect the cen-
tral inhibition or response conflict [25] and can be used
in ADHD diagnosis. Specifically, it was reported that the
N2/P2 amplitudes over the right centro-frontal regions [26]
and the NOGO-P3 peak and latencies [27] significantly dif-
fered between children with ADHD and typically developing
children, suggesting immature or impaired executive function
associated with attention control and inhibition [24].low By
a meta-analysis, it was suggested that the N2 and P3 reveal
moderate deviations and heterogeneity in ADHD at the level
of functional brain systems [28]. Regarding signal power,
Alexander et al. [29] reported that in ADHD subjects, low-
frequency wave activity was inversely related to clinical and
behavioral measures of hyperactivity and impulsivity during
CPT tasks. This inverse relationship normalized following
treatment with stimulant medication. Clarke et al. [30] found
that these oscillatory abnormalities during the eyes-closed
resting state in ADHD groups can help distinguish between
two subtypes of ADHD. Barry et al. [31] reviewed articles
that used resting EEG to assess ADHD and concluded that
“elevated relative theta power, and reduced relative alpha
and beta, together with elevated theta/alpha and theta/beta
ratios, are most reliably associated with AD/HD.” Further-
more, power spectral density of delta, theta, alpha, beta
and gamma oscillations can be used to assess the executive
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FIGURE 1. The proposed system (right) and VR scheme (right).

functions related to the cluster working memory and the
training effects in ADHD (See [24]).

Recently, applying machine learning (ML) methods and
artificial intelligence has enabled the analysis of multiple and
massive variables and provided a more objective, reliable, and
efficient evaluation of multifaceted complex clinical datasets
with high accuracy. In ADHD studies, Chen et al. [32] and
Sun et al. [33] used discriminant analysis to achieve 56.6%
and 76.1% accuracy, respectively, in distinguishing ADHD
from non-ADHD. In 2019, Kim and Kastner [34] used a deep
learning model with features extracted from 60 channels of
EEG during a time estimation task, achieving an accuracy of
up to 86% in distinguishing ADHD from healthy subjects.
In 2020, we used task performance and neuro-behavioral
data, such as head rotation (HR) and eye movements (EM),
during a CPT in a virtual classroom to separate children with
ADHD from typically developing children (TDC) with an
accuracy of 83.6% [12]. Recently, we used EEG features
during a VR-based GO/NOGO task to achieve an improved
accuracy of 85.45% in detecting ADHD [13]. In this study,
we employed multi-task neurophysiological data and pro-
posed a DNN-based fusion model to enhance the detection
of ADHD.

lll. METHODOLOGY

This section elaborates on the system architecture, VR envi-
ronment, experimental procedure and feature analysis
process.

A. SYSTEM ARCHITECTURE

The proposed system is shown in Fig. 1. In our VR system, the
game engine Unity3D was used to develop an environment
that simulates a virtual classroom. Cognitive tasks, including
visual, audio and visual + audio CPT were added to the game
environment. The subjects used the HTC Vive TM®) con-
troller to complete the task. In addition to test tasks, the HTC
Vive TM helmet also provides information on the subject’s
head rotation (HR) and eye movements (EM). Moreover, six
EEG channels, Af3, Af4, Af7, Af8, Fpl and Fp2 (®Looxid
Link), were integrated with the HTC Vive and recorded dur-
ing tasks with a rate of 512Hz. The mind index, which shows
attention and relaxation levels, as well as left and right brain
activity, raw impulses from each sensor, and the distinct brain
frequencies picked up by each sensor, can be visualized and
recorded.
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B. VIRTUAL REALITY GAME OF CONTINUOUS
PERFORMANCE TEST (CPT)

The CPT tasks were designed using the game engine Unity3D
in a virtual classroom (Fig. 1; right). The CPT tasks were
based on the classical GO/NOGO paradigm and the visual
CPT were used in our previous studies (see papers [12] for
details). In summary, participants wore the HTC headset and
were instructed to continually look at numbers on a black-
board directly in front during the experiment. Those numbers
ranged from O to 9 and randomly appeared on the blackboard
with an interstimulus interval (ISI) of 2 seconds. Participants
were instructed to respond when they saw a ‘0’ following a ‘1’
(GO condition) and to withhold their response when ‘0’ was
not after ‘1’ (NOGO condition). The GO and NOGO stimuli
appeared randomly. Additionally, 25 trials (12 GO stimuli
and 13 NOGO stimuli) included various task-irrelevant audi-
tory and visual distractions. Ten different distractive events
were introduced to affect the participants’ attention (see sup-
plementary Table 1 for properties of those distractions), and
denoted as the D trials while those without any distractions
were denoted as ND trials. In this study, we further converted
the visual CPT into audio and visual + audio forms in which
the stimulus were delivered either audibly or both visually
and audibly.

C. PARTICIPANTS

The study was approved by the institutional review board
of Children’s Hospital of Fudan University (RESEARCH
ETHICS BOARD APPROVAL [No.(2018) 02]) in accor-
dance with the Declaration of Helsinki and Good Clinical
Practice Guidelines. Eighty-one children aged 6 to 12 years
participated in this study. Of these children, 49 had been
diagnosed with ADHD (mean age = 7.4 £ 1.6; 22 boys) and
32 were TDC (mean age = 8.0 £ 1.5; 16 boys). The diagnosis
of ADHD was based on the DSM-5 standard. Throughout the
experiment, behavioral data were collected for the calculation
of task performance, including correct detection, reaction
times, omission errors, and commission errors.

D. DATA ANALYSIS
1) FEATURE EXTRACTION

o Task Performance (TP): In the task performance data,
we considered the active accuracy rate, passive accuracy
rate and the reaction time as features. Because there are
three CPT tasks and three conditions (distraction, non-
distraction and the allover mean), the task performance
yields 27 features in total.

o EEG: The steps for typical EEG data analysis were
described in detail in our previous studies [32]. In sum-
mary, EEG data were first bandpass filtered (2-56
Hz) to remove power line artifacts and head move-
ment artifacts. These artifact-removed EEG were trans-
formed into the frequency domain using fast Fourier
transform and the resultant spectral densities at each
channel were averaged across frequencies with respect
to the pre-defined five frequency bands of interests
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TABLE 1. Behavior result task performance (*: P<0.016 after correction for multiple comparisons).

Task Visual CPT
Dataset TPC (n=32) ADHD Children (n=49) Between Group
P e D D
Trial D ND Within-group ND Within-group N
Significance Significance ( p-value ) ( p-value)
Correc (%) 94.42% 93.45% 0.434 88.46% 86.97% 0.516 0.010% 0.050
443.63+ 44598+ 397.97+ 419.22+
RT(ms) 0.894 0.662 0.304 0.560
115.08 165.49 185.08 188.82
Omission errors 0.18+0.23 0.10+0.22 0.064 0.47+0.31 0.22+0.32 0.0001* 0.0001 * 0.090
Commission errors 0.04+0.07 0.06+0.08 0.213 0.08+0.10 0.12+0.16 0.115 0.149 0.090
Task Audio CPT
Dataset TPC ADHD Children Between Group
P e D D
Trial D ND Within-group ND Within-group N
Significance Significance ( p-value ) ( p-value)
Correc (%) 86.77% 90.60% 0.001* 76.96% 82.05% 0.010%* 0.00002* 0.010%
263.74+ 367.96+ 304.83+ 382.41+
RT(ms) 0.065 0.259 0.482 0.866
221.89 300.31 233.08 356.90
Onmission errors 0.59+0.31 0.43+0.40 0.002* 0.81+0.17 0.71+0.25 0.042 0.001* 0.001*
Commission errors 0.01+0.02 0.03+0.05 0.008* 0.08+0.14 0.08+0.18 1.000 0.012* 0.159
Task Visual + Audio CPT
Dataset TPC ADHD Children Between Group
ithin-, ithin- D ND
Trial D ND Within-group ND Within-group
Significance Significance ( p-value ) (p-value)
Correc (%) 74.12% 64.44% 0.0005* 58.16% 58.50% 0.696 0.000001* 0.033
RT(ms) 631.54+ 683.04+ 0.010% 717.69+ 733.27+ 0278 DT 0.033
m; d . 4 .
s 79.43 97.46 45.09 85.11
Onmission errors 0.49+0.28 0.68+0.28 0.0001* 0.76+0.16 0.78+0.24 0.636 0.00001* 0.149
Commission errors 0.03+0.08 0.03+0.09 0.825 0.08+0.14 0.07+0.17 0.732 0.116 0.251

(FOIs), including the § (1-3), ©(4-7 Hz), @ (8-14 Hz),
B (15-24 Hz), and y (25-48 Hz) bands. In this study,
spectral densities were obtained directly from the device,
Looxid Link. For each FOI, we derived the maximum,
minimum, average and standard deviation values of
each channel with respect to the conditions, resulting in
120 features per task and 360 features in total.

Eye Movement (EM): We used the embedded eye
tracking device of HTC Vive TM to collect eye move-
ment data. The system preprocesses data and reports
information, such as the gaze point coordinates, pupil
position, pupil diameter, and opening and closing of the
left and right eyes during tasks. These data serve as the
eye movement (EM) features.

Head Rotation (HR): The head rotation amplitude has
been considered an important feature to assess the focus
of the subject. The HR during the task was calculated by
the HTC Vive TM.

2) STATISTICAL ANALYSIS

Welch’s ¢-test was used on each aspect of task performance,
EEG data, eye movement and head rotation to measure their
significance on separating the two groups. The number of
features extracted are 27, 180, 99 and 9 in accordance with
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task performance, EEG, EM and HR, respectively (in total,
315 features).

3) DEEP NEURAL NETWORK MODEL

A deep neural network (DNN) method was employed to
perform the ADHD assessment classification. The basic
structure of DNN model comprises three connected layers:
the input, hidden and output layers (Fig. 2). According to the
complexity of different datasets, we systematically adjusted
the hyperparameters of the modal-specific DNN model to
achieve the optimal classification accuracy, including the
numbers of hidden layers and the nodes of neurons. The
design of decreasing nodes was aimed at reducing feature
abstraction and complexity while retaining critical features.
ReLU activation functions were utilized across all hidden
layers. For all output layer, the sigmoid activation function
was used because of its suitability for binary classification
problems.

Specifically, the TP dataset employed 2 hidden layers with
neuron counts of 128 and 32, respectively. The HR dataset
had 3 hidden layers with neuron counts of 64, 32, and 8,
respectively. The EM dataset employed a 7-layer neural net-
work structure with neuron counts of 1024, 512, 256, 128,
32, 16, and 4, respectively. For the EEG dataset, different
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FIGURE 3. The architecture of the early (left) and late (right) DNN-based
fusion model.

approaches were compared. Firstly, we tested the importance
of each channel by processing a DNN model of 8 hidden
layers featuring neuron counts of 512, 512, 256, 128, 128,
32, 16, and 4, respectively. Then, all EEG data of 6 chan-
nel as a whole entered a DNN model of 6 hidden layers
with neuron counts of 1024, 1024, 512, 512, 256, and 128,
respectively.

4) FUSION MODEL ARCHITECTURE

Having obtained the features from different modalities,
we implemented two fusion models: early and late fusion
(Fig. 3). In early fusion, EEG, EM and HR were concatenated
into one feature set for training the predictive model. Because
dataset value ranges differ, we employed the min-max nor-
malization method to rescale the features (Fig.3 left). In late
fusion, all different features were separately processed using
DNN models for obtaining the important DNN model param-
eters. The data-specific weighting factors of the last hidden
layer were extracted as the feature representation. These
extracted features were merged as the inputs to the fusion
model for training (Fig. 3 right).

IV. RESULTS

A. TASK PERFORMANCE

Table 1 summarizes the task-dependent performance of the
two groups. First, we examined the within-group effects of
distractions and highlighted the significant values in grey. For
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TABLE 2. Modal-specific significant features.

Dataset TP EM HR EEG
significant 22 39 8 34
Ratio (%) 61% 40% 89% 3.1%

visual CPT, no differences were seen in task performance
between D and ND trials in TDC, but the omission errors
were significantly greater in D trials compared to ND trials
in children with ADHD. For auditory CPT, when there were
distractions, both groups exhibited significantly lower cor-
rect detection rates and greater omission errors. Regarding
the visual and auditory CPT, the presence of distractions
degraded the task performance of correct detection rates,
reaction time and omission errors only in TPC, but not in
children with ADHD. The task performances were similar
in D and ND trials during the visual and auditory CPT in
children with ADHD.

Concerning the between-group differences, the D trials and
the ND trials resulted in 8 and 3 between-group differences of
task performance in all three tasks, respectively. The ND trials
led to significant between-group differences in correct detec-
tion rates, omission errors and commission errors in auditory
CPT and in correct detection rates and reaction time in the
visual and auditory CPT. When there were distractions, the
two groups significantly differed in correct detection rates,
omission errors and commission errors in all three CPTs.
Additionally, the visual and auditory CPT elicited significant
differences in reaction times between the two groups.

B. STATISTICAL TESTS ON INDIVIDUAL FEATURES

We first examined the between-group differences of each
individual feature statistically using the Welch’s t-test and
Table 2 summarizes the results. It can be seen that 22, 39,
8 and 34 features of TP, EM, HR and EEG, respectively,
were statistically identified as important features after the
correction for multiple comparisons. The ratios of significant
features to all features were 61%, 40%, 89% and 3.1% of TP,
EM, HR and EEG, respectively.

C. CLASSIFICATION RESULTS OF SINGLE-MODALITY
DATASETS

Table 3 lists the modality-specific classification results using
different classifiers. To increase readability, we highlighted
the best accuracies in grey obtained by a classifier given data.
The best performance across all classifiers can be obtained
by using DNN and the data of TP or HR, followed by LGB
using HR. When XGB was employed, the best accuracy was
76% using FP1 EEG. The best performance of SVM was 74%
using HR. Moreover, when compared to the performance of
features extracted from different EEG channels, FP1 outper-
formed the other channels in 3 of 4 classifiers. Therefore,
FP1 was selected as the representative channel for further
investigation.
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TABLE 3. Classification results of each dataset.

TABLE 4. Classification results of fusion models.

Dataset TP EM HR EEG

TAll Al All All AF3 AF4 AF7 AF8 FP1 FP2
Classifier DNN
Accuracy [0.81 0.70 [0.81 0.72 0.68 0.64 0.67 0.67 0.71 0.62
SD 0.12 0.14 0.14 0.13 0.07 0.12 0.06 0.10 0.07 0.10
Classifier SVM
Accuracy 0.73 0.43 0.74 0.64 0.70 0.43 0.70 0.43 0.66 0.59
SD 0.10 0.03 0.10 0.15 0.15 0.03 0.18 0.03 0.18 0.08
Classifier LGB
Accuracy 0.68 0.59 0.79 0.64 0.62 0.61 0.65 0.62 0.72 0.57
SD 0.05 0.06 0.09 0.17 0.16 0.13 0.15 0.11 0.14 0.13
Classifier XGB
Accuracy 0.73 0.71 0.73 0.75 0.60 0.59 0.61 0.70 0.76 0.73
SD | 0.05 0.08 0.09 0.13 0.08 0.10 0.08 0.17 0.08 0.16

D. CLASSIFICATION RESULTS OF FUSION MODEL

To verify whether the fusion of multi-task neurophysiolog-
ical data can increase the separation rate, combinations of
different models were tested using DNN. Table 4 lists the
fusion results. Fusion model accuracies were 83%, 84% and
89% when using 2, 3 and 4 datasets, respectively, for fusion.
To examine whether more features always lead to higher
accuracy, we tested the fusion of all possible features (i.e., all
EEG features) and the accuracy decreased to 75% (Table 4).

V. DISCUSSION

In this study, we developed a fusion model using DNN
and multi-task neurophysiological data of EEG, EM, HR,
and TP to enhance ADHD detection. The analytic results
confirmed that this fusion model can increase the sep-
aration rate to 89%, whereas data from single modality
only achieves an accuracy of 81%. Our findings sug-
gest that different neurophysiological models from multiple
tasks can provide essential information to assist in ADHD
screening.

A. TASK PERFORMANCE DIFFERENCES ACROSS TASKS

In this study, we developed three tasks to engage varying
amounts of brain resources, namely the visual system, the
auditory system and both systems combined. When con-
sidering the impacts of distractions in normally developing
children, task performance was affected only in auditory
CPT, not in visual CPT. Previous studies had reported that
school-aged children had compensatory ‘‘adult-like” atten-
tional suppression resources to resist irrelevant distractors in
visual spatial attention [33] and achieved adult-level selec-
tive attention functions in cluttered visual scenes by the
interactions between the developing sensory cortices and
frontoparietal control network (see review in [34]). With
the increase of task demand in visual + auditory CPT, task
performance was further degraded by distractions in normally
developing children. These results indicate that the effects of
distractions were related to stimuli type and task difficulty,
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Dataset TP+HR TP + EM TP+EM +HR TP+ EM + HR
+HR + EEG (FP1) + EEG (All)

Accuracy  0.83 0.84 0.89 0.75

SD 0.08 0.11 0.08 0.14

possibly due to insufficient brain resources to suppress irrel-
evant information. By contrast, task performance in children
with ADHD were similarly poor with and without distrac-
tions in the most difficult visual 4 auditory CPT. Taken
together, when the task is complex, children with ADHD
exceeded their limitation of brain resources quicker than
normally developing children, reflecting their immaturity of
brain function.

B. THE IMPORTANCE OF FEATURES

In this study, we used univariate analysis to statistically test
the importance of every feature and calculate the ratios of
important feature numbers to the total feature numbers in
each modality. It can be seen that HR has the greatest ratio of
important features of all modalities and leads to the highest
separation rates in 3 of 4 classifiers tested. On the other hand,
EEG have the lowest ratio of important features, but the accu-
racy is not necessarily the poorest. This result suggests that
appropriate features can facilitate the accuracy and statistical
significance may help evaluate the importance of features.

C. FUSION MODEL ENHANCES ADHD DETECTION
Previous studies used one task to assess the behavioral and
neuronal abnormalities in children with ADHD, yielding
an accuracy rate between 56.6% and 92% depending on
employed methods and the number of EEG channels [10],
[11], [13], [21]. In this study, multiple neurophysiological
data from three tasks with varying levels of difficulty were
used to probe the level of brain resources engaged when chil-
dren with and without ADHD performed tasks. The analytic
results confirmed that the fusion of multiple tasks increases
detection accuracy from 83% to 89%. Notably, we used only
one channel of EEG data during tasks. This channel was
chosen because of its greatest accuracy when using only
EEG data features. Finally, greater classification results of
individual data type may not always lead to the best result
when the data are combined. This can be seen in TP and
HR results, which achieved the greatest accuracy among the
four datasets but the result of their fusion model was not the
best. One possible explanation is that TP and HR were largely
related with each as they both were associated directly with
behavioral outcomes. By contrast, adding EEG features can
serve as a supplement to reveal more differences between
children with and without ADHD.

VI. CONCLUSION
In this study, we designed three tasks with varying difficulties
to manipulate the levels of brain resources engaged during
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task performance. We tested whether this data from multi-
ple tasks can enhance the detection of ADHD. The results
demonstrated that the fusion of multi-task neurophysiolog-
ical data can increase ADHD detection accuracy to 89%,
whereas the highest accuracy of a single dataset was only
81%. Moreover, the combination of behavioral and neuronal
features can aid in the separation of children with ADHD
from TDC. Our results suggest that different neuro-sensing
models from multiple tasks can provide essential information
to assist in ADHD screening. In conclusion, the DNN-based
fusion model offers a more efficient, and accurate alternative
for early clinical diagnosis and management of ADHD. The
application of artificial intelligence and multimodal neuro-
physiological data in clinical settings during VR tasks sets
a precedent for digital health, paving the way for future
advancements in the field.
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