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Abstract: The objective of this systematic review (SR) was to select studies on the use of gene editing
by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles
deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR
demonstrates that countries such as China and the United States of America stand out in studies
with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis
thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and
Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant
responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used
in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the
articles included in this SR was validated by a risk of bias analysis. The information collected in this
SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases
and pests to understand the mechanisms involved in most host–pathogen relationships. This SR
shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting,
providing useful information for plant breeding programs.
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1. Introduction

Biotic stresses caused by pests and pathogens such as viruses, bacteria, fungi, oomycetes,
nematodes, and insects are largely responsible for low productivity in various crops [1].
In addition, the continuous increase in several new pest species makes the control of
these pathogens challenging [2]. Microorganisms have specific characteristics and are
classified into groups. Biotrophic microorganisms depend on the living plant to feed and
complete their life cycle; necrotrophs, during their feeding habit, kill the host plant, and
hemibiotrophs initially depend on the living plant (behaving like biotrophs) in order to
survive and complete their cycle with a necrotrophic phase; where the host is degraded [3,4].

The plant and the pathogen are intertwined in a battle of recognition and evasion
where a multilayered defense system, including pathogen-associated molecular pattern
(PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI), has evolved in
plants to fight invading pathogens for survival [5]. In general, PTI uses pattern recognition
receptors to monitor PAMPs on the cell surface. Meanwhile, ETI relies on leucine-rich
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repeat receptors with a nucleotide-binding domain to recognize pathogen effectors inside
the cell [6–8].

Thus, understanding the molecular mechanisms of pathogen–host interactions, espe-
cially the identification of key targets related to defense responses in plants, would offer a
great opportunity to design broad-spectrum and durable resistance in various crops [5,9,10].
Hence, plant breeding programs are looking for effective and long-lasting techniques to
improve crops. However, some challenges, such as the complex inheritance of the vast
majority of agronomic traits and the strong genotype–environment interaction, are still
challenging [11].

Currently, three types of genome editing tools are widely used by researchers, in-
cluding zinc finger nuclease (ZFN) [12], transcription activator-like effector nuclease
(TALEN) [13], and CRISPR-clustered/associated regularly interspaced short palindromic
repeats (CRISPR/Cas) [14]. ZFN and TALEN have not been widely used due to high costs
and failures. The CRISPR/Cas system (which includes Cas9, Cas12, and Cas13) from a
prokaryotic organism has transformed the field of gene editing with high efficiency and
easy handling and application. Compared to the previous two generations of genome
editing techniques, the CRISPR/Cas system is flexible, simple, stable, and easy to transform.
These resources allowed for ZFN and TALEN to be replaced by CRISPR/Cas, which has
become one of the main genome editing techniques.

CRISPR is composed of CRISPR RNA (crRNA) (transcribed from the spacer sequences)
and transactivating crRNA, or single chimeric guide RNA (sgRNA) (formed by the fusion
of crRNA and tracrRNA) for targeting and the specificity of targeting [14,15]. The Cas9
protein-RNA complex (from Streptococcus pyogenes) is formed by the combinations of the
crRNA spacer to a target sequence close to an adjacent motif of the proto-spacer (PAM—
3 base pair (bp) motifs essential for spacer acquisition and target cleavage) [15–17].

Due to its ease of execution, the CRISPR/Cas system has become the tool of choice
for gene editing in any species of interest. By generating a double-strand break (DSB) at
the desired site by the Cas-gRNA complex, the host–cell repairs the DNA lesion via the
non-homologous end joining (NHEJ) pathway, resulting in short insertions or deletions,
consequently leading to gene knockouts. Another form of repair is the homology-directed
repair (HDR) pathway, which is more precise and has a lower probability of error [18,19].
In plants, the system has been used to knock out all members or a single member of a
multigenic family [20] and even several unrelated genes [21], with the NHEJ pathway being
the most reported [22].

Several studies have been published to demonstrate the different genes that positively
or negatively regulate resistance to various pests and pathogens in model plants and diverse
crops, such as Arabidopsis thaliana, where genes such as ZAR1, UGT71C3, and miR398b have
been studied [23–25], in rice, SWEET14, eIF4G, and PRAF2 [26–28], in maize, ZmACD6,
Zmksl2, and JAZ15 [29–31], in tomato, SlWRKY16, SlWAT1, and SlDMR6 [32–34], and in
soybean, Rfg1, Rpp1, and GmLMM1 [35–37].

In addition, CRISPR technology has evolved rapidly and has shown great potential
for plant biology, especially with regard to CRISPR/Cas9 variants, such as CRISPR/Cas12
and CRISPR/Cas13, which offer better specificity for DNA and RNA, respectively. For
precise changes in a single base, without causing double-strand breaks, reducing off-target
mutations, base editing methods have been implemented [38,39]. Other improved delivery
tools, such as the use of nanoparticles and viral vectors, allow for the efficient introduction of
the CRISPR system into plant cells and the delivery of RNP (ribonucleoprotein) complexes,
rather than DNA plasmids, is being used to improve efficiency and reduce off-target
effects [40]. Other advanced techniques allow for the simultaneous editing of multiple sites
in the genome, making it easier to modify multiple traits at the same time, and systems
such as Prime Editing and CRISPR 3.0 are emerging, allowing for precise insertions and
deletions without the need for DNA breaks [38,39,41].
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Thus, off-target effects have been significantly reduced due to improvements in the
specificity of the CRISPR/Cas system. In addition, these data facilitate reliability and safety,
allowing for regulatory approval, coupled with strategies such as temporary editing, where
CRISPR machinery is rapidly degraded after editing, as well aa the ability to edit multiple
genes simultaneously, which facilitates the engineering of complex traits in plants, such as
disease resistance and nutritional trait improvements [39–42].

In order to systematically gather and review current research on the use of CRISPR/Cas
technology in gene editing for biotic stress tolerance, this study presents a systematic re-
view (SR) of articles published in the last twelve years. It also aims to contribute to the SR
previously carried out on the use of CRISPR/Cas technology in gene editing for tolerance
to abiotic stresses [22]. Here, we describe how the technique has been applied to pest and
pathogen resistance studies and the locations and crops, among other data, for which it is
possible to detect the current research trend on the subject and its impact on crops.

2. Materials and Methods

To carry out this SR, the State of the Art through Systematic Review (StArt) software
(version 3.0.3 Beta) was used, developed, and made available by the Software Engineering
Research Laboratory of the Federal University of São Carlos, at https://www.lapes.ufscar.
br/resources/tools-1/start-1, accessed on 15 August 2023.

The review was prepared following the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines [43], structured in a set of evidence-based
items that help authors report a wide range of systematic reviews and meta-analyses and
can be used in plant, animal, and health intervention areas. A PRISMA checklist was drawn
up to minimize bias in this SR, available at https://doi.org/10.5281/zenodo.13869284
(accessed on 29 September 2024). The SR process using StArt occurred in three stages:
planning, execution, and summarization.

2.1. Planning

In order to plan the SR, a protocol was developed, available at https://doi.org/10.528
1/zenodo.13371943 (accessed on 26 August 2024), which includes a description of the SR,
the research objectives, the main/guiding question, the research questions (Table 1), the
search string, the source mechanism, the inclusion and exclusion criteria, and the definition
of the types of study. The question guiding the SR was based on the Population Intervention
Comparison Results strategy [44] (Table 1). Thus, this SR aims to answer the following
research question: how has CRISPR/Cas technology been used in gene editing in plants
for biotic stress tolerance over the last twelve years?

Table 1. Description of the PICOS strategy used to develop the RS research questions on the use of
CRISPR/Cas technology to edit tolerance genes/resistance to biotic stresses from studies published
in the last 12 years.

Description Abbreviation Components of the Question

Population P Agricultural varieties under biotic stresses

Interest/Intervention I Gene editing in plants using CRISPR/Cas
technology for disease resistance

Comparison C Plant breeding methods

Outcome O Editing genes that confer resistance to biotic
stresses in plants

Study type S Scientific articles and literature reviews

https://www.lapes.ufscar.br/resources/tools-1/start-1
https://www.lapes.ufscar.br/resources/tools-1/start-1
https://doi.org/10.5281/zenodo.13869284
https://doi.org/10.5281/zenodo.13371943
https://doi.org/10.5281/zenodo.13371943
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After drafting the main research questions, secondary questions were elaborated
(Table 2).

Table 2. Guiding questions for this SR on the use of CRISPR/Cas technology to edit tolerance
genes/resistance to biotic stresses from studies published in the last 12 years.

Research Questions

1. In which country was the study performed?
2. What culture is the article about?
3. Which biotic agent is addressed in the study?
4. Which genes are reportedly associated with disease and pest resistance in plants?
5. Which nuclease is used in conjunction with the CRISPR tool?
6. What methodology is used to use CRISPR?
7. What method is used to prove the effectiveness of the tool?
8. What techniques/tools are associated with CRISPR/Cas9?
9. What transformation method was used?
10. Which explant was used to transform the plants?
11. What are the main vectors used to express Cas9 and/or gRNA in plants?
12. Were any unusual phenotypic characteristics observed in the plants after genetic
transformation? Which ones?
13. What is the characteristic obtained after mutating the plant?

2.2. Execution

Searches were performed in different electronic databases such as Pub Med Central,
Springer, Scopus, Web of Science and sites such as Google Scholar and CAPES Periodicals
Portal. For the Google Scholar, Springer, PubMed Central, CAPES Periodicals, Web of
Science and Scopus databases, the following keywords were used: (“CRISPR/Cas9” OR
“CRISPR-Cas9” OR “CRISPR-Cas in plants”) AND (“plant resistance” OR “plant disease
resistance”) AND (“plant disease” OR “biotic factors” OR “disease resistance” OR “plant
pathogens” OR “pests” OR “plant parasite”).

For the Web of Science and Scopus databases, another search string was also used, with
the following keywords: (“CRISPR” OR “CRISPR/Cas9” OR “CRISPR-Cas9” OR “CRISPR-
Cas in plants”) AND (“biotic factors” OR “pathogen resistance” OR “phytopathogen
resistance” OR “plant disease resistance” OR “disease resistance” OR “plant resistance” OR
“pest resistance” OR “parasite resistance”), seeking to include as many studies as possible.

The Boolean connectives “AND” and “OR” were used to differentiate search terms
and group synonymous terms, respectively. The search results in each database were
imported into the BIBTEX, MEDLINE, or RIS formats, compatible with the StArt software.
The bibliographic survey was performed from January 2013 to July 2024.

To select the articles, the title, abstract, and keywords were analyzed. Articles that
met the terms of the search sequence and did not deviate from the proposed theme were
accepted and submitted to the extraction stage. At this stage, only articles that answered
the research questions (Table 2) previously established in the SR protocol were accepted as
an inclusion criterion. Exclusion criteria were also used to extract the following articles:
theses, dissertations, manuals, book chapters, review articles, papers not written in English,
papers without a clear contribution, papers published prior to 2013, or papers that were
off-topic.

2.3. Data Summarization

The data obtained from the scientific articles was summarized in tables, graphs,
word clouds, and bibliometric maps. The graphs were constructed using the R version
4.4.1 statistical environment [45], using the ggplot2, reshape2, and ggpubr packages. The
bibliometric analyses were performed according to the metadata of the selected articles
using the VOSviewer_1.6.17 program [46] to verify the networks of interactions between
keywords and between authors and co-citations. Word clouds containing the journals used
to publish the articles, genes edited, tools, and software used to support the CRISPR/Cas
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tool over the last twelve years were generated online and free of charge (https://www.
wordclouds.com/, accessed on 18 November 2023), based on the frequency of the data.

2.4. Risk of Bias Analysis

To assess the risk of bias, the adapted Cochrane Collaboration Tool [47] was used. The
methodological quality was analyzed by three authors (MSM, FdSN, and AdJR), and the
articles selected in the extraction stage were subjected to four questions (Table 3) in order to
further reduce data bias. These are essential questions that confirm whether editing using
CRISPR/Cas was effective, reaching the target site or not.

Table 3. Questions to evaluate the methodological quality of the articles included in the SR on the use
of CRISPR/Cas technology to edit tolerance genes/resistance to biotic stresses from studies published
in the last 12 years.

Risk of Bias

1. Has off-target analysis been performed?
2. Has the pathogen been inoculated?
3. Has phenotypic analysis been performed after mutation in the plant?
4. Does the article answer at least 50% of the research questions?

Systematic errors in scientific studies that cause distortions in the results can happen;
it is complex to state whether a study is biased or not, but systematic errors in scientific
studies can be estimated and minimized through a careful evaluation of its methodological
quality. Rigorous practices such as protocol development, the use of PICOS strategy,
PRISMA checklist, and the others described above, significantly reduce the risks of bias.

The risk of bias can be classified as low, moderate, or high when the study presents
negative responses (“no”) of up to 25%, between 25 and 75%, and greater than 75%,
respectively.

3. Results
3.1. Bibliographical Survey

Initially, 9513 studies related to the proposed topic were identified from the search
strings in the selected electronic databases, which are widely used in plants. Google Scholar
showed 5880 studies, Pub Med Central showed 1421, CAPES Periodicals Portal showed
509, Scopus showed 819, Web of Science showed 574, and Springer, 310. Although the Web
of Science and Scopus databases use two search strings, Google Scholar contributed 61.8%
of the articles submitted, which is justified by its broad search spectrum. From this total,
376 were detected as duplicates by the StArt software.

After analyzing the title, abstract, and keywords, 7623 studies were rejected and 734
were submitted to the extraction stage. The texts were read in full, resulting in 296 accepted
articles (Figure 1). These selected articles met the inclusion/exclusion criteria because they
are related to the theme of this SR, which aimed to include as many studies as possible on
the use of CRISPR/Cas technology in the editing of tolerance/resistance genes to biotic
stresses in the last 12 years; then, the information was deposited in the Supplementary
Materials (Table S1) for consultation.

https://www.wordclouds.com/
https://www.wordclouds.com/
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Figure 1. A PRISMA flow diagram with the respective stages of the process of selecting studies for
inclusion/exclusion in the systematic review of the CRISPR/Cas technology used to edit genes for
tolerance/resistance to biotic stress in plants according to the databases [43].

The studies evaluated covered the period from January 2013 to July 2024, with 2021
considered the year with the highest number of publications as to CRISPR/Cas technology
in the editing of genes related to resistance to biotic stressors, contributing 21.6% of the
articles. The other years had 16.6% (2022), 16.2% (2020), 11.5% (2023), 10.5 (2024), 9.8%
(2019), 7.4% (2018), 3.7% (2017); for the years 2016, 2015, 2014 and 2013, less than 2%
were obtained.

Considering the frequency of authors and all the keywords in the articles selected in
the extraction phase, bibliometric maps were developed to represent the co-occurrence
of these words (Figure 2). The size of the circles represents the number of times these
words were repeated; the larger the circle, the more times the author and journal were cited.
Colors indicate different groups of authors and keywords and the thickness of the lines the
correlation between these words. The thicker the line, the higher the occurrence of the term.
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Figure 2. Bibliometric indicators of the collaboration network between authors and keywords of
the selected articles on CRISPR/Cas technology and biotic factors. (A) Collaborators who have
published the most on CRISPR/Cas and biotic stresses in the last 12 years. (B) Keywords of the
selected articles on CRISPR/Cas technology used for gene editing of tolerance/resistance to biotic
stresses in plants during the extraction phase of this systematic review. Different colors for each circle
indicate collaboration between groups.
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Twenty clusters were formed and identified using different colors, according to the
degree of similarity between the authors’ works (Figure 2A). Authors such as Yan Li, Jing
Fan, Long Wang, Yuese Ning, Yi Li, Chao Yang, Liang Guo Wang, Qian Zhang, Jianping
Chen, and Jing Wang are responsible for a large bibliographic contribution. These data
demonstrate a trend in centralized research related to Chinese authors with not much
exchange of information between Chinese researchers and those from the rest of the world.
The links or distances infer the correlation between these authors and their collaboration
on other works. Some small grouped but isolated nodes can be observed, but they show
minimal contribution to the studies performed by the authors included in these groups.

For the keywords, approximately 92 nodes and 12 clusters were observed, which
defined the main research themes in this area. The most relevant groups according to the
size of each circle refer, in order of relevance, to the following words: disease resistance,
genetics, CRISPR/Cas9, gene editing, and genome editing. These words form core groups
associated with several other terms of collaboration with a theme that constitutes the
smaller groups formed, for example, by the terms vectors, crop breeding and regulation of
gene expression. Words such as Cas12, RNAi, bacterial resistance, and genomic sequencing
appear in isolation, which indicates lower frequency and low correlation with other studies
(Figure 2B).

3.2. Plant of Origin and Plant Cultures Edited Using CRISPR/Cas Technology

Of the 296 research papers, 158 (59.8%) originated in China, 30 (11.4%) in the United
States of America (USA), 12 (4.5%) in Germany, 7 (2.7%) in South Korea, 5 (1.9%) in Canada
and Pakistan, 4 (1.5%) in Spain and Saudi Arabia, 3 (1.1%) in India, Israel, Japan, and the
Netherlands, and 2 (0.8%) in Australia, the Philippines, Sweden and the United Kingdom.
The other countries only had one article submitted, which represents just 0.4% of the
publications on the subject (Figure 3).
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China and the USA are the countries that produce and disseminate the most scientific
knowledge on the subject. However, all continents, except for Antarctica, have contributed
to this area of research. The articles identified 28 plant species used for gene editing related
to resistance to biotic factors. Overall, the types of crops most edited by the CRISPR
technique include cereals, grains and agricultural commodities, with 48% of the studies
represented mainly by rice, followed by studies with model plants, represented mainly
by Arabidopsis. Other studies have included vegetables (21%), fruits (5%), tubers (2%) and
trees (1%) (Figure 3).

Rice (Oryza sativa) was the most studied crop, present in 36.5% (109) of the studies,
followed by tomato (Solanum lycopersicum) with 16% (48), Arabidopsis thaliana with 15% (45),
wild tobacco (Nicotiana benthamiana) with 7.2% (22), soybean (Glycine max) with 3.8% (12),
wheat (Triticum aestivum), tobacco (Nicotiana tabacum), and corn (Zea mays), with 2% (6),
rapeseed (Brassica napus) with 1.7% (5), and grape (Vitis vinifera L.), basil (Ocimum basilicum),
and cotton (Gossypium hirsutum) with 1.4% (4). The other species had a frequency of less
than 1% of the studies (Figure 3).

3.3. Biotic Stresses in Plants

The biotic agents cited in the literature were bacteria, fungi, viruses, oomycetes, insects,
and nematodes, accounting for 51.8, 28.3, 10.5, 5.7, 2.7, and 1%, respectively. The genera
Xanthomonas (75) and Pseudomonas (41) account for 92% of the studies on bacteria. For fungi,
the most studied genera were Magnaporthe (54), Botrytes (19), Fusarium (15), Sclerotinia (7),
and Verticillium (6) (Figure 4).
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Figure 4. The most-studied biotic agents (bacteria, insects, oomycetes, nematodes, fungi, and viruses)
in the last twelve years for resistance/tolerance to plant diseases using CRISPR/Cas technology.
More than one biotic agent per article was considered in calculating frequency.

The most-cited viruses were cucumber mosaic virus (CMV) (8), cotton leaf curl virus
(CLCuVs) (6), rice streak virus (RSV), rice black-streaked dwarf virus (RBSDV) (4), tomato
yellow leaf curl virus (TYLCV) (3), and tobacco mosaic virus (TMV) (3). The oomycete
Phytophthora (14), followed by Hyaloperonospora (8) and Peronospora (4), were the most
covered. The insect genera Helicoverpa (4), Nilaparvata (3), Spodoptera (2), Sogatella (1),
Rhopalosiphum (1), Bemisia (1), and Aphidoidea (1), and the nematode genera Meloidogyne (4)
and Heterodera (1), were also observed in the studies (Figure 4).

As a result, the diseases most frequently covered were bacterial leaf blight (BLB),
bacterial leaf streak (BLS) in rice, and bacterial spot in tomatoes. For fungi, brusone in rice,
gray mold in tomatoes, and Fusarium wilt in various crops, among other diseases, were
the most commonly observed (Figure 4).
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3.4. Types of Explants

The explants used for plant transformation via CRISPR/Cas varied according to the
plant species. Callus, cells, cotyledons, embryos, epicotyl, hypocotyl, anthers, inflorescence,
leaf disks/leaves, plants, protoplasts, roots, and seeds were found as transforming materials
(Figure 5).
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Figure 5. Explants used for the transformation of the different plant species covered in studies on
gene editing via CRISPR/Cas for tolerance/resistance to biotic stress in the last 12 years. The colors
of the circles represent each explant and the size of the circumference the frequency of each explant in
different crops.

For the rice crop, transformation via CRISPR/Cas was mainly performed using em-
bryogenic calli, with a frequency of over 50%. Embryos, protoplasts, seeds, leaves, and
roots were also used as transforming sources, but with a frequency of less than 10%. In
tomatoes, the most commonly used explants were cotyledons, with a frequency of more
than 10% of the studies performed on this crop, followed by leaves (<10%). In Arabidopsis,
the inflorescence (>10%), seeds, protoplasts, leaves, and plant (<10%) were used as explants.
In wild tobacco, the leaves (>10%), inflorescence, plant, and cotyledons (<10%) were used
as the main transformation explants (Figure 5).

3.5. Plant Disease Resistance/Susceptibility Genes

A word cloud designed from the genes cited in the papers as potential targets for
resistance/susceptibility to plant diseases. The sucrose efflux transporter gene (SWEET14)
appears prominently in the center of the word cloud and was the most cited in the papers,
especially those related to resistance to bacteria Xoo in rice, followed by N Requirement
Gene 1 (NRG1), Pi21 resistance genes, LateraL Organ Boundaries 1 (CsLOB1), Mildew
resistance locus o 1 (SlMlo1), Dependent Glycosyl Transferases (UGT76b1), and the Xa7
resistance gene. The gene families WRKY (14), SWEET/OsSWEET (12), UGT (7), Xa
(7), and Solyc (5) have also been extensively studied. In the articles selected for this SR,
337 genes related to tolerance/resistance to biotic factors were covered; some papers used
CRISPR/Cas technology to edit more than one gene (Figure 6).
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ance/resistance/susceptibility to biotic stresses.

3.6. Auxiliary Methods to CRISPR/Cas

The methodological strategies most used in the studies collected to validate and sup-
port the CRISPR/Cas tool were PCR (27.4%), sequencing (26.5%), qPCR (22.9%), transgenics
(8.4%), RNA-seq (3.9%), Western blotting (3.5%), transcriptomics (1.8%), virus-induced gene
silencing (VIGS) (1.0%), bimolecular fluorescence complementation (BiFC) assay (1.0%),
LC-MS/HPLC liquid chromatography analysis (0.9%), Northern blot (0.7%), microscopy
(0.6%), metabolomics (0.4%), histochemistry (0.3%), and proteomics (0.2%) (Figure 7). The
other methods accounted for less than 0.1% of the studies.

PCR, sequencing, and qPCR techniques were mainly used to demonstrate the efficacy
of the CRISPR/Cas tool and detect on- and off-target mutations.

Certain types of software were also used to complement CRISPR/Cas-related anal-
yses. The CRISPR-P version 2.0 software appears in 16.2% of the articles as an auxiliary
method to CRISPR/Cas to predict target sites and/or mutations. Other widely used
software/programs included BLAST, DSDecode, Cas-OFFinder, CCTop, CRISPR-PLANT,
NCBI, CRISPR-GE, CRISPRdirect, SnapGene, ClustalW, CRISPR Design, CHOPCHOP,
ClustalX, RNAfold, Geneious, CRISPOR, RNA Folding Form, and TIDE (Figure 8).
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3.7. Use of CRISPR/Cas Technology

Most of the CRISPR/Cas methods used in the 296 studies selected for this SR had
already been validated by other authors. The method used by Ma et al. (2015) [48],
Xing et al. (2014) [49] and Wang et al. (2015) [50], and showed great reproducibility, being
used in 24.7% of the studies (Table S2) to precisely edit plant genomes, deleting regions
responsible for unwanted characteristics or inserting gain-of-function mutations.

For the CRISPR tool to be effective as Cas, endonuclease must be used. Of the studies
collected, 98.3% (291) used Cas9 as an accessory to this editing system. Other endonucleases
such as Cpf1, formerly known as Cas12a (2) and Cas13 (3), were also mentioned, but they
were not very common.

Several vectors have been used to express Cas and/or single guide RNA (gRNA),
but the most commonly cited is pCAMBIA and pYLCRISPR/Cas. The most widely used
delivery method for introducing the gene of interest into plant cells was carried out by
Agrobacterium tumefaciens (286) and Agrobacterium rhizogenes (6), occurring mainly via
electroporation and heat shock.

3.8. Phenotypic Analysis and Characteristics Obtained after Mutation

Considering the agronomic characteristics and visible symptoms of the disease after
mutation of the plants, 60.2% of the studies indicated that the phenotype was preserved,
13.7% inferred that the plants showed unusual characteristics after mutagenesis, such as
dwarfism, albinism, and more aggressive symptoms of the disease, such as wider lesions
than would be characteristic, and 26.1% of the articles did not perform this type of analysis
or did not record having carried it out (Figure 9).
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Greater resistance to plant diseases was observed in approximately 70% of the stud-
ies and higher plant susceptibility after gene mutation was noted in 28% of the studies,
indicating that these genes are related to plant defense/immunity response (Table S2).

3.9. Sources of Bias in the Included Studies

To assess risk of bias in individual studies, an adaptation of the Cochrane risk of bias
tool protocol was performed, which is composed of domains; according to the reviewers’
judgment, the study/outcome is classified as having a high, low or unclear risk of bias.
The domains assigned to this SR are important and necessary questions in studies related
to gene editing by CRISPR/Cas technology. Thus, questions such as “Was phenotypic
analysis performed after mutation in the plant?”, “Was off-target analysis performed?”
were used to classify the methodological quality of the selected articles. And three authors
did these analyses independently to avoid potential biases.

Based on the classification defined for the risk of bias and the questions designed
to measure the risk, it can be inferred that 98.6% of the articles presented a low risk of
bias (Figure 10). Only six articles did not answer question 3 (“Was phenotypic analysis
performed after mutation in the plant?”) and presented a high risk for this question. Three
studies had an uncertain answer; however, the other questions were answered, which
does not invalidate these studies from contributing to this SR. For question 1 (“Was off-
target analysis performed?”), only two studies did not answer. The other questions were
answered in full, confirming the good methodological and bibliographical quality of this
study (Table S3).
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performed? Q2: Was the pathogen inoculated? Q3: Was phenotypic analysis performed after
mutation in the plant? Q4: Does the article answer at least 50% of the research questions?”.

4. Discussion
4.1. Bibliographic Survey

This SR presents a compilation of data extracted from articles carefully selected be-
tween 2013 and 2024, with the aim of expanding knowledge on the use of CRISPR/Cas
technology in plant gene editing for resistance to biotic stresses. The application of the
CRISPR/Cas system in plants began in 2013 [51–54]; however, until 2015, the works
consisted mainly of preliminary studies and the validation of techniques and protocols. Lit-
erature reviews were rejected to avoid bias, and letters to the editor and non-peer-reviewed



Curr. Issues Mol. Biol. 2024, 46 11100

articles were also disregarded. For this reason, and to obtain more recent studies on the
subject, articles from the last twelve years were considered.

The year 2021 saw the largest bibliographic contribution on the subject, which may
be related to the increased demand for food in the world and the negative effects of the
COVID-19 pandemic [55], which led to an 18% increase in production in 2021 and an
11% increase in 2022 [56], stimulating agribusiness and studies focused on the genetic
improvement of crops in order to minimize food shortages. The amount of data obtained
on the subject in recent years reveals its importance and the need for investment in this area
of research aiming to provide returns for the population and rural producers. Furthermore,
these data reveal that technology is evolving rapidly and could contribute to overcoming
food shortages for exponentially growing populations [57].

The biometric analysis demonstrated that the keywords “disease resistance” or “CRISPR/
Cas9” present in the search string are also the most cited words in the selected articles and
indicate that, over the last twelve years, more than 5000 studies have focused on this topic.

Keywords such as “viral resistance”, “DNA”, “genomics”, “oomycetes”, “soybean”,
and “Sclerorotinia sclerotiorum” appear in isolation despite being related to the topic; this is
because such words are found mainly in the body of the text and not in the titles, abstracts,
and keywords of the selected articles.

The authors who have produced the most studies on the subject are from research
institutions located mainly in China and the USA. The Rice Research Institute and Key Lab
for Major Crop Diseases located at Sichuan Agricultural University in China is responsible
for a major contribution to gene-editing work using CRISPR [58–60].

4.2. Study Sites and Edited Crops

Most of the studies included in this SR originated in China (140), which is in line
with the data on agricultural production. Despite having less than 10% of the world’s
productive land, the country ranks first in the production of cereals, cotton, fruit, vegetables,
meat, poultry, and fishery products, as well as accounting for 25% of the world’s grain
production [61]. This makes the country a major contributor to crop improvement studies
using the CRISPR/Cas tool.

The studies performed in the USA were also representative (27). The country is the
third largest food producer in the world and the first when it comes to exporting corn
and soybeans, the main agricultural commodities [61]. Countries such as Germany, South
Korea, Canada, Pakistan, Spain, and India have also contributed to studies on the subject.

Rice is the second-most-produced food crop in the world and the first-most-cultivated
in China, which accounts for 30% of world production [61]. It is a monocot considered
a model, because its genome is small and easy to manipulate when compared to other
crops, which justifies the large number of studies (107) using CRISPR/Cas technology as a
gene-editing tool for improving this crop [62–65].

In addition to rice, 27 other plant species have been covered in gene-editing studies in
this SR. Tomato is the second-most-cited crop (47 articles) and the sixth most important crop
economically, with a production of more than 100 million tons per year [61]. The model
crops, Arabidopsis thaliana and Nicotiana sp., were also well cited in the selected papers; this
may be related to the large amount of information already validated on these species and
because their genomes have already been sequenced [66–69].

4.3. Biotic Stresses

Biotic stressors such as pathogens, insect pests, and weeds reduce the yield and quality
of agricultural production. In high-yielding crops such as wheat, rice, corn, potatoes, and
soybeans, losses can range from 17.2% in potatoes to 30% in rice [70]. Several diseases
affect rice cultivation. Bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae
(Xoo), is considered one of the most important bacterial diseases of rice. Irrigated or rainfed
areas are common for growing this species and favor the development of the disease due
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to the abundance of water facilitating the dispersion of the pathogen, or through the high
availability of nitrogen [62,71–75].

Bacterial leaf streak of rice caused by X. oryzae pv. oryzicola (Xoc) is also another disease
that has been widely covered in the studies collected [76–78]. The genus Xanthomonas has
been the most studied in gene editing via CRISPR/Cas in the last twelve years [75]. The
studies seek to understand the mechanisms involved in plant defense against pathogens in
order to make them resistant/tolerant to diseases.

Brusone is the main fungal disease of rice, caused by Magnaporthe oryzae, which
establishes itself in the plant under favorable environmental conditions and causes damage
to grain quality, plant height, and the number of tillers [79]. Rice is grown and consumed
worldwide and is a staple food for around 2.5 billion people [61], so it is necessary to
understand the biology of these pathogens to develop strategies to control these diseases.

Pseudomonas syringae was another pathogen that was mentioned frequently [80–83].
This bacterium is found in a wide variety of plants and penetrates host tissues through
lesions or structures such as stomata [84]. The species has been widely used to elucidate
questions about plant immunity and bacterial pathogenesis. In the selected articles, the
bacterium is mainly present in studies with the model plant A. thaliana [66,85].

Tomatoes are an economically essential vegetable worldwide and their production is
also threatened by many pathogens [86–88]. Gray mold, caused by Botrytis cinerea, rarely
occurs in the field; however, in protected environments, humidity becomes a problem,
favoring the development of the fungus, which infects the plant through wounds and
causes the rapid rotting of the fruit, resulting in harvest losses. Other biotic agents have
also been addressed in the studies, such as fungi (such as Fusarium), CMV viruses, CLCuVs,
and the Phytophthora oomycete.

4.4. Types of Explants

The genetic transformation of plants is based on the insertion of transgenes into
totipotent plant cells, which then regenerate into fertile plants. Small fragments of living
tissue isolated from a plant specimen, called explants, are used [89]. The explants used for
transformation via Agrobacterium or bioballistics can vary depending on the plant species,
including calli, embryos, protoplasts, inflorescence, leaves, hypocotyls, epicotyls, and
cotyledons [2,62,90–95].

When transformation occurs by electroporation, protoplasts undergo membrane desta-
bilization after being subjected to high voltage, resulting in temporary pores in the cell
membrane, allowing for the influx of DNA molecules that will integrate into the genome of
the species to be mutated [96]. This type of method requires plants to be obtained entirely
from protoplasts, which requires mastery of the production and regeneration of this type of
explant, which is still a challenge in tissue culture [97].

The vast majority of the studies collected for this research used embryogenic calli and
leaves as explants for various plant crops. In rice, the use of calli as an explant source is
predominant [62,74,98–100]. Calli are formed practically from any fragment of the plant; in
rice, seeds are commonly used to induce calli, which grow slowly as an amorphous cell
mass through stimuli supplemented with specific phytohormones [89].

In tomatoes, transformations have been carried out mainly from cotyledon and leaf
explants [81,93,101]. Most tissue culture tests in this species have been performed to achieve
organogenesis over somatic embryogenesis [102]. In studies performed by Costa et al.
(2000) [103], the tomato varieties ‘IPA-5’ and ‘IPA-6’ demonstrated favorable regeneration
capacity (97 and 80%, respectively) from cotyledons when inserted into a supplemented
Murashige and Skoog medium.

Studies with A. thaliana have mainly used flowers/inflorescences as a source of ex-
plants [92,104–106]. The floral immersion method is considered simple, fast, and efficient,
and consists of immersing developing floral tissues in a solution containing Agrobacterium
tumefaciens, sucrose, and detergent to transform the plants [107,108].
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In tobacco, leaves were the most commonly used explants [68,109,110]. In direct
somatic embryogenesis tests, using leaf tissue explants from different tobacco genotypes,
different Agrobacterium strains, and different transformation methods, the transformation
and regeneration rates varied [111,112]. The success of the transformation system involves
the integration of the DNA into the host genome, the expression, inheritance, and stability
of the exogenous DNA, as well as the regeneration of explants that depend largely on the
genotype, origin, and age of the explant and plant growth regulators used to supplement
culture media [113].

4.5. Plant Disease Resistance/Susceptibility Genes

The gene that stood out in CRISPR/Cas studies for resistance to biotic stresses was
SWEET14 (Figure 6). SWEET genes encode sugar transporter proteins and often function
as susceptibility (S) genes, the recessive alleles of which provide resistance [114]. This gene
has been extensively studied and reviewed in studies involving the bacterial pathogen Xoo,
which causes bacterial rust in rice [114,115]. In the context of plant–pathogen interaction,
transcription activator-like effectors (TALEs) of the pathogen function in diverting the
nutritional resources of rice, inducing the expression of OsSWEET14 and thus causing
susceptibility [72,114]. The activation of SWEET14 by the pathogen results in an increase in
the amount of sucrose available in the phloem apoplast, providing a source of nutrition for
the pathogen promoting its proliferation [116].

The main strategy when using CRISPR/Cas9 in relation to the SWEET14 gene is to
mutate the coding region of OsSWEET14 to test whether its disruption will result in broad-
spectrum resistance to Xoo strains in rice [72,117] or the disruption of the TALE-binding
elements of Xoo in rice harboring the recessive resistance allele in order to defuse the arms
race between the effectors of the pathogen and their host targets [26,118,119]. Inhibition or
SWEET14 editing can reduce the plant’s susceptibility to the pathogen, a potential strategy
for the development of resistant cultivars.

Other genes, such as NRG1, Pi21 resistance genes, CsLOB1, SlMlo1, dependent glycosyl
transferases (UGT76b1), and the Xa7 resistance gene, were also reported with considerable
frequency in the studies (Figure 6). The NRG1 genes are close homologs of the Activated
Disease Resistance 1 family of leucine-rich repeat domain proteins (NLRs), the function
of which is still unclear, so some studies have reported their functional analysis through
CRISPR/Cas9 in Arabidopsis [120–122]. The Pi21 gene belongs to the set of R genes that
encode NLRs. It is resistant to rice brusone and is, therefore, the target of CRISPR/Cas9
rice-breeding programs to obtain mutant varieties [75,123–125].

Plants can prevent pathogen attacks through induced systemic resistance (ISR) and
acquired systemic resistance (SAR). What differentiates them are the types of induction in
the plant. SAR is activated through disease-causing organisms and relies on salicylic acid
(SA) and genes, whereas beneficial microbes induce ISR and are independent of SA [126].
The two forms of resistance are activated from different defense signals when the plant is
attacked by pathogens [127].

4.6. CRISPR/Cas Technology for Gene Editing

This SR sought to identify the most commonly used protocols for gene editing via
CRISPR over the last twelve years. Among the editing methods used, the protocols
proposed by Ma et al. (2015) [48], Xing et al. (2014) [49] and Wang et al. (2015) [50] were
the most cited, respectively. The three protocols seek to edit various target genes in dicots
and monocots using a multiplexing system, using one to several binary vectors and the
Cas9 endonuclease. These results corroborate the findings of [22] in a systematic review of
gene editing using CRISPR technology to edit genes tolerant to abiotic stresses.

Different CRISPR/Cas systems have been widely used to generate DSBs at target
genomic sites in various plant species. Among the two classes of CRISPR immune systems,
Class 2 is simpler than Class 1 and therefore easier to use for the development of genome
editing tools [128]. Thus, three Class 2 effectors, Cas9, Cas12, and Cas13, have been
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extensively used for targeted DNA and RNA cleavage. The Cas9 endonuclease was the
most widely used in the articles in this SR (259 studies), followed by Cas13 (3), and Cas12
(2). The effectors Cas9 and Cas12 are DNA-directed endonucleases, while Cas13 is an
RNA-directed endonuclease [129].

As evidenced by Jinek et al. (2012) [14], Cas9 nucleases are guided by an RNA
hybrid consisting of a crRNA and a tracrRNA. However, most Cas9 genome editing
applications use an sgRNA that is designed by fusing crRNA and tracrRNA into a single
RNA molecule for Cas9 to cleave DNA [130,131]. Normally, CRISPR/Cas9 requires a
target site of 17 to 20 bp directly adjacent to a 5′-NGG PAM sequence (motif adjacent to
the protospacer) to be effectively recognized by sgRNA [15,132]. Several authors have
used Cas9 [68,133–136], and although several Cas9 orthologs have been discovered [137],
Cas9 from Streptococcus pyogenes (SpCas9) is the nuclease that has been used the most for
different genome manipulation experiments due to its high efficiency and simple NGG
PAM sequence requirements [129].

The Cas12 endonuclease was identified in this SR with the aim of knocking out
Xa13 [138] and PRAF2 [28] to improve resistance to bacterial rust caused by Xanthomonas
oryzae pv. Oryzae. Cas12 is a class II type V endonuclease that was developed from Prevotella
and Francisella [139]; it cleaves at a distal position of the PAM, generating a staggered break
of the DNA double-strand, and recognizes a PAM region rich in T 5′-TTN-3′ [140] and
proved to be an efficient alternative in editing these genes. Cas13 cleaves single-stranded
RNA [141], and in the studies observed it was used to interfere against RNA viruses in
plants, also presenting itself as a viable alternative to the use of Cas9 [142–144].

Cas9 and gRNA are regulated by appropriate promoters within a vector. The cauliflower
mosaic virus (CaMV35S) is a constitutive promoter widely used for its strong expression in
various plant tissues, being effective for mutations throughout the organism. The ubiquitin
promoter (UBI), also constitutive and commonly used in monocots, has efficient and stable
expression, especially in recalcitrant cultures. In addition, specific tissue promoters can also
be used to induce mutations in plants. These allow for more controlled editing, limiting
the expression of the system to specific sites, which reduces off-target effects, but can make
mutations in the whole organism less efficient. The choice of promoter is crucial for the
efficiency of the mutation due to to the objectives of gene editing, such as the need for
localization or plant-wide expression, species compatibility, expression and efficiency, and the
risks of off-site effects [145–147].

Several vectors have been used to express Cas and/or sgRNA, among the most cited
being pCAMBIA (46) [63,73,148] a popular vector due to its easy handling, stability, and the
existence of a variety of selection and reporter genes [149], and the pYLCRISPR/Cas9 vector
(40) [150,151], which is a CRISPR/Cas9 system efficient in multi-locus gene knockout [48].
Other vectors, such as pHEE401E [152], also had considerable frequencies (Table S2). The
most widely used delivery method for introducing the gene of interest into plant cells
was carried out by Agrobacterium tumefaciens (286) and Agrobacterium rhizogenes (6). This
is considered a powerful tool for delivering genes of interest to a host plant due to the
efficiency of transformation, the low operating cost, and the simplicity of the transformation
and selection protocols [153].

Although Agrobacterium-mediated delivery is very efficient, it also has some dis-
advantages, such as the need for long periods of tissue culture to recover transgenic
plants, the low frequency of stably transformed plants, the narrow range of genotypes
within a crop species that can be transformed, and the limitations of the host range of
certain Agrobacterium species [154]. The delivery of CRISPR/Cas reagents to plants can be
carried out by several methods. The most common in addition to Agrobacterium tumefa-
ciens-mediated transformation include particle bombardment (biobalistics) and protoplast
transfection [155,156].
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Particle bombardment is useful for recalcitrant plant species, but it can cause physical
damage to cells and random DNA integrations. Protoplast transfection, on the other hand,
allows for the delivery of ribonucleoproteins (RNPs), reducing the risk of exogenous DNA
integration, but the regeneration of complete plants from protoplasts can be challenging in
some cultures [155,156]. Additional delivery methods of the CRISPR/Cas system, such as
the use of nanoparticles and pollen magnetofection, can be an alternative for more precise
and efficient delivery [157].

4.7. Auxiliary Methods to CRISPR/Cas

The main methodological strategies used in the studies collected to validate and
support the CRISPR/Cas tool were PCR, sequencing, and qPCR techniques (Figure 7);
these were mainly used to prove the efficacy of CRISPR/Cas-mediated editing and detect
on- and off-target mutations (Figure 7). The PCR technique is an essential tool in molecular
biology that allows for the amplification of nucleic acid sequences (DNA and RNA) through
repetitive cycles in vitro, simulating what occurs in vivo during DNA replication [158].

PCR followed by sequencing has been reported in many studies; however,
Zischewski et al. [159] highlight that a disadvantage of screening only potential pre-selected
off-target sequences is the risk of overlooking mutations at other loci in the plant genome.
In contrast, the use of the unbiased whole-genome-sequencing approach is the most com-
mon detection method in plants, allowing for the identification of off-target effects in a less
restricted way [160].

Different prediction software were also used to detect off-target effects (Figure 8).
The CRISPR-P software was reported in 16.2% of the articles as an auxiliary method to
CRISPR/Cas, aimed at predicting target sites and/or mutations. Other software/programs,
such as BLAST, DSDecode, Cas-OFFinder, CCTop, CRISPR-PLANT, and CHOPCHOP, also
had considerable frequencies. A major concern in CRISPR/Cas9 system applications is
its off-target effects that occur when Cas9 acts on untargeted genomic sites and creates
cleavages that can lead to adverse outcomes [161].

The tools identified in this SR aid in silico prediction and are generally free online
software that can be properly accessed via the Internet. The prediction algorithms of
these software are mainly based on sgRNA sequences, so the results of these methods
are generally biased toward sgRNA-dependent off-target effects. For epigenetics and
chromatin organization experiments, off-target prediction by these in silico tools needs
additional experimental validation [161].

4.8. Phenotypic Analysis and Characteristics Obtained after Mutation

In 60.2% of the articles, the phenotype was preserved, with no unusual or unexpected
characteristics occurring after mutagenesis. Sixty-one percent exhibited greater resistance
to plant diseases and 29% greater susceptibility after editing (Figure 9). This is because
most studies are focused on knocking out/silencing genes or knocking in/overexpressing a
gene to study and demonstrate its functions. Thus, the technique that cuts double-stranded
DNA and generates a DSB will be repaired by the NHEJ repair mechanism; this can be
carried out for a specific and individual gene without other side effects [162].

In other articles, the CRISPR/Cas technique has been used to knock-in the overexpres-
sion of an individual gene. In this sense, it is possible to edit the genome by cutting the
DNA sequence at a specific site, and then, through HDR, a foreign DNA sequence (target
gene) will be inserted at this cleavage site [162]. In this way, position effects can be avoided
because CRISPR/Cas can be used to precisely insert a foreign gene into a specific location
within a genome without interrupting other genes.

In this sense, the overexpression of the OsbHLH6 gene in transgenic rice plants caused
responsive gene expression to jasmonic acid and increased susceptibility to the pathogen
Magnaporthe oryzae [63]. Similarly, the overexpression of the GmLMM1 gene in Nicotiana
benthamiana severely suppressed the production of reactive oxygen species triggered by
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microbe-associated molecules (bacterial flg22) and the pattern-induced cell death of the
oomycete Phytophthora sojae [163].

Thus, the use of the CRISPR/Cas technique associated with gene knockout/silencing
or gene knock-in/overexpression has contributed to the elucidation of various plant–
pathogen interaction pathways in many pathosystems, without causing unwanted pheno-
typic changes, such as citrus canker caused by Xanthomonas citri subsp. citri in citrus [2], BLS
of rice caused by Xoc and Xanthomonas campestris pv. campestris [73,164,165], Phytophthora
sojae in soybeans [144], and Botrytis cinerea in tomatoes [81].

4.9. Sources of Bias in the Included Studies

The aim of SRs is to gather and synthesize data on a given topic that meets pre-
established eligibility criteria and methods are used to reduce the chances of data bias [166].
The Cochrane Collaboration Tool was developed to assess the risk of bias of the studies to
be included in the SRs and is widely used in health studies [47], which is why the method
was adapted to the needs of this SR.

The tool aims to make the process clearer and more precise, free from errors that compro-
mise the quality of the research. Therefore, possible limitations of the primary studies must be
carefully assessed so that the results and conclusions obtained are reliable. It is not possible to
determine the “quality” of a study without any kind of criteria; it is necessary to observe the
design, the conducting of the research, and the analysis and presentation of the results so that
the studies are not underestimated or overestimated [47,167].

In order to minimize errors in the choice of studies collected for this SR, inclu-
sion/exclusion criteria, the PRISMA checklist, and questions on the topic (Table 3) were
used to confirm whether the use of CRISPR/Cas technology was efficient in gene editing
through off-target analysis. Inoculation tests of the pathogen and phenotypic analysis were
also considered, as well as articles that answered at least 50% of the research questions
(Table 1).

Literature reviews were excluded from the research, as many papers are cited repeat-
edly in the reviews, overestimating the data. Manuscripts that did not answer at least 75%
of the risk-of-bias questions were considered high-risk and were not included in this SR.
Only nine articles presented a risk equal to 25% for not answering one of the four questions,
which is considered a low risk of bias, and two articles presented moderate risk, which
means they answered only 50% of the questions. The articles selected for this SR are highly
qualified and the methodologies used are reliable.

5. Final Considerations and Future Perspectives

The growing demand for food is a challenge for society in the face of population
growth, changes in consumption patterns, environmental changes, and dealing with
pathogens that cause plant diseases and pests. Meeting this demand is based on the
need to guarantee global food security.

Biotic and abiotic stresses cause major losses in agricultural production, which calls
for novel strategies to subsidize plant tolerance, as conventional practices are insufficient to
meet the current and future food needs of the population. The use of the CRISPR/Cas tool
can accelerate plant breeding by rapidly modifying genomes in a predictable and accurate
way. Due to its efficiency, simplicity, and versatility, CRISPR/Cas has become a popular
tool for genome editing and has been widely used in improving the resistance of various
crops [57]. The development of disease-resistant varieties with good yields and quality is
a fundamental strategy to guarantee global food security and generate employment and
income for farmers.

This SR included 296 papers in which plant genes were edited via CRISPR/Cas to
confer resistance to plant diseases and pests. We identified that Cas9 endonuclease is
widely used in studies; however, this is not the only “molecular scissors” that can help the
CRISPR editing system; the use of other enzymes such as Cpf1 (Cas12a), and Cas 13 has
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been reported in CRISPR studies for editing genes related to plant resistance and could be
applied more frequently in future studies.

Genes related to tolerance/resistance to biotic stresses were identified in this SR and the
CRISPR/Cas system can be used for gene knockout, gene insertion and gene replacement,
resulting in the loss of function, knockdown or activation of mutants, which can lead to
the generation of tolerant/resistant plants to the various pathogens. However, some issues
are still far from being clarified and serve as a starting point for future studies, such as
the fact that the main genes that control important traits of crops have not been identified,
which limits the application of CRISPR/Cas in plant breeding; and pathogens continue to
modify their genome through evolution to break the already available resistance gained
by editing the CRISPR/Cas gene. Thus, it is necessary to design new variants in a short
period of time and insert them into the plants. In addition, many genes are represented by
multigene families, making it difficult to produce a resistance phenotype by eliminating
a single gene, and it is necessary to develop more precise CRISPR/Cas tools to perform
multiplex genome editing.

Regarding the methods used for editing, gRNAs were designed with different target
sequences to direct Cas9 to specific corresponding sites; however, proper care is important
when designing gRNAs, as unwanted targets are a major limitation, and to reduce these
challenges, tools and software such as CRISPR-P, CRISPR-GE, BLAST, among others, are
used. Among the methods used for mutation detection, PCR and sequencing are the most
reported methods that can detect unwanted targets. Explant regeneration in most plants is
still a challenge because it is labor-intensive and poses a limitation in CRISPR/Cas-based
gene editing.

The information provided in this SR was based on articles with methodological quality
confirmed by a risk of bias analysis, which determined that most of the included studies
were at low risk of bias. Among the most-studied crops, rice, tomatoes, and the model
plant Arabidopsis thaliana stand out. Among the most studied genera of biotic agents are
Xanthomonas, Magnaporthe, Phytophthora and cucumber mosaic, belonging to the group of
bacteria, fungi, oomycete and viruses, respectively.

Although the use of CRISPR/Cas technology has revolutionized plant breeding in
recent years, there are still many challenges to be overcome; its off-target alterations are the
main bioethical concern, namely whether they can lead to ecological imbalance, genetic
drift, fatal diseases, or a chimeric phenotype in animals or even in humans. Another
concern is whether GMOs produced by CRISPR/Cas9 can change the natural ecosystem by
changing the mating potential of living organisms. Agricultural foods produced by CRISPR
also face the same challenges as GMOs and may be prevented from being consumed in
some countries. Despite these concerns, plants developed CRISPR/Cas can also become
safe and GMO-free by using ribonucleoproteins (RNPs), i.e., without exogenous DNA. This
will also help overcome the hurdles scientists face in commercializing biotech crops. To
date, around 128 plant cultivars such as corn, soybeans, cotton, wheat, and sugar cane have
been genetically edited, mainly for resistance to insects and/or herbicides, and have been
approved by the National Technical Biosafety Commission [168].

Studies on gene editing with CRISPR/Cas for resistance to biotic agents are only
beginning. The results obtained so far not only show that this technology offers precise
modifications to the plant genome and has been successfully used to confer resistance to
diseases and pests, but are also essential mainly to understand the function of genes related
to various pathways of plant–pathogen interaction.
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