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Abstract: The modern healthcare system strives to provide patients with more comfortable and less
invasive experiences, focusing on noninvasive and painless diagnostic and treatment methods. A key
priority is the early diagnosis of life-threatening diseases, which can significantly improve patient
outcomes by enabling treatment at earlier stages. While most patients must undergo diagnostic
procedures before beginning treatment, many existing methods are invasive, time-consuming, and
inconvenient. To address these challenges, electrochemical-based wearable and point-of-care (PoC)
sensing devices have emerged, playing a crucial role in the noninvasive, continuous, periodic, and
remote monitoring of key biomarkers. Due to their numerous advantages, several wearable and
PoC devices have been developed. In this focused review, we explore the advancements in metal–
organic frameworks (MOFs)-based wearable and PoC devices. MOFs are porous crystalline materials
that are cost-effective, biocompatible, and can be synthesized sustainably on a large scale, making
them promising candidates for sensor development. However, research on MOF-based wearable
and PoC sensors remains limited, and no comprehensive review has yet to synthesize the existing
knowledge in this area. This review aims to fill that gap by emphasizing the design of materials,
fabrication methodologies, sensing mechanisms, device construction, and real-world applicability of
these sensors. Additionally, we underscore the importance and potential of MOF-based wearable
and PoC sensors for advancing healthcare technologies. In conclusion, this review sheds light on the
current state of the art, the challenges faced, and the opportunities ahead in MOF-based wearable
and PoC sensing technologies.

Keywords: metal–organic framework; electrochemical biosensor; wearable sensor; continuous
monitoring; point-of-care

1. Introduction

Due to the widespread prevalence of chronic and infectious diseases, proper healthcare
has become one of the most fundamental human needs, alongside food (including air and
water) and shelter [1,2]. However, providing adequate healthcare, controlling disease
spread, and managing emergencies for a global population of over 8 billion people is
extremely challenging, if not impossible, with current technologies [3,4]. This has led to
the development of modern healthcare systems equipped with state-of-the-art diagnostic
and treatment technologies. These modern healthcare systems focus on early detection
of incurable diseases, patient-friendly diagnosis and treatment procedures, remote or
continuous monitoring of biologically significant analytes, early prediction of disease
development and prognosis, and more [5–7]. Furthermore, every individual, at some
point in life, from birth to death, will need to undergo some form of diagnosis for proper
treatment and care. Most of the current diagnostic procedures are invasive, time-consuming
and often require blood samples for various analyses. This process can be painful and
sometimes lead to undesirable side effects, such as injuries or infections [8–10]. Numerous
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advanced telemedicine devices have been developed to address these challenges, opening
new avenues in the medical field. These telemedicine technologies can integrate chemical
transducers with wearable electronics and connect with the internet of things (IoT) to
create smart sensors [11,12]. With the advent of flexible and portable electronics, wearable
sensors have gained significant attention for real-time monitoring of biomarkers in dynamic
bodily fluids. These wearable sensors are noninvasive or minimally invasive, meaning that
patients or users do not need to undergo a painful sample collection process. Instead, data
can be collected and monitored conveniently without piercing the skin, allowing remote
communication with patients and healthcare professionals [13,14].

Compared to various analytical techniques, electrochemical (bio)sensors (ECBS) are
among the most promising candidates for several reasons. They are cost-effective, deliver
rapid responses, provide good selectivity and sensitivity, require only a small sample vol-
ume, can be miniaturized, and offer excellent operational convenience [15–17]. Additionally,
they can be used for onsite and in situ measurements. Due to these remarkable properties,
ECBS are widely employed in detecting and quantifying a broad range of analytes, starting
from bio-analytes to environmental pollutants and industrial wastes [18–20]. Consequently,
ECBS have been developed and utilized to detect and quantify almost every type of analyte.
Electrochemical-based wearable and PoC sensors have recently gained popularity due
to their superior advantages, such as a small size, portability, rapidity, cost-effectiveness,
and applicability in remote sensing and continuous monitoring [21,22]. Designing suit-
able electrode materials is the most crucial step in the fabrication of ECBSs because it
directly influences the performance of the developed sensors [23,24]. Consequently, many
researchers and research groups have developed and utilized various materials, molecules,
and hybrid structures for the sensitive and selective detection of biologically significant
analytes. These include metal nanoparticles, carbon nanostructures, 0D-3D materials, quan-
tum dots, ionic liquids, polymers, metal complexes, metal oxides, organic frameworks, and
so forth [25–27]. Each material has its own advantages and disadvantages, depending on
the intended application. Some materials may be stable in controlled environments but fail
to perform in real-world scenarios. Others might perform exceptionally well in practical
applications but may not be suitable for long-term use or may have high production costs
that outweigh their benefits. Therefore, the ideal sensing material should not only deliver
high performance but also be suitable for sustainable bulk production and cost-effective for
large-scale applications.

Metal–organic frameworks (MOFs) are one such candidate, as they can be sustainably
synthesized in large quantities at a comparatively lower production cost and can be tailored
for various task-specific applications [28,29]. MOFs are porous crystalline materials and
inorganic–organic hybrids composed of metal ions/clusters connected to organic linkers in
one- or multi-dimensional arrays. They possess various advantageous properties, including
a large surface area, tunable pores, controllable morphologies, and intriguing surface char-
acteristics [30,31]. Owing to these merits, MOFs and their derivatives are widely explored
in various applications, including energy storage and conversion, gas storage and separa-
tion, drug delivery, chemical sensing, catalysis (bio/heterogeneous/photo), biomedicine,
and more [32–34]. In particular, MOF-based materials have been extensively studied in
various electrochemical applications such as electrochemical sensing, electrocatalysis, and
electrochemiluminescence [35,36]. Some of the well-known properties and established
applications of MOFs are illustrated in Figure 1. Among the multifarious properties of
MOFs, some are particularly suited for fabricating modified electrodes and electrochemical
sensors. The large active surface area of MOFs enhances the electrode’s effective surface
area, facilitating the better adsorption of reactants and improving their electrochemical con-
version [37]. Their uniform pore size and volume favor the encapsulation and entrapment
of biomolecules and other materials, thereby stabilizing and enhancing their electrochemi-
cal and electrocatalytic activities [38]. Moreover, using different synthetic routes, one or
more chemical functionalities can be incorporated into the pores or on the surface of MOF
structures, making them highly suitable for the selective and sensitive detection of target
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analytes [39–42]. Additionally, MOF materials’ cost-effective and sustainable production
enables the development of affordable and environmentally friendly sensing devices [43].
Although MOFs offer several advantages for developing ECBSs, certain challenges still exist
and must be addressed. These include low electrical conductivity, reduced biocompatibility,
and poor stability in aqueous solutions [44–46]. Recently, several strategies have been
developed and implemented to overcome these difficulties, with many research groups
working to improve the conductivity, stability, and biocompatibility of MOFs for better
performance in electrochemical sensors.
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In recent times, MOF-based ECBSs for sensing biologically, industrially, and environ-
mentally significant analytes have been continuously explored [47,48]. As a result, several
interesting reviews have summarized the importance of MOFs and their applicability in
electrochemical (bio)sensing [49–52]. Interestingly, MOF-based wearable and PoC electro-
chemical sensors for healthcare monitoring represent an emerging technology that only
a few research groups have investigated. So far, only two reviews have been published
on this topic, but they have not highlighted the core aspects of this area [53,54]. Therefore,
we aim to write a focused short review on this essential topic. Instead of summarizing
the various properties and applications of MOFs, we specifically focus on MOF-based
wearable and PoC sensors developed for healthcare monitoring. This review is organized
by analyte, making it highly relevant for researchers in this field and providing an update
on current progress. This approach will enable researchers to advance the field by exploring
untapped research areas. Furthermore, emphasis has been placed on the opportunities
and potential strategies for implementing MOFs and their derivatives in designing and
fabricating high-performance wearable and PoC electrochemical sensors.

2. MOF Based Wearable and Portable Electrochemical Sensors

In the following section, we have summarized various MOF-based wearable and PoC
sensors developed for the electrochemical sensing of biologically and clinically significant
analytes. This includes pristine MOFs, MOF hybrids, composites, and their derivative-
based sensors. For a better understanding and rational comparison, this section has been
categorized analyte-wise.

2.1. Cortisol

Cortisol is a stress biomarker and plays a significant role in various physiological pro-
cesses, including the regulation of blood pressure, blood sugar, and metabolism in multiple
organs. Cortisol is present in various bodily fluids such as sweat, saliva, urine, blood, and in-
terstitial fluids. Additionally, cortisol production follows a circadian rhythm, with the highest
concentration occurring in the morning, gradually decreasing as the day progresses. Therefore,
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the close monitoring of cortisol levels helps assess the body’s physiological state and prevent
adverse effects. Su and colleagues developed a wearable electrochemical aptasensor using
bimetallic (Ni-Co) MOF nanosheets decorated with CNT/polyurethane (PU) films for the
monitoring of cortisol [55]. At first, a CNT/PU film was formed, followed by streptavidin-
conjugated MOF (SA-MOF) deposition to obtain the desired sensor. This biofunctional MOF
effectively captures the cortisol aptamer through streptavidin–biotin interaction due to its
excellent specific surface area. In the absence of cortisol, the sensor can oxidize hydroquinone
by hydrogen peroxide. However, in the presence of cortisol, this catalytic reaction was sup-
pressed due to the formation of an aptamer–cortisol complex. Based on this principle, the
sensor quantifies cortisol concentration sensitively and selectively over a linear range of 0.1 to
100 ng mL−1, with a limit of detection (LOD) of 32 pg mL−1. Furthermore, the sensor was
adapted into a wearable patch by assembling it on a polydimethylsiloxane (PDMS) substrate
equipped with a sweat collection channel. This flexible patch sensor successfully quantified
the cortisol concentrations directly from volunteers’ sweat, demonstrating significant potential
for stress monitoring and management. A schematic illustration of material synthesis, sensor
fabrication, and its responses are shown in Figure 2.
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(D) Redox peak current changes in the sensor in the presence of hydroquinone and hydrogen peroxide
for 10 cycles. (E) Cortisol detection in sweat samples (inset: photograph of a volunteer wearing the
patch sensor). Reproduced with permission from [55].

2.2. SARS-CoV-2

An MOF nanohybrid-integrated PoC diagnostic device was fabricated for the sensitive
and selective detection of the SARS-CoV-2 viral antigen [56]. SARS-CoV-2 is a member of a
large family of viruses known as coronaviruses and is responsible for causing respiratory
illness that recently led to a pandemic. It can infect both humans and certain animals.
The timely detection of SARS-CoV-2 is crucial for preventing the spread of the disease
and safeguarding living beings. A nanohybrid consisting of amine-terminated CoFe-MOF
combined with CoFe2O4 spinel ferrites was synthesized hydrothermally and covalently
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coupled to mercaptoundecanoic acid-functionalized gold chips via EDC/NHS coupling.
The resulting chips were then immersed in a SARS-CoV-2 antibody solution to form the
desired sensor, as illustrated in Figure 3. The developed sensor successfully detected
recombinant SARS-CoV-2 with an LOD of 6.68 and 6.20 fg mL−1 in buffer and 10% serum
samples, respectively. Furthermore, the sensor was integrated into a handheld device to
validate its function in a PoC platform, demonstrating acceptable performance compared
to potentiostat results. The sensor’s superior performance was attributed to the effective
integration of Co and Fe in the MOF and ferrite structures, which synergistically improved
the active surface area, conductivity, and biocompatibility.
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2.3. Creatinine

Creatinine (CRT) is an important compound found in blood that measures kidney
health. It is a by-product of protein metabolism. Healthy kidneys efficiently filter out the
excess creatinine, ensuring that only an optimum amount remains in the blood. Thus,
measuring creatinine concentration is crucial for assessing kidney health and function.
Kalasin et al. developed a lab-on-eyeglasses-based wearable sensor for predicting serum
creatinine levels using tear creatinine [57]. The sensor was fabricated using copper oxide
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NPs hybridized with a copper-containing benzenedicarboxylate MOF (Cu-MOF) bound to
graphene oxide–Cu(II). The working electrode (WE) was constructed by dipping a cotton
thread in a carbon black solution, followed by electrodeposition with copper oxide NPs. It
was then electrochemically coated with Cu-MOF and GO-Cu(II) to form the desired sensor.
The reference electrode (RE) was made by coating the cotton thread with carbon black,
polyvinyl alcohol, and Ag/AgCl, while the counter electrode (CE) consisted of carbon black
and propylene glycol diacetate-coated cotton thread. The developed sensor demonstrated
an excellent electrocatalytic detection of CRT in both artificial and human tear samples,
exhibiting a linear detection range of 1.6–2400 µM. Using this sensor, a wearable lab-on-
eyeglasses fitted with these disposable fabric electrodes was fabricated and utilized for
CRT sensing.

2.4. Glucose

Glucose is an essential nutrient and key metabolite for human cells. However, blood
glucose levels must be within an optimal range, as abnormal levels can lead to serious
health problems [58,59]. Diabetes mellitus is a chronic disease caused by hyperglycemia,
which is characterized by elevated blood glucose levels over a prolonged period. Periodic
or continuous glucose monitoring is essential for the treatment and management of di-
abetes [60]. Currently, glucose is primarily monitored through blood samples collected
invasively from patients. These methods are painful and unpleasant and increase the risk of
infection. Interestingly, glucose measurement through wearable sensors is noninvasive or
minimally invasive. Moreover, wearable and PoC sensors offer the advantage of continuous
and remote monitoring [61,62]. Electrochemical glucose sensing can be performed in both
enzymatic and non-enzymatic pathways.

2.4.1. Non-Enzymatic Glucose Sensors

A high-performance wearable non-enzymatic glucose sensor was developed using 2D
bimetallic Ni-Co MOF nanosheets [63]. The sensor was constructed by drop-coating the MOF
solution onto the working electrode and allowing it to dry. Subsequently, the sensor was
covered with a layer of polyvinyl alcohol (PVA)/KOH gel. This electrode functions both as a
micro-supercapacitor and a glucose sensor, making it suitable as a wearable power source
and glucose monitoring system. The sensor demonstrated excellent sensitivity for glucose
detection and was successfully employed for glucose sensing in sweat samples. The superior
performance of this system can be attributed to the synergy between the metal ions. Addi-
tionally, the competition between the metal ions leads to the formation of unsaturated metal
sites and defects. These defects create more reaction sites and facilitate the entry of glucose
molecules for the oxidation process. Furthermore, a wearable biosensor was successfully
constructed using this sensor via magnetron sputtering on a polyethylene terephthalate (PET)
substrate, which exhibited a sensitivity of 0.31 µA/µM for glucose sensing. Similarly, Shu and
colleagues utilized Ni-Co MOF nanosheet-modified wearable sensors for glucose sensing from
sweat samples [64]. A stretchable fiber was initially fabricated using RGO and PU via wet
spinning technology. The fiber was then coated with a layer of conductive silver, followed by
a synthesized Ni-Co MOF to obtain the desired sensor. The reference electrode was fabricated
by coating a Ag/AgCl paste over the Ag/RGO/PU electrode, and a platinum wire was used
as the auxiliary electrode. All three electrodes were placed on a waterproof bandage and
covered with a sweat-absorbent cloth to collect the sweat. This sensor was successfully uti-
lized to continuously monitor sweat glucose in various human subjects, and its reliability was
verified against a commercial glucose meter. The sensor offers several advantages, including
good mechanical stability, high electrocatalytic activity, acceptable stability, and selectivity
for glucose determination. In another work by Yuan et al., a portable sweat-based glucose
analysis device was fabricated using Ni-Co MOFs [65]. The device consists of three layers,
namely the accelerated diffusion layer, the detection layer, and the hydrophobic layer. The
WE and counter electrode (CE) were made by printing a layer of carbon ink onto a nylon film,
while the reference electrode (RE) was made by printing silver ink. Finally, the synthesized
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MOF was coated onto the WE to construct the desired sensor. The diffusion and hydrophobic
layers are made with unidirectional polyester polypropylene blended fabrics (honeycomb)
with the detection layer inserted between these two layers. The diffusion layer was attached
to the skin, where sweat was collected and diffused to the detection layer. The detection layer
performs the analysis and transmits a readable signal. This approach allowed the developed
sensor to quantify the concentration of glucose present in sweat. Xia and colleagues recently
constructed a wearable glucose sensor using a Ni-Co MOF, CNT, and PDMS [66]. Initially,
the three-electrode setup was patterned with a PDMS film and then coated with MWCNT
and CNT inks to create a CNT/MWCNT/PDMS layer. Subsequently, the synthesized MOF
was then drop-coated onto the surface and left to dry. Finally, the working electrode was
covered with a layer of Nafion solution to obtain the desired sensor, as shown in Figure 4A,B.
Furthermore, a sweat-absorbent cloth was attached to this sensor to collect sweat from the
skin for analysis (Figure 4C). Real-time glucose measurements were conducted with volun-
teers before and after meals, and the developed sensor successfully quantified glucose from
the sweat of the volunteers. All the previously discussed sensors commonly utilize Ni-Co
MOFs for glucose sensing. The reason for exploring the Ni-Co MOF is owing to their larger
surface area, good porosity, ease of synthesis, good mechanical stability even when the sensor
is twisted or bent, good biocompatibility, and superior electrocatalytic activity than their
monometallic counterparts.

Recently, Rebecca et al. fabricated a self-powered wearable sensor using a ZIF-8/RGO
hybrid [67]. Initially, a ZIF-8 MOF and RGO were synthesized separately and mixed via
ultrasonication. The resulting mixture was repeatedly washed, centrifuged, and dried to
obtain the desired MOF/RGO electrocatalyst. The electroanalytical and catalytic perfor-
mance of the electrocatalyst for glucose detection was investigated by coating it onto a
pencil graphite electrode (PGE). The sensor demonstrated good electrocatalytic activity,
stability, and high sensitivity for glucose detection. Using this, a two-electrode wear-
able patch sensor was developed and utilized for glucose detection from sweat, which
showed a strong correlation with standard glucose meters. In another work, a wearable
headband was developed for glucose sensing using PdNPs encapsulated with a Co-MOF
(ZIF-67) [68]. The Co-MOF was synthesized first, and then PdNPs were encapsulated by
an impregnation–reduction process to obtain Pd@Co-MOF. This Pd@Co-MOF was mixed
with conductive carbon (CC) ink and printed on a PET film to obtain the WE of the pro-
posed sensor. Similarly, the CE was made by screen-printing CC ink, while the RE was
specifically constructed by coating a polymer layer (PVA) containing KCl over a Ag/AgCl
electrode. The sensor, on initial assessment, did not exhibit any electrochemical redox
reactions; however, after pretreating the sensor at −2.0 V for 20 s, it created a temporary
basic environment near the sensor surface, which was sufficient enough to oxidize the
glucose present in sweat. A sweatband incorporating this sensor was developed, and
its applicability for glucose detection in sweat was investigated, showing satisfactory re-
sults when compared with blood glucose measurements (Figure 4D–H). Moreover, the
sweatband was designed to transmit real-time data to a smartphone. Similarly, a portable
non-enzymatic electrochemical glucose sensor was constructed using a Cu-MOF elec-
trodeposited over a PtNP’s deposited gold electrode (AuE) [69]. The authors constructed
three different sensors, namely (1) AuNPs/CuNPs/AuE, (2) NiNPs/CuNPs/AuE, and
(3) Cu-MOF/PtNPs/AuE, and compared their electroanalytical properties for glucose
determination. The Cu-MOF/PtNPs/AuE exhibited a superior electrocatalytic response
compared to others, likely due to the enhanced synergistic effect of the MOF with NPs
rather than NP–NP interaction. Furthermore, they have constructed a portable glucose
meter using this sensor and compared their performance with a commercial glucose meter,
which showed a comparable response.
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Figure 4. (A) Stepwise fabrication of CNT/MWCNT/PDMS and (B) fabrication of glucose sensor.
(C) Current response obtained using the developed sensor for the detection of glucose in volunteers’
sweat. Reproduced with permission from [66]. (D) Graphical representation of the fabricated
headband. (E) Non-enzymatic glucose sensing using the headband. (F) Actual photograph of
headband integrated with glucose sensor. (G) Photograph of a volunteer wearing the headband and
perspiration analysis using a smartphone. (H) Glucose concentration measured in the perspiration
and blood of a human for 10 days. Reproduced with permission from [68].

2.4.2. Enzymatic Glucose Sensors

Wang and colleagues developed a nanocage-based ZIF network for the effective
encapsulation and stabilization of multiple enzymes and utilized it for the optical and
electrochemical sensing of glucose [70]. The sensor consists of nanocages formed by a
bimetallic Co-Zn MOF, glucose oxidase (GOx), and Hemin. During the formation of the
Co-MOF, GOx and Hemin were added to the reaction mixture. Subsequently, a zinc nitrate
solution was added to replace some of the Cu ion centers with Zn ions, yielding the desired
electrocatalyst GOx/Hemin@NC-ZIF, as shown in Figure 5A. Using this electrocatalyst,
a carbon paste electrode (CPE) was constructed, and its electrochemical properties were
explored, which displayed superior activity toward glucose. Furthermore, a wearable
sweatband was developed using the designed sensor and utilized for human perspiration
analysis, which showed comparable performance to a blood glucose monitor (Figure 5K). In
another study, an epidermal patch-based multi-sensor was developed for sensing glucose,
lactate, pH, and temperature using hybridized nanoporous carbon (HNPC) [71]. The HNPC
was synthesized by annealing the previously prepared core–shell ZIF-8@ZIF-67 MOF crys-
tals, as shown in Figure 6A. The resulting catalyst was spray-coated onto a patterned
polyimide film (PIF) and then modified accordingly. The HNPC/PIF was electrodeposited
with polyaniline for pH and temperature sensing. For glucose sensing, the HNPC/PIF was
further modified with Prussian blue (PB) nanoparticles and GOx and covered with a layer
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of permselective membrane (PSM) (Figure 6F). For lactate sensing, the sensor was modified
with lactate oxidase and then covered with a diffusion-limiting layer composed of dioctyl
sebacate, polyvinyl chloride, and tetradodecylammonium- tetrakis (4-chlorophenyl) borate
(Figure 6G). The developed sensors demonstrated excellent electrocatalytic activity toward
glucose and lactate and as such, a perspiration sensor was constructed. The proposed
sensor showed good correlations during the real-time analysis due to temperature and pH
corrections. Recently, a touch-based sweat sensor was developed by co-encapsulating en-
zymes and carbon dots (CDs) within an MOF structure for sensing glucose and lactate [72].
The electrocatalyst was synthesized by encapsulating GOx and arginine-derived CDs in
the ZIF-8 nanostructure. The resulting hybrid-zyme was immobilized over a PB-modified
carbon-based flexible electrode and then covered with layers of Nafion, chitosan, and
sweat-collecting gel to create the proposed sensor. Similarly, lactate oxidase (LOx) was
encapsulated for the lactate sensor. Both sensors demonstrated excellent electrocatalytic
activities and the results correlated well with the assay kit analysis. This approach not only
enhanced the electrochemical and catalytic properties of the enzymes but also enhanced
operational and thermal stability and their reusability. These results corroborate that, en-
capsulating enzymes in the MOF structure improves stability and catalytic activity and
retains conformational orientation while protecting the enzymes from harsh conditions
such as varying pH and high temperatures. This development opens new pathways for the
everyday utilization and industrial application of enzymes. The electroanalytical perfor-
mances of various MOF-based wearable and portable electrochemical glucose sensors are
displayed in Table 1.

Table 1. Electroanalytical performances of various MOF-based wearable and portable glucose sensors.

Sensors Linear Range
(µM)

LOD
(µM) Sensitivity pH Potential (V) Ref.

PVA/KOH/NiCo-MOF/GCE 5–205; 205–2655;
2655–5655 0.11 1422.2; 522.9; 285.8 µA mM−1 cm−2

Basic 0.50 [63]

PVA/KOH/NiCo-MOF/PET 10–200 10 0.31 µA µM−1

NiCo-MOF/Ag/RGO/PU 10–660 3.28 425.9 µA mM−1 cm−2 7.0 0.50 [64]

NiCo-MOF/NF 40–5340 1.68 2.935 µA mM−1 Basic 0.60 [65]

Nf/NiCo-MOF/CNT/PDMS
20–1100 6.78 71.62 µA mM−1 cm−2 Basic

0.50 [66]
20–280 - - 7.4

ZIF-8/RGO/PGE 5–5000 0.3 5047.18 µA mM−1 cm−2 7.4 0.35 [67]

Pd@Co-MOF/PET 10–1000 2.0 - - 0.60 [68]

Cu-MOF/PtNPs/AuE 400–25,000 60 158.41 µA mM−1 cm−2 Basic 0.55 [69]

GOx/Hemin@NC-ZIF 50–600 2.0 - 7.2 0.60 [70]

PSM/GOx/PB/HNPC/PIF 0–1500 0.025 82.7 µA mM−1 cm−2 7.4 −0.05 [71]

GOx-CDs@ZIF-8 0–7000 12.5 9.28 µA mM−1 cm−2 Basic −0.05 [72]
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Figure 5. (A) Graphical representation for the stepwise synthesis of GOx/Hemin@NC-ZIF. (B–E) TEM
images at different etching times. (F) HAADF and its EDS line scan. (G) EDS mappings for various el-
ements. (H) Relative activities of different electrocatalysts. (I) Photograph of wearable sweatband and
its catalytic mechanism toward glucose oxidation along with perspiration analysis on a smartphone
display. (J) Relative activities of different electrocatalysts in various reaction conditions. (K) Glucose
concentration obtained through perspiration and blood of a human within 14 days. Reproduced with
permission from [70].
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Figure 6. Graphical representation of (A) stepwise synthesis of hybridized nanoporous carbon,
(B) construction of glucose, lactate, temperature, and pH sensors, and (C–G) stepwise fabrication of
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Reproduced with permission from [71].

2.5. Isopentane

A noninvasive and ultrasensitive electrochemical screening device for the early di-
agnosis of lung cancer through isopentane monitoring was fabricated using a 1-butyl-3-
methylimidazolium tetrafluoroborate ionic liquid (BMIM-IL)-integrated ZIF-8 MOF [73].
The good conductivity of ILs enhances the electrochemical and electrocatalytic activity
of the sensor, while the large active surface area of MOFs improves gas adsorption. The
developed sensor quantified isopentane from 600 ppb with excellent sensitivity and selec-
tivity. Moreover, this is the first report of a hydrocarbon-based sensing platform developed
for the diagnosis of lung cancer. Using this sensor, a portable microelectronic prototype
was constructed as a proof of concept, which successfully quantified isopentane concentra-
tions. This sensor opens new pathways for the real-time monitoring of lung cancer, using
isopentane as a biomarker.

2.6. Isoprene

Isoprene is a volatile organic compound released endogenously in the breath of a
person affected by the influenza virus or respiratory inflammation. Therefore, isoprene
monitoring is essential to identify and restrict the disease’s spread. The current breath-
based analysis involves sophisticated instruments which require trained personnel, is
time-consuming, and cannot be utilized in PoC applications. Banga et al. developed an
electrochemical nose-based detection system for the sensing of isoprene using a GNP-
encapsulated zinc MOF [74]. The developed nanocomposite was thoroughly characterized
and deposited over a custom-made three-electrode system attached to a PCB, where the
WE was made of nickel immersion gold on a copper track; the CE and RE were made of
carbon and Ag/AgCl, respectively. Thus, the developed sensor quantified isoprene with
high selectivity and sensitivity over an LOD of 10 ppb in air. Using this sensor, a PoC
device was constructed for the remote determination of isoprene, successfully detecting
isoprene in real-time.
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2.7. Lactate

Lactate is an important cellular metabolite and the end-product of pyruvate during
anaerobic glycolysis. It is primarily produced in red blood cells, the brain, muscles, gut,
and skin. Lactate is a critical biomarker for exercise and physical activity, making it useful
for evaluating the physical fitness of athletes. Additionally, elevated lactate levels can
indicate various conditions such as sepsis, hypoxia, metabolic acidosis, skeletal muscle
fatigue, myocardial infarction, and acute respiratory distress [75]. Therefore, the accurate
detection and continuous monitoring of lactate are essential in sports medicine, clinical
diagnostics, and the food industry. Recently, Chang and colleagues developed a lactate
biosensor using nitrogen-doped graphene quantum dots (N-GQDs) embedded in NiCo-
MOF-derived layered double hydroxides (LDHs) [76]. Initially, N-GQDs were synthesized
separately and then incorporated during MOF synthesis. The resulting N-GQD@MOF was
subjected to LDH formation via a hydrothermal reaction in KOH. The final product was
deposited onto a screen-printed carbon electrode (SPCE) and utilized for lactate analysis
in perspiration, demonstrating excellent electrocatalytic activities. The sensor exhibited a
linear detection range of 0 to 15 mM, with a sensitivity of 62.63 µA mM−1 cm−2 and an
LOD of 0.252 mM at an operating potential of 0.6 V.

2.8. Levodopa

Levodopa (LD) is one of the most essential drugs used in the treatment of Parkinson’s
disease. In the brain, LD is converted into dopamine, which aids in improving motor
symptoms. However, excessive intake or overdose of LD can lead to lethal effects such as
tardive dyskinesia. Therefore, it is essential to monitor the concentrations of LD levels in
patients. Xiao and colleagues recently developed a wearable LD sensor using a tyrosinase-
embedded ZIF-8/GO nanocomposite [77]. The nanocomposite was formed by introducing
GO during the synthesis of the ZIF-8 network, and the tyrosinase enzyme was physically
mixed with the nanocomposite to create the desired electrocatalyst. This composite was
then coated over a screen-printed AuE attached to a portable potentiostat. The sensor
demonstrated good selectivity and reproducibility, with a linear detection range of 1–95 µM
and an LOD of 0.45 µM, respectively. Additionally, the sensor was applied to detect LD
in sweat samples of human subjects with high LD levels. The results obtained from the
subjects using the designed sensor were compared with those from an electrochemical
workstation, showing an agreeable correlation. The improved performance of this sensor
can be attributed to the incorporation of the enzyme into the MOF/GO composite, which
efficiently preserved the enzyme’s nativity and enhanced the catalytic activity of the
fabricated sensor. A schematic representation of the various components of the LD sensor
and its practical applicability are displayed in Figure 7.
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2.9. Metal Ions

Elashery and colleagues developed a flexible and wearable sensor using a 2D Ni-
MOF NS-coated activated flexible porous carbon cloth decorated with nitrogen and carbon
nanoparticles (AFPC-CNPs) to detect nickel ions in sweat droplets [78]. Nickel is an
essential metal widely used in various applications, ranging from everyday stainless-steel
products to batteries and aerospace equipment. Additionally, nickel is naturally present
in soil, water, microorganisms, and plants. However, nickel exposure can significantly
impact human health, leading to allergic reactions, respiratory issues, systemic toxicity,
and carcinogenicity. In this study, the sensor was fabricated by synthesizing AFPC-CNP
via the electropolymerization of pyrrole over cotton fabric, followed by carbonization at
850 ◦C and activation with KOH. Finally, the AFPC-CNP was dip-coated with separately
synthesized Ni-MOF NSs to form the desired sensor. Initially, the performance of the sensor
toward nickel ions was evaluated using a paste electrode and later, the applicability of the
flexible sensor was investigated. The developed sensor exhibited a linear detection range
of 10 µM to 0.1 M with an LOD of 2.7 µM. Furthermore, the fabricated sensor showed
excellent selectivity for nickel ions, with good repeatability, accuracy, and intermediate
precision. The sensor was also extended to analyze biological samples such as sweat, saliva,
and environmental samples like tap water and pure water.

In another study, a multiplexed heavy metal ions sensor was developed using a
bismuth–copper bimetallic MOF-derived carbon film, which encapsulated Bi-Cu alloy
nanoparticles (BiCuANPs@CF) [79]. Incorporating bismuth with copper enhances electro-
catalytic activity and acid resistance, while encapsulation within the CF improves electron
transferability and mitigates volume change during the adsorption and desorption of metal
ions. As a result, the developed hybrid exhibits excellent conductivity, high stability, and
facile charge transferability, thus significantly improving the overall performance of the
sensor. The sensor demonstrated broad linear detection ranges of 150–600, 5–900, and
0.5–700 ppb with low LODs of 35, 0.95, and 0.081 ppb for Zn2+, Cd2+, and Pb2+ ions, re-
spectively. The applicability of the sensor in real samples was investigated using human
biofluids and various water samples, which showed acceptable recoveries. Additionally,
the sensor was integrated into a handheld portable device for the remote/onsite monitoring
of heavy metal ions, demonstrating excellent applicability in PoC technology.

2.10. Melatonin

A highly sensitive melatonin sensor was developed using an MOF-embedded MXene
nanocomposite [80]. Melatonin, a sleep hormone, plays a significant role in regulating the
sleep–wake cycle, also known as the circadian rhythm. Its production and release from
the brain are connected to the time of day, increasing when it is dark and decreasing when
it is light. Abnormal levels of melatonin can lead to various conditions, including sleep
disorders, dementia, stress, hypertension, and Alzheimer’s disease. In this study, a carbon
yarn coated with a zinc–glutamate MOF embedded in a Nb2CTx MXene nanocomposite was
prepared and utilized as a sensor for the sensitive detection of melatonin. This novel sensor
exhibited a linear detection range from 1 to 100 µM with an LOD of 215 nM. The superior
performance of the sensor could be attributed to the inclusion of the bio-MOF and MXene in
the sensor, which synergistically improved the electrocatalytic properties, increased active
sites, and enhanced electrical conductivity. The developed sensor also detected melatonin
in biofluids such as cerebrospinal fluid, sweat, and blood serum. The sensor was further
adapted into a wearable band-aid design, incorporating an MOF-MXene-coated carbon
yarn as the working electrode, a Ag/AgCl wire as the RE and an unmodified carbon yarn as
the CE, as illustrated in Figure 8. This flexible band-aid sensor was connected to a portable
potentiostat, which successfully performed the electrochemical analysis of melatonin.
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graph of prototype sensor connected to the portable potentiostat. (G) Various real samples analyzed.
Reproduced with permission from [80].

2.11. Nerve Agent

Nerve agents (NAs) are a class of organic compounds that disrupt the mechanism
by which nerves transmit messages to organs. Additionally, they are extremely toxic and
potentially fatal. NAs function by inhibiting the enzyme acetylcholinesterase, which is
responsible for breaking down acetylcholine [81]. Therefore, the onsite detection and re-
mote monitoring of NAs are crucial for health and environmental protection. Sandhu and
colleagues developed a wearable potentiometric sensor for the detection and degradation
of NAs using a biomimetic Zr-MOF (MIP-202(Zr)) [82]. The sensor consists of a biocom-
patible and thermally stable MIP-202(Zr) coupled with a fluoride ion-selective electrode
(FISE) transducer, which was utilized for sensing diisopropylfluorophosphate (DFP), an F-
containing G-type NA simulant. The Zr-MOF was synthesized by a hydrothermal reaction
between ZrCl4, and L-aspartic acid and the resulting MOF crystals were activated using
Soxhlet extraction and stored in a vacuum. The working electrode was made by dispersing
the Zr-MOF with PVDF, which was then coated over the FISE. The developed MIP-202
sensor efficiently degraded DFP at a near-neutral pH and demonstrated excellent thermal
and storage stability (up to 30 days at 60 ◦C). Furthermore, the sensor was adapted into a
wearable textile-based format and utilized for the real-time analysis of DFP aerosols.

2.12. Sulfur Mustard Stimulant

Sulfur mustard is a chemical warfare agent that was first introduced in WWI and
recently during the Iran–Iraq war. In order to protect civilians, homeland security, and
the environment, it must be detected promptly to enable timely and efficient countermea-
sures. Sandu et al. developed a solid-contact chloride ion-selective (Cl-ISE) potentiometric
sensor for the detection of 2-chloroethyl ethyl sulfide (CEES), a sulfur mustard stimu-
lant [83]. The sensor was fabricated by coating a biomimetic zirconium MOF (MIP-202)
mixed with PVDF over a Cl-ISE and CNT-modified carbon strip electrode (Figure 9). The
developed sensor successfully quantified CEES in multiphasic samples, including buffer
solutions, drinking water, and buffered aerosols. Furthermore, the sensor was adapted for
handheld portable sensing systems and textile-based wearable fabrics, which exhibited
acceptable performance.
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2.13. Sweat Monitoring

Sweat monitoring or perspiration analysis is highly significant, as it contains vari-
ous essential biomarkers related to several biological processes taking place in the body.
Therefore, continuous or periodic monitoring could give multifarious health information
that can aid in the early diagnosis of various diseases, fitness monitoring, sports medicine,
and so forth. A multifunctional patch for the real-time sensing of sweat electrolytes (Na+,
K+, Ca2+ ions, and pH) was developed using a nanocomposite consisting of MWCNT
and MOF-derived core–shell nanoporous carbon (CSNPC) [84]. The CSNPC was synthe-
sized from the Co and Zn MOF structures via solvothermal, carbonization, and etching
processes. CSNPC@MWCNT was prepared by ultrasonically mixing both compounds
in a 3:1 ratio, yielding the desired electrocatalyst. The sensor was fabricated by the laser
etching of polyimide films and then coated with the synthesized CSNPC@MWCNT cat-
alyst. After that, the sensors were coated with respective ion-selective membranes made
of different ratios of sodium tetrakis [3,5-bis(trifluoromethyl)phenyl] borate, polyvinyl
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chloride, bis(2-ethylehexyl)sebacate, sodium tetraphenyl borate, tetrahydrofuran, calcium
ionophore II, valinomycin, and PANI. The detailed fabrication protocols are given in the
literature [84]. Finally, the sensor was attached to a microfluidic sweat collection chan-
nel and microcontroller to monitor the real-time analysis of perspiration. The developed
patch sensor successfully quantified various target ions present in human sweat. Another
sweat sensor was developed for the potentiometric sensing of sodium ions using MOF and
CNT fibers coupled with a solid-contact ion-selective electrode [85]. Following a one-step
hydrothermal method, a vertically aligned nickel triphenylene-fused metal catecholate
MOF was synthesized on CNT fibers, and then Nafion was coated to improve the sensors’
hydrophobicity. The resulting Nf/MOF@CNTF was modified with a sodium ion-selective
membrane to obtain the working electrode, while the reference electrode was obtained by
modifying the Nf/MOF@CNTF with Ag/AgCl ink and a polyvinyl butyral resin solution
containing KCl. Due to its ordered porous architecture, the developed sensor exhibited
enhanced double-layer capacitance and low contact impedance. A wearable band-based
prototype was fabricated using this sensor, which successfully quantified the sodium ions
present in the volunteers’ sweat during exercise (Figure 10).
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2.14. Uric Acid

Uric acid (UA) is a critical biomarker for various physiological and pathological condi-
tions, making its detection and monitoring essential in clinical diagnostics, healthcare, and
wellness management. Xiao and colleagues developed a wearable, sweat-based UA sensor
using uricase encapsulated within a hydrophilic zinc MOF (UC@MAF-7) [86]. During the
synthesis of MAF-7, uricase was encapsulated within the MOF structure, which helped pre-
serve the native structure of the uricase under harsh conditions and enhanced its enzymatic
activity. The sensor was constructed by drop-coating the synthesized UC@MAF-7 onto a
screen-printed gold three-electrode setup. Initially, the sensor’s applicability was evaluated
in artificial sweat and later extended to human sweat analysis. This sensor demonstrated a
linear detection range of 2–70 µM with an LOD of 0.34 µM for UA detection. For human
subject analysis, the sensor was attached to a flexible microfluidic channel placed on the
skin of the subject. The microfluidic channel effectively collected the sweat and delivered
it to the sensor surface. A portable potentiostat attached to the sensor performed the
measurements and displayed the quantification data on a smartphone screen. The sensor
fabrication, sensing mechanism, various components of the fabricated sensor, and human
trials are shown in Figure 11.
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Reproduced with permission from [86].

3. Challenges in MOF-Based Sensing Devices

Despite the significant advantages of MOFs, several challenges must be addressed
before they can be fully utilized in wearable, flexible, and PoC sensors. These challenges
can be broadly classified into property-oriented and applicability-oriented categories. Key
properties of MOFs that require optimization include stability, conductivity, biocompatibil-
ity, and selectivity, which are all interconnected and directly influence the performance of
fabricated sensing devices. Improving the stability and selectivity of MOFs is crucial, as
these factors impact the practical utility of sensors in complex real-world samples. Enhanc-
ing conductivity is also essential for developing ultrasensitive sensors, as it significantly
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affects the sensitivity and detection limits of the fabricated sensors. These properties can
be improved by strategically tuning the functional groups in the organic linkers, doping
nanostructures during or after synthesis, entrapping/encapsulating different functional
moieties within the porous structures, or forming composites with other materials and
molecules. Another challenge is that most synthesized MOFs are produced in powder form,
which limits their direct application in wearable and flexible sensors. To address this, MOFs
need to be processed into thin films for device integration. This can be achieved by mixing
MOFs with support materials (such as polymers or carbon nanomaterials) or by shaping
or printing them with substrate materials. Common techniques for integrating MOFs into
devices include in situ growth, spin/spray coating, drop-casting, electrodeposition, atomic
layer deposition, layer-by-layer growth, and various printing methods (3D, screen, or inkjet
printing). Each technique has its own advantages and limitations, and the most suitable one
should be selected based on the application and nature of the sensing device. Additionally,
most MOF-based sensors developed to date are screening-based, where the target analyte
is identified by testing a range of possible analytes. To design more target-specific MOFs,
further research into experimental methods and computational simulations is required.

4. Summary and Future Prospects

Healthcare is becoming one of the most fundamental human necessities due to the
widespread prevalence of infectious and chronic diseases. Diagnosing and treating billions
of people is both time-consuming and costly. Moreover, most current diagnostic methods
are invasive, potentially causing injuries and infections. These methods also often require
expensive and bulky equipment, skilled operators, and are typically only available in
large facilities, limiting their accessibility for immediate needs. The advent of flexible
and portable electronics has brought significant attention to wearable and PoC sensors,
which are instantaneous, noninvasive, cost-effective, and capable of remote and continuous
monitoring. In this context, electrochemical-based wearable and PoC sensors are highly
favored because of their advantages, such as high sensitivity, selectivity, rapid response
times, portability, and tailor-made properties. Among the various electrode materials
explored, metal–organic frameworks (MOFs) are among the most suitable candidates due
to their highly porous crystalline structure, large surface area, customizable surface func-
tionalities, and tunable porosity, which can be sustainably synthesized in large quantities.
Furthermore, MOFs exhibit fascinating properties that make them particularly interesting
for electrochemical applications, including energy generation, storage, and electrochemical
sensing. Owing to these advantages, several MOF-based electrochemical sensors and
biosensors have been developed recently. However, the field of MOF-based wearable
sensors is still emerging, with few reports available in the literature. Therefore, it is an
opportune moment to write a focused review highlighting the significance of MOF-based
wearable sensors for healthcare monitoring. The large active surface area of MOFs en-
hances the adsorption of reactants, facilitating their detection and conversion. The tunable
porosity of MOFs can be strategically utilized to trap or encapsulate various biomolecules
and redox species, enhancing the selectivity, stability, and activity of the designed sensors.
Additionally, chemical functionalities can be engineered on the surfaces or even within the
pores of MOFs, improving the specificity and catalytic activity of the sensors. Furthermore,
the sustainable synthesis of MOFs in large quantities could reduce both the cost and envi-
ronmental impact of these sensors, making them affordable for widespread use. Despite
the promising performance of MOF-based electrochemical sensors, several challenges need
to be addressed for the successful integration of MOF-based wearable sensors. Many of
the limitations of pristine MOFs can be mitigated by forming composites and hybrids with
other nanomaterials and functional molecules. Although several MOF-based electrochemi-
cal sensors exist, few have been integrated into wearable and portable devices. Therefore,
considerable efforts are needed to advance this field, including improving the stability,
sensitivity, and lifespan of the sensing systems, preventing microbial growth on sensor
surfaces, and ensuring easy recovery and disposal after use. These steps are essential to
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ensure that the proposed wearable sensing systems can perform their intended functions
effectively in real-world scenarios.

Furthermore, by leveraging the large surface area, porous structure, and high loading
capacity of MOFs, drugs can be stored and released in an on-demand manner, similar to
advanced drug delivery systems. By incorporating these strategies, the sensing platform
can also facilitate targeted drug release. Integrating algorithms allows wearable devices
to quantify bio-analytes in real-time and autonomously release the required amounts of
drugs as a countermeasure without human intervention. This approach opens new av-
enues for developing closed-loop systems that can simultaneously or periodically measure
bio-analytes and release drugs as needed. Integrating these sensors with digital health
platforms and the IoT could enable real-time data analysis, promoting a proactive approach
to health management, disease prevention, and treatment, as these devices can effectively
track patient health and communicate with patients and healthcare professionals (Fig-
ure 12). Therefore, MOFs provide a promising platform for designing and developing
advanced sensing and drug delivery systems. Ongoing research is expected to address
current limitations and pave the way for the widespread use of MOFs in sensing and
on-demand drug delivery. As the field continues to evolve, MOFs have the potential to
revolutionize how drugs are monitored and delivered, enhancing the efficacy and safety of
diagnostics and treatments for various diseases and disorders. Addressing the challenges
of developing and implementing these technologies strengthens the potential to make
personalized medicine a reality, ushering in a new era of healthcare monitoring.
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Abbreviations

AuE Gold electrode
BMIM Butylmethyl imidazolium
CC Conductive carbon
CD Carbon dots
CE Counter electrode
Cl-ISE Chloride-ion selective electrode
CNT Chloride-ion selective electrode
CNTF Carbon nanotube fiber
CPE Carbon paste electrode
CRT Creatinine
CSNPC Core–shell nanoporous carbon
CuNPs Copper nanoparticles
FISE Fluoride ion-selective electrode
GO Graphene oxide
GOx Glucose oxidase
HNPC Hybridized nanoporous carbon
IL Ionic liquid
KOH Potassium hydroxide
LD Levodopa
LDHs Layered double hydroxides
LOD Limit of detection
LOx Lactate oxidase
MOF Metal–organic framework
MWCNT Multiwalled carbon nanotube
NC Nanocage
Nf Nafion
N-GQDs Nitrogen-doped graphene quantum dots
NiNPs Nickel nanoparticles
PB Prussian blue
PD Parkinson’s disease
PDMS Polydimethylsiloxane
PET Polyethylene terephthalate
PGE Pencil graphite electrode
PIF Polyimide film
PoC Point of care
PSM Permselective membrane
PtNPs Platinum nanoparticles
PU Polyurethane
PVA Polyvinyl alcohol
RE Reference electrode
RGO Reduced graphene oxide
SPCE Screen-printed carbon electrode
UA Uric acid
WE Working electrode
ZIF Zeolitic imidazolate frameworks
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