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Abstract: The FUS::DDIT3 fusion protein, formed by the chromosomal translocation t (12;16) (q13;p11),
is found in over 90% of myxoid liposarcoma (MLS) cases and is a crucial protein in its develop-
ment. Many studies have explored the role of FUS::DDIT3 in MLS, and the prevailing view is that
FUS::DDIT3 inhibits adipocyte differentiation and promotes MLS growth and invasive migration by
functioning as an aberrant transcription factor that affects gene expression and regulates its down-
stream molecules. As fusion proteins are gradually showing their potential as targets for precision
cancer therapy, FUS::DDIT3 has also been investigated as a therapeutic target. Drugs that target
FUS::DDIT3 and its downstream molecules for treating MLS are widely utilized in both clinical
practice and experimental studies, and some of them have demonstrated promising results. This
article reviews the findings of relevant research, providing an overview of the oncogenic mechanisms
of the FUS::DDIT3 fusion protein in MLS, as well as recent advancements in its therapy.

Keywords: chromosomal translocation; FUS::DDIT3 fusion protein; myxoid liposarcoma

1. Introduction

Myxoid liposarcoma (MLS) is the second most prevalent subtype of liposarcoma,
constituting approximately 30–35% of all liposarcomas and around 10% of all sarcomas [1].
A population-based study shows that the overall survival rates for primary localized MLS
at 5 and 10 years are 78% and 66%, respectively [2]. Though the standard treatment for
MLS is surgery, there is still a tendency for local recurrence and distant metastasis after
surgical resection, with incidence rates of 13–33% and 11–38%, respectively [3]. High-
grade MLS, formerly known as round-cell liposarcoma, has a worse prognosis. It is a
multicellular variant of myxoid liposarcoma, which contains more than 5% round cells.
MLS is a translocation-related sarcoma, and over 90% of MLS cases are characterized by
the chromosomal translocation t (12;16) (q13;p11), resulting in the fusion of the FUS (Fused
In Sarcoma) and DDIT3 (DNA damage-inducible transcript 3) genes at 12q13 and 16p11
to form the fusion gene FUS::DDIT3 and to produce the FUS::DDIT3 fusion protein [4,5]
(Figure 1A), although the relationship between FUS::DDIT3 and the round-cell components
in MLS has not been found. A small part of MLS cases contain the EWSR1::DDIT3 fusion
gene and fusion protein. However, due to the lack of separate studies on its pathogenic
mechanism, this review only describes the role of FUS::DDIT3 in the development of MLS.
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16.5% of cancer cases [6,7]. Among these, fusion genes of the FET (FUS, EWSR1, TAF15) 
family are an important part. FET genes as 5′partners and genes coding for transcription 
factors as 3′partners are fused to form fusion genes, which are translated into correspond-
ing proteins, which are characteristic of many types of sarcomas and leukemias [8]. The 
most frequent FET family fusion oncoproteins are closely associated with the develop-
ment of myxoid liposarcoma (MLS) and Ewing sarcomas (ES) [9]. FET family fusion pro-
teins are relatively diverse and have been studied for a long time. As the most numerous 
FET family fusion protein, the characteristic fusion protein of MLS, FUS::DDIT3, is in-
creasingly being studied, and drugs related to it are being developed. 

 
Figure 1. The FUS::DDIT3 fusion protein. (A) The chromosomal translocation t (12;16) (q13;p11) that 
cause the FUS::DDIT3 fusion gene; (B) structure and domains of FUS, DDIT3, and FUS::DDIT3 

Figure 1. The FUS::DDIT3 fusion protein. (A) The chromosomal translocation t (12;16) (q13;p11)
that cause the FUS::DDIT3 fusion gene; (B) structure and domains of FUS, DDIT3, and FUS::DDIT3
(Type1). The RNA-binding domain of the FUS protein is replaced by DDIT3 in MLS. The FUS::DDIT3
fusion variant type1 retains the SYGQ-rich and RGG1 domains of FUS and also includes the in-frame
amino acid sequence of a portion of the previously untranslated region (UTR) from DDIT3 exon2.
Abbreviations: SYGQ-rich: serine–tyrosine–glycine–glutamine-rich domain; RGG: arginine–glycine–
glycine box; RRM: RNA recognition motif; Znf: zinc finger; PY: proline–tyrosine nuclear localization
signal; NLS: nuclear localization signal; bZIP domain: basic leucine zipper; BR: basic region; LZ:
leucine zipper.
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Chromosomal abnormalities strongly relate to tumor occurrence and development,
with chromosomal translocation to form fusion genes being a common modality, driving
16.5% of cancer cases [6,7]. Among these, fusion genes of the FET (FUS, EWSR1, TAF15)
family are an important part. FET genes as 5′partners and genes coding for transcription
factors as 3′partners are fused to form fusion genes, which are translated into corresponding
proteins, which are characteristic of many types of sarcomas and leukemias [8]. The most
frequent FET family fusion oncoproteins are closely associated with the development of
MLS and ewing sarcomas (ES) [9]. FET family fusion proteins are relatively diverse and
have been studied for a long time. As the most numerous FET family fusion protein, the
characteristic fusion protein of MLS, FUS::DDIT3, is increasingly being studied, and drugs
related to it are being developed.

Fusion proteins can be used as cancer-specific diagnostic markers and potential drug
and immunotherapy targets, and the study of fusion protein oncogenesis and related drug
development is beneficial to the precision-targeted therapy of cancer [10,11]. The tyrosine ki-
nase inhibitors (TKIs) imatinib and bosutinib target BCR-ABL1 in chronic myeloid leukemia
(CML) significantly improve patient survival [12]; the tyrosine kinase inhibitor crizotinib
demonstrates significant efficacy in treating ROS1-rearranged advanced non-small cell
lung cancer [13]; and the tropomyosin receptor kinase (TRK) inhibitor larotrectinib exhibits
significant and long-lasting antitumor activity in patients diagnosed with TRK fusion-
positive tumors [14]. This review focuses on the oncogenic mechanism of FUS::DDIT3, the
characteristic fusion protein of MLS, and the advancements in associated drug research.

2. Basic Structure and Main Functions of FUS::DDIT3

The FUS::DDIT3 protein, one type of FET family oncoproteins, is distributed in the
nucleus of MLS cells and is considered an aberrant transcription factor [15]. The common
feature of the FET family proteins is the N-terminal low complexity sequence (LCD),
which is a prion-like motif, rich in aromatic and polar amino acids (Q/N/Y/S/G) and
known as prion-like structure (PLD) [16]. The PLD is fused to the DNA-binding domain
(DBD) of certain transcription regulators, resulting in the formation of the FET family
oncoproteins [17]. FUS::DDIT3 is composed of the N-terminal domain of FUS and the
full-length DDIT3, resulting in the RNA-binding domain of FUS being replaced by the
basic leucine zipper (bZIP) domain of DDIT3 [18]. The N-terminal SYGQ-rich structural
domain (LCD) of FUS acts as a transcriptional activation structural domain required for the
oncogenic potential of the fusion protein [19] (Figure 1B).

FUS proteins are encoded by the FET gene family member FUS gene (also known as
TLS gene) and are involved in the regulation of transcription and RNA processing [20].
FUS is a multi-domain protein with an N-terminal transcriptional activation domain,
three arginine–glycine–glycine (RGG) boxes, an RNA recognition motif (RRM), and a zinc
finger (ZnF), and the RGG2-ZnF-RGG3 domain is likely to be the major RNA-binding
domain. At the C-terminus of FUS, there exists a non-classical nuclear localization signal
(NLS) consisting of a proline–tyrosine NLS (PY-NLS) and the RGG3 structural domain [21]
(Figure 1B). DDIT3 is a member of the CCATT enhancer-binding protein (C/EBP) transcrip-
tion factor (TF) family. It is also known by several other names, including C/EBPζ, CHOP
(C/EBP homologous protein), and GADD153 (growth arrest and DNA damage-inducible
protein 153) [22]. Under normal physiological conditions, DDIT3 expression is notably
low. However, it can be rapidly upregulated in response to various stressors such as
endoplasmic reticulum stress, nutrient deprivation, DNA damage, cell growth arrest, and
hypoxia [23]. The N-terminus of DDIT3 has a transcriptional activation/repression domain,
which contains the basic region that mediates sequence-specific DNA binding (Figure 1B).
Like other C/EBP proteins, it contains a conserved C-terminal domain, known as basic
leucine zipper (bZIP), which is capable of forming heterodimers with other members of
C/EBP and impairing its DNA binding activity, thereby acting as a negative regulator of
other C/EBP proteins activity [24,25]. The C/EBP family exerts a controlling influence on
the terminal differentiation of adipocytes and participates in the differentiation of other
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tissues [26]. DDIT3 binds to C/EBPβ to form an inactive heterodimer that blocks the
binding activity of C/EBPβ to DNA, leading to loss of the adipocyte phenotype [27].

There are at least 12 variant types of FUS fusions with DDIT3 identified to date [28].
The most prevalent among these is FUS::DDIT3 type 2 (FUS exon 5 fuses to DDIT3 exon 2),
followed by type 1 (FUS exon 7 fuses to DDIT3 exon 2) and type 3 (FUS exon 8 fuses to
DDIT3 exon 2) [29] (Figure 1B). However, these variants in the FUS::DDIT3 structure did
not significantly affect the level of adipogenesis and clinical outcomes such as histologic
grades and survival rate [30].

FUS::DDIT3 has a significant association with the formation of human MLS, and a
series of in vitro and in vivo studies have demonstrated that FUS::DDIT3 is a driver of
MLS. Pérez-Losada J et al. [31] transfected the FUS::DDIT3 gene into the mouse genome
and observed an elevated expression of FUS::DDIT3 and most of the symptoms of MLS,
confirming that FUS::DDIT3 overexpression is a determinant of MLS in humans. This is also
the first in vivo evidence of a connection between fusion genes generated by chromosomal
translocations and MLS in humans. Furthermore, Nicolò Riggi et al. [32] found that
expression of the FUS::DDIT3 fusion protein in primary mesenchymal progenitor cells
could establish MLS models. In another study, Rodriguez R et al. [33] expressed FUS::DDIT3
fusion protein in immortalized/transformed human mesenchymal stem cells, driving the
formation of MLS. It has been observed in various studies that the FUS::DDIT3 fusion
protein can prevent the differentiation of adipocytes and promote the growth, invasion,
and migration of MLS [34,35].

3. Role and Mechanism of FUS::DDIT3 in MLS
3.1. Subsection FUS::DDIT3 and Adipocyte Differentiation

Adipogenesis consists of two phases: commitment and differentiation. The commit-
ment is the mesenchymal stem cells (MSCs) differentiation into preadipocytes, which are
morphologically similar to MSCs but lose the ability to differentiate into other cells. The
differentiation is the stage in which preadipocytes differentiate into mature adipocytes.
The differentiation of preadipocytes into mature adipocytes involves three stages: growth
arrest, mitotic clonal expansion (MCE), and terminal differentiation [36].

Histologically, MLS is characterized by the prominent myxoid stroma and branching
vessels. There is a proliferation of small, round-to-oval-shaped, non-adipocytic mesenchy-
mal cells mixed with variable numbers of immature lipoblasts of different stages set in
stroma [1]. Lipoblasts are conceptually the precursor or immature form of adipocytes
and are histologically defined as mononuclear or multinucleated cells containing lipid
droplets [37]. FUS::DDIT3 inhibits the process of adipogenic differentiation, which explains
the primitive adipocytic morphology in MLS.

Differentiation of preadipocytes to adipocytes is regulated by a network of transcrip-
tion factors that centers on two major adipogenic factors, PPAR γ and C/EBPα, which
regulate each other’s expression and are involved in a single pathway of adipogenesis,
with PPAR γ being the dominant factor [38]. FUS::DDIT3 prevents the differentiation of
preadipocytes to adipocytes by repressing the active sequences of the PPAR γ and C/EBPα
promoters and thereby inhibiting their expression, resulting in the accumulation of im-
mature adipocytes of different stages. In addition, FUS::DDIT3 induces the expression
of eukaryotic translation initiation factor eIF4E, which converts C/EBPα to the truncated
p30-C/EBPα isoform, negatively affecting adipocyte differentiation and contributes to
the attenuation of the positive feedback loop between C/EBPα and PPAR γ, further at-
tenuating the normal adipocyte differentiation program [35] (Figure 2B). During adipose
differentiation, C/EBPβ and C/EBP δ of the C/EBP family are expressed earlier than PPAR
γ and C/EBPα and regulate the expression of both. The basic leucine zipper domain of
FUS::DDIT3 heterodimerizes with C/EBPβ, directly preventing the binding and transacti-
vation of C/EBPβ to its target genes and inhibiting C/EBPβ-mediated adipogenesis [39]
(Figure 2A).
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pendent chromatin remodeling complex, is also an important target for FUS::DDIT3-in-
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Figure 2. FUS::DDIT3 inhibits adipogenesis. (A) Normal mesenchymal stem cells differentiation
program and relative regulation of adipogenic factors. C/EBPβ and C/EBPδ regulate the expression
of PPARγ and C/EBPα. PPARγ activates the promoter of the gene encoding C/EBPα and vice
versa, creating a positive feedback loop. (B) FUS::DDIT3 blocks adipogenesis via the three main
signal pathways: (i) inhibiting PPARγ and C/EBPα translation; (ii) preventing the combination of
C/EBPβ homodimers and BAF complex; (iii) FUS::DDIT3 co-localizes and physically binds to YAP1
and TEAD in the nucleus, and together they drive IGF2 expression, leading to an IGF-II/IGF-IR
transactivation loop.
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BAF (BRG1/BRM-associated factor) complex, or mSWI/SNF complex, an ATP-dependent
chromatin remodeling complex, is also an important target for FUS::DDIT3-induced MLS
in addition to PPAR γ and C/EBPα. ATP-dependent chromatin remodeling is an important
mechanism of DNA compaction and decompaction within the nucleus, ensuring that DNA
in chromatin has functions involved in replication, selective gene expression, DNA damage
repair, and recombination [40]. The BAF complex also regulates normal gene expression by
an antagonistic interaction with polycomb repressive complex 2 (PRC2) [41]. The normal
BAF complex interacts with the adipogenic factors PPAR γ and C/EBP and is involved in
gene activation at the early and late stages of adipocyte differentiation, which is necessary
for normal adipocyte differentiation. The BAF complex engages in an interaction with
the transactivation element III (TE-III) of C/EBPα and is involved in C/EBPα-mediated
adipogenesis. Additionally, BAF chromatin remodeling enzymes are indispensable for
the activation of the adipogenic gene program by C/EBPα or C/EBPβ [42,43]. During
adipogenesis, BAF may activate PPAR γ regulators and lipogenic marker genes that are
subsequently expressed during differentiation by promoting the function of the preinitiation
complex (PIC) [43]. Recent studies support the idea that FUS::DDIT3 drives competition
between the generation of C/EBPβ homodimers and FUS::DDIT3-C/EBPβ heterodimers
in MLS. FUS::DDIT3 expression attenuates the formation of C/EBPβ homodimers that
bind to enhancers and target BAF complexes, which inhibits C/EBPβ chromatin binding
and C/EBPβ-mediated recruitment of the BAF complex, leading to reduced chromatin
activation and decreased expression of adipose genes (genes central to lipid, cholesterol,
and steroid biosynthesis, such as IRS1, LPIN1, and STAT5B) and upregulated expression
genes associated with cell cycle and growth pathway (e.g., CXCL8, TRIB3, and PTX3) [44]
(Figure 2B).

In addition to the above two pathways, FUS::DDIT3 also blocks adipogenesis by
regulating the Hippo pathway [45]. The Hippo pathway is a highly conserved kinase
cascade that regulates organ size and cell differentiation, and the transcriptional coactivator
Yes-associated protein 1 (YAP1) is a transcription regulator and effector molecule of this
pathway involved in tissue growth and tumorigenesis [46]. When serine/threonine kinase
MST1/2 and large tumor suppressor 1/2 (LATS1/2) kinases are active, the Hippo pathway
is turned on, which leads to cytoplasmic retention and proteasomal degradation of YAP1;
conversely, when Hippo signaling is “off”, YAP1 translocates to the nucleus and binds to
transcription factors (e.g., TEAD), thereby regulating the expression of target genes [47].
Research has demonstrated a strong correlation between the enhanced activity of YAP1 and
the development of MLS, and inhibition of its activity can effectively inhibit the growth of
MLS, which is realized through FUS::DDIT3 [46]. However, recurrent genetic alterations
affecting components of the Hippo pathway have not been identified in MLS [48]. Further
signaling pathway studies have revealed that FUS::DDIT3 drives IGF2 expression, leading
to an IGF-II/IGF-IR transactivation loop [49]. FUS::DDIT3-mediated IGF-IR/PI3K/AKT
signaling leads to the closure of the Hippo pathway, and downstream unphosphorylated
YAP1 translocates to the nucleus. FUS::DDIT3 co-localizes and physically binds to YAP1 and
TEAD in the nucleus, and together, they regulate the expression of oncogenes associated
with proliferation, cell cycle progression, apoptosis, and adipogenesis, and prevent terminal
adipogenic differentiation [50] (Figure 2B). In addition, YAP1 regulates the proliferation
and differentiation of preadipocytes by altering the expression of PPAR γ. It was found
that overexpression of YAP1 inhibited the expression of PPAR γ, thereby inhibiting the
differentiation of preadipocytes [51].

3.2. FUS::DDIT3 and the Growth of MLS

Cyclin-dependent kinases (CDKs) control the transition between different cell cycles
and participate in the proliferation and growth of tumor cells through cell cycle regulation,
playing a key role in tumor pathogenesis [52]. Cell cycle proteins are categorized according
to their expression and involvement in cell cycle control: cyclin E, which is involved in
G1/S control; cyclin A (S-phase) and cyclin B (M-phase); cyclin D, which controls the
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entry of the cell cycle into the G1 phase [53]. FUS::DDIT3 regulates the growth of MLS
by affecting cell cycle progression. Normally, DDIT3 is transcribed at low levels but is
elevated under cellular stress conditions and is involved in the stress response and cancer
process by inducing cell cycle arrest and apoptosis [25]. In MLS cell lines, FUS::DDIT3 has
a role opposite to that of DDIT3. DDIT3 acts at the G1/S checkpoint to cause cell growth
arrest, whereas its fusion protein, FUS::DDIT3, not only fails to cause growth arrest but also
hinders the action of DDIT3 and thus plays a role in MLS development [54].

In MLS cell lines, strong overexpression of cyclin D1 and E related to the G1 cell cycle
and their associated kinases CDK2 and CDK4 have been detected, whereas cyclin A specific
for the S and G2 phases of the cell cycle is lowly expressed in these tumors. Cell cycle
dysregulation may constitute a significant factor in the pathogenesis of MLS, and evidence
suggests that FUS::DDIT3 is implicated in this dysregulation [55]. FUS::DDIT3 binds to cell
cyclin-dependent kinase 2 (CDK2) via the DDIT3 portion. CDK2 translocates to nuclear
structures defined by FUS::DDIT3, and the interaction between the two alters the binding
affinity of CDK2, which can lead to altered phosphorylation patterns and regulation of
cytoskeletal or other proteins [56]. In addition, CDK4 was found to be overexpressed in
MLS [57]. The CDK4 gene, located on chromosome 12q13, encodes a protein that acts
as an intermediary between extracellular signaling pathways and the cell cycle. When
CDK4 binds to cyclin D, it promotes DNA synthesis and cell proliferation [58]. FUS::DDIT3
inhibits miR-486 expression, thereby promoting CDK4 expression and regulating MLS
cell proliferation and apoptosis via the miR-486/CDK4 axis [59] (Figure 3). The impact of
FUS::DDIT3 on cell cycle regulation requires further investigation to analyze the effects of
FUS::DDIT3 on individual cell cycle regulators.

Interleukin-24 (IL-24) is a cytokine with potential antitumor effects that can affect a
wide range of cancers. IL-24 selectively inhibits tumor cell growth, invasion, metastasis,
and angiogenesis, induces cancer-selective apoptosis, stimulates the anticancer immune
response, sensitizes cancer cells to treatment, and exerts antitumor effects through multiple
pathways [60]. In MLS, IL-24 expression is decreased, and knockdown of FUS::DDIT3
results in increased IL-24 expression and inhibition of tumor cell growth [61]. Mechanically,
the proteoglycan 4 (PRG4), also known as the downstream of the liposarcoma-associated
fusion oncoprotein 54 (DOL54), is one of the downstream molecules of FUS::DDIT3 [62].
And in MLS, the presence of PRG4 has been observed to sustain the proliferation of tumor
cells, which is achieved through the suppression of IL-24, a cytokine known for its antitumor
properties [63] (Figure 3).

In addition, as mentioned previously, the IGF-IR/PI3K/Akt pathway is activated in
MLS. The activation mechanisms include increased IGF-1R and activation of the PIK3CA
mutation [64]. MLS cell proliferation and viability are significantly dependent on PI3K-
mediated signaling, both in vitro and in vivo [65]. In contrast, overexpression of FUS::DDIT3
induces the activation of aberrant IGF-IR/PI3K/Akt signaling activity. mTOR, a down-
stream target of Akt, exhibits increased levels of phosphorylation in MLS [49]. The mTOR
signaling pathway, frequently activated in tumors, has a significant impact on tumor
metabolism, cell proliferation, and immune cell differentiation [66]. Aberrant activation
of the IGF-IR/PI3K/Akt pathway seems to contribute to the activation of mTOR, which
results in the growth and proliferation of MLS tumor cells (Figure 3).

In addition to the three ways mentioned above, cancer stem cells (CSC) are a small
subpopulation of cells within a tumor, possessing the capabilities of self-renewal, differenti-
ation, and tumor formation. CSCs are involved in tumor development, cell proliferation,
and metastatic dissemination and demonstrate resistance to chemotherapy and radiother-
apy [67]. MLS contains CSC-like cells that form non-adherent spheroids, exocytose Hoechst
dye, and resist chemotherapeutic agents; the JAK-STAT pathway is active in MLS and
regulates the size of CSC-like subpopulations [68]. Subsequent studies have confirmed that
FUS::DDIT3 expression leads to aberrant activation of the JAK-STAT pathway through its
interaction with phosphorylated STAT3 (pSTAT3) and that SWI/SNF and PRC2 complexes
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may be implicated in this pathway. The clinical significance of JAK-STAT in MLS treatment
remains to be determined by further studies [69] (Figure 3).
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Figure 3. FUS::DDIT3 promotes MLS growth. FUS::DDIT3 is involved in IGF-IR/PI3K/AKT and
JAK/STAT signaling pathways, miR-486/CDK4 axis, and IL-24 expression to promote MLS growth.

3.3. FUS::DDIT3 and Metastasis of MLS

MLS, with a high incidence of bone metastases, which is associated with FUS::DDIT3
fusion, exhibits a distinct metastatic pattern in contrast to other soft tissue sarcomas [70].
Matrix metalloproteinases (MMPs) are a class of enzymes that play a role in tissue remod-
eling and repair, degradation of extracellular matrix (ECM) components, and promotion
of tumor cell invasion and proliferation [71]. FUS::DDIT3 transactivates the MMP-2 and
MMP-9 promoters, and this activation is mainly mediated by AP-1, NF-κB, and C/EBP-β
sites of two matrix metalloproteinases [72]. FUS::DDIT3 induces MLS metastasis through
enhanced transcriptional activation of two matrix metalloproteinases, and MMP-2, in
particular, is crucial for FUS::DDIT3-mediated cell migration and invasion (Figure 4).

SRC and focal adhesion kinase (FAK) are non-receptor tyrosine kinases. The SRC-
FAK pathway is activated in a variety of tumors and generates signals that lead to tumor
growth and metastasis [73]. Subject to various stimuli, including integrins, FAK undergoes
autophosphorylates at specific tyrosine (Y) residue Y397, leading to the formation of a
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binding site with a strong affinity for SRC, which in turn triggers autophosphorylation
of SRC at Y419. Once fully activated, SRC can enhance the activation of FAK through
phosphorylation of its C-terminal and catalytic domains [74]. Rho GTPases, functioning as
molecular switches, alternate between an active state when bound to GTP and an inactive
state when bound to GDP, regulating actomyosin polymerization and organization into
distinct cytoskeletal structures, which is crucial for cell migration [75]. It is found that
FUS::DDIT3 increases the phosphorylation level of SRC and FAK and the overall protein
level of FAK. SRC/FAK is an upstream mediator of RHO/ROCK signaling activation,
and RHO further activates RHO-associated coiled-coil-containing protein kinase (ROCK),
leading to elevated levels of phosphorylation of myosin light chain 2 (MLC2), which
promotes the contractile capacity of actomyosin and thus facilitates MLS invasion [76].
Mechanistic studies on the activation of the SRC/FAK/RHO/ROCK signaling axis by
FUS::DDIT3 to promote MLS metastasis provide a theoretical basis for its therapeutic
strategy (Figure 4).
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expression of miR-486.
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Plasminogen activator inhibitor-1 (PAI-1) is a target gene of miR-486. It controls protein
hydrolysis activity and cell migration during angiogenesis, and its high level of expression
promotes tumor invasion and angiogenesis [77]. MiRNAs regulate biological processes
by negatively regulating the expression of target genes at the mRNA level [78]. In MLS,
FUS::DDIT3 can induce PAI-1 expression by inhibiting miR-486 expression, thus promoting
tumor metastasis [79] (Figure 4).

4. DDIT3 Detecting in MLS

The abnormal expression of DDIT3 may induce adipocyte differentiation and block
the late stage of adipogenesis. Most well-differentiated/dedifferentiated liposarcoma
(WDLS/DDLS) cases contain amplified fragments of chromosome 12q13-15, which con-
tains DDIT3. MLS carries a rearranged DDIT3 fused with FUS or EWSR1 [80]. Mantilla JG
et al. [81] have observed DDIT3 amplification in 33% of dedifferentiated liposarcoma cases
and was significantly associated with the presence of myxoid liposarcoma-like features com-
pared with cases without amplification. The forced expression of FUS::DDIT3 and normal
DDIT3 induced the transformation of HT1080 cells into MLS-like morphology, including
the morphology of capillary network similar to MLS and gene expression pattern [82].

Fluorescence in situ hybridization (FISH) detection of DDIT3 gene rearrangement has
been used in clinical practice and has become the gold standard for molecular diagnosis
of MLS [83]. However, the FISH detection method is expensive. Reverse transcription
polymerase chain reaction (RT-PCR) is commonly used to detect gene fusion. However,
there are at least 14 different FUS::DDIT3 and EWSR1::DDIT3 variants, making it difficult to
diagnose MLS [84]. Some studies have reported that DDIT3 immunohistochemistry (IHC)
has high specificity and sensitivity in MLS.

FUS::DDIT3 has the peptide sequence corresponding to the normally untranslated
DDIT3 exon 2 and parts of exon 3 (5′-UTR). Oikawa K et al. [85] have generated monoclonal
antibodies against this unique peptide sequence, which can react with FUS::DDIT3 fusion
proteins but not react with normal FUS and DDIT3 proteins by Western blot analysis.
DDIT3 IHC can recognize almost all variants of FUS::DDIT3 (except type 4). In most MLS
cases, diffuse nuclear staining of tumor cells can be observed, and non-tumor cells, such
as endothelial cells, are not identified [86]. It recognizes the N-terminus of DDIT3, so
regardless of the fusion partner (FUS or EWSR1), the antibody is expected to recognize
tumor-specific oncoproteins. Compared with FISH and RT-PCR techniques used to identify
DDIT3 rearrangements, IHC may provide a faster and cheaper diagnostic confirmation
method [87]. High-grade MLS (round-cell liposarcoma) with pure round-cell morphology
may be difficult to distinguish from other round-cell sarcomas. DDIT3 IHC can distinguish
high-grade MLS from other round-cell sarcomas with a sensitivity of 96% and a specificity
of 98% [88]. MLS, even high-level round-cell cases, have uniform karyotypes. A few
MLSs showed nuclear pleomorphism and would be confused with other sarcoma types.
DDIT3 analysis will solve this problem because these sarcoma types do not have DDIT3
fusion [89]. However, the focal expression of DDIT3 occurs in 1.5–5% of non-MLS tumors
and is difficult to define. The significance of focal staining needs to be considered according
to the specific situation [86].

5. FUS::DDIT3-Mediated Targeted Drugs

The primary treatment for MLS is radical surgery and radiotherapy. Although MLS
is more sensitive to chemotherapy than other types of liposarcoma, the treatment options
remain limited for patients with recurrent and metastatic conditions [90]. MLS has few mu-
tations aside from the FUS::DDIT3 fusion, making targeting FUS::DDIT3 or its downstream
regulators an effective therapeutic strategy [91] (Table 1).
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Table 1. Drugs targeting FUS::DDIT3 and its downstream regulators.

Drugs Target Singling Pathway Clinical or Preclinical
Experiment

Trabectedin FUS::DDIT3 / Phase I/II (NCT02275286)
Pioglitazone PPARγ / Phase II (NCT04794127)

Efatutazone PPARγ / Phase I (NCT00408434)
Phase II (NCT02249949)

Itacitinib JAK JAK-STAT Phase I
(NCT03670069)

Verteporfin YAP1 Hippo Vivo and vitro experiments
Picropodophyllin (PPP) IGF-IR IGF-IR/PI3K/AKT Vivo and vitro experiments

Buparlisib (BKM120) PI3K IGF-IR/PI3K/AKT Vivo and vitro experiments
Ruxolitinib JAK JAK-STAT Vitro experiment
Dasatinib SRC SRC/FAK/RHO/ROCK Vitro experiment

NVP-AEW541 IGF-IR IGF-IR/PI3K/AKT Vivo and vitro experiments
PF-573228 FAK SRC/FAK/RHO/ROCK Vitro experiment
RKI-1447 ROCK SRC/FAK/RHO/ROCK Vitro experiment

This table summarizes information on drugs under clinical and preclinical experiments targeting FUS::DDIT3 and
its downstream regulators.

5.1. Drugs under Clinical Experiments Targeting FUS::DDIT3 and Its Downstream Regulators

Clinically, anthracyclines are used for first-line treatment in advanced and metastatic
MLS [92,93]. Trabectedin is a second-line therapeutic agent for MLS with favorable results in
cases of advanced MLS cases that fail standard therapy [94]. Trabectedin also has a favorable
risk/efficacy profile in combination with other drugs [95]. In advanced metastatic cases, the
combination of trabectedin with low-dose radiation therapy has an excellent remission rate
(NCT02275286) [96]. Some clinical trials have demonstrated that this combination could
potentially serve as an alternative to anthracycline-based chemotherapy in MLS [97,98].
Trabectedin is a multifunctional oncostatic drug, and one of its main targets of action is
FUS::DDIT3 [99]. It blocks the binding of FUS::DDIT3 to the DNA promoter, reduces the
oncoproteins FUS::DDIT3 type I and II, activates the expression of the lipogenic factors
c/EBP α and β, and stimulates the reaction of adipogenesis and the re-emergence of mature
lipogenic cells [100].

However, some studies have identified trabectedin resistance. Uboldi S et al. [101]
established the first trabectedin-resistant MLS cell line, 402-91/ET. In this resistant cell line,
trabectedin failed to activate the transcription of adipogenesis-related genes (e.g., c/EBPα
and β). In a mouse model of human MLS, one of the reasons for resistance was found to
be the loss of 4p15.2, 4p16.3, and 17q21.3 chromatin as a result of prolonged treatment,
and the downregulation of the expression of genes in these chromatin bands [102]. For
example, the UVSSA (UV-stimulated scaffolding protein A) gene on 4p16.3 plays a role
in a process called transcription-coupled nucleotide excision repair (TC-NER). The loss of
UVSSA leads to defects in TC-NER, which is crucial for active genes such as those involved
in trabectedin-induced adipogenesis. This leads to a deregulation of the pathway, leading
to resistance of cancer cells to trabectedin [103].

5.2. Drugs under Preclinical Experiments Targeting FUS::DDIT3 and Its Downstream Regulators

PPARγ (peroxisome proliferator-activated receptor gamma) carries out the central
role in adipogenesis and can be reduced by FUS::DDIT3. The use of ligands for PPAR γ

induces terminal differentiation of liposarcoma cells and thus represents a new approach to
liposarcoma treatment [104]. Pioglitazone, a member of the thiazolidinedione (TDZ) class
of antidiabetic drugs, functions as an agonist ligand for PPAR γ. It binds to PPARγ and acts
as a potent regulator of adipocyte development [105]. Pioglitazone reactivates adipocyte
differentiation. In a mouse model, the combination of pioglitazone and trabectedin was
employed to counteract resistance to trabectedin treatment for MLS [106]. The clinical trial
of pioglitazone in combination with trabectedin for MLS, NCT04794127, is in phase II. In
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addition, a patient with advanced metastatic MLS did well with efatutazone, also a PPAR
γ agonist (NCT00408434) [107]. A clinical trial (NCT02249949) is applying efatutazone
hydrochloride (efatutazone dihydrochloride) to treat patients with previously treated MLS
that is not amenable to surgical removal. What is more, combining trabectedin with PPARγ
agonists shows the possibility of treatment. Rosiglitazone enhanced trabectedin-induced
adipogenesis and survival in an MLS mouse model [108].

FUS::DDIT3 closes the Hippo pathway, and downstream, YAP1 translocates to the
nucleus, regulating gene expression with FUS::DDIT3. YAP1 has been identified as a
molecular target for therapeutic intervention in MLS, and pharmacological inhibition
of YAP1 activity with verteporfin has been demonstrated to inhibit MLS cell viability
both in vitro and in vivo [45]. Overexpression of FUS::DDIT3 leads to activation of IGF-
IR/PI3K/Akt signaling. The IGF-IR ATP inhibitor, NVP-AEW541, and the IGF-IR non-ATP
inhibitor, PPP, induce apoptosis and decrease mitogenic activity. This results in reduced
cellular activity in MLS cell lines and a decrease in tumor volume in an in vivo model
of chick CAM for MLS [49]. The PI3K inhibitor buparlisib (BKM120) reduces MLS cell
viability in vitro by inducing apoptosis and has been confirmed in an animal model with
a significant reduction in tumor volume [65]. Dolatabadi S et al. [68] have found that a
subpopulation with cancer stem cell (CSC) characteristics existed in MLS and that JAK-
STAT signaling was active in MLS cell lines and regulated CSC characteristics, leading to
the development of drug resistance in the tumor cells; the use of ruxolitinib, an inhibitor
of JAK-STAT, can reduce the number of CSC-characteristic chemoresistant cells. The
combination of ruxolitinib with the chemotherapeutic agent adriamycin for the treatment
of targeted proliferating cells and cells with CSC characteristics provides a new means of
circumventing chemoresistance in the treatment of MLS patients [69]. The clinical study of
JAT inhibitor itacitinib treating advanced or metastatic sarcoma (including MLS) is in the
first stage (NCT03670069).

Willems SM et al. [109] have found that Src pathway activation-associated kinases are
active in MLS. SRC inhibitor dasatinib reduces the viability of MLS cells and shows additive
effects with cytotoxic drugs [110]. Inhibition of the SRC/FAK/RHO/ROCK signaling axis,
achieved through the use of SRC inhibitor dasatinib and the FAK inhibitor PF-573228,
reduces MLS invasiveness and prevents the invasion of CSC-rich subpopulations, thereby
decreasing the self-renewal and invasive potential of MLS; furthermore, the ROCK inhibitor
RKI-1447 has been shown to completely abrogate invasion in cells expressing FUS::DDIT3.

6. Conclusions and Perspectives

After three decades of research, it has been demonstrated that the FUS::DDIT3 fusion
protein is a key protein in the development of MLS. A large number of experimental studies
have shown that FUS::DDIT3 fusion proteins can affect tumor development by regulating
the proliferation, differentiation, invasion, migration, and other biological functions of MLS
cells, but the detailed regulatory mechanisms and closely related signaling pathways need
to be further investigated. Currently, there are fewer drugs for MLS, especially metastatic
MLS, and numerous MLS-related drugs are in the preclinical or experimental stage of
research, which still need to be put into large-scale animal experiments and clinical trials.
However, the study of the FUS::DDIT3 fusion protein and its related signaling pathway,
as well as the study of targeted drugs against this fusion protein and the corresponding
signaling pathway proteins, will be an important direction for the research of MLS and its
treatment.
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