Algorithm 2: The training algorithm of a DL model |
1 |
Input LC25000 dataset
|
2 |
Output Trained model |
3 |
BEGIN
|
4 |
Inputs
224 × 224 × 3
|
5 |
Batch_S 25 |
6 |
Lr
0.0001 |
7 |
Dropout 0.4 |
8 |
Batch_N {momentum = 0.99, epsilon = 0.001} |
9 |
L {0,1,2,3,4}. |
10 |
G_A_P Global average pooling |
11 |
Dense = 4 |
12 |
FOR EACH image IN DL
|
13 |
Data_images. append(image) |
14 |
END FOR
|
15 |
Splitting DL |
16 |
Model.fc {G_A_P, DROP, Dense} |
17 |
Model Model (inputs = X.inputs, outputs = Model.fc) |
18 |
OPT Adamx (0.0001) |
19 |
FOR EACH lay in Model.layers [-20:]
|
20 |
IF not instance (lay, lay. Batch_N) |
21 |
lay.trainable = True |
22 |
END IF
|
23 |
END FOR
|
24 |
Model.compile(OPT, loss = “sparse_categorical_crossentropy”). |
25 |
END
|