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Abstract: Diabetes mellitus (DM) is a complex metabolic disorder characterized by chronic hyper-
glycemia, with aldose reductase playing a critical role in the pathophysiology of diabetic compli-
cations. This study aimed to investigate the efficacy of flavonoid compounds as potential aldose
reductase inhibitors using a combination of molecular docking and molecular dynamics (MD) simu-
lations. The three-dimensional structures of representative flavonoid compounds were obtained from
PubChem, minimized, and docked against aldose reductase using Discovery Studio’s CDocker mod-
ule. The top 10 compounds Daidzein, Quercetin, Kaempferol, Butin, Genistein, Sterubin, Baicalein,
Pulchellidin, Wogonin, and Biochanin_A were selected based on their lowest docking energy values
for further analysis. Subsequent MD simulations over 100 ns revealed that Daidzein and Quercetin
maintained the highest stability, forming multiple conventional hydrogen bonds and strong hy-
drophobic interactions, consistent with their favorable interaction energies and stable RMSD values.
Comparative analysis of hydrogen bond interactions and RMSD profiles underscored the ligand
stability. MMPBSA analysis further confirmed the significant binding affinities of Daidzein and
Quercetin, highlighting their potential as aldose reductase inhibitors. This study highlights the
potential of flavonoids as aldose reductase inhibitors, offering insights into their binding interactions
and stability, which could contribute to developing novel therapeutics for DM complications.

Keywords: aldose reductase; molecular docking; molecular dynamic simulation; flavonoids; diabetes
mellitus

1. Introduction

Diabetes mellitus (DM) is a complex and chronic metabolic disorder characterized
by persistent hyperglycemia or high blood sugar levels. This condition is associated
with significant complications that affect various organs and systems. One key enzyme
implicated in the development of these complications is aldose reductase, a member of the
aldo-keto reductase superfamily, which plays a pivotal role in the polyol pathway [1,2].
Under normal physiological conditions, aldose reductase has a minimal role in glucose
metabolism. However, in the context of DM, elevated blood glucose levels significantly
increase its activity, leading to adverse biochemical changes within cells.

Aldose reductase catalyzes the reduction of excess glucose to sorbitol, utilizing nicoti-
namide adenine dinucleotide phosphate (NADPH) as a cofactor [3–5], marking the initial
and critical step in the polyol pathway. The accumulation of sorbitol, which cannot easily
cross cell membranes, leads to osmotic stress and cellular swelling [6,7]. Furthermore,
this conversion process depletes NADPH, a crucial molecule needed for the regeneration
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of reduced glutathione [8–10], one of the cell’s primary antioxidants. The reduction in
NADPH availability impairs the cell’s ability to neutralize reactive oxygen species (ROS),
contributing to oxidative stress and cellular damage [11,12].

The implications of aldose reductase activity are widespread across various tissues. For
instance, in the lens of the eye, sorbitol accumulation is linked to osmotic stress, a key factor
in the development of diabetic cataracts [13–15]. In peripheral nerves, the combination of
oxidative stress and osmotic imbalance leads to a decline in nerve conduction velocity and
nerve blood flow, contributing to diabetic neuropathy [16–18]. Similar pathogenic mecha-
nisms underlie other severe complications of diabetes, such as diabetic cardiomyopathy,
nephropathy, and retinopathy.

Given its central role in these harmful processes, aldose reductase is a critical target
for therapeutic intervention. Inhibitors of this enzyme have the potential to alleviate the ad-
verse effects of hyperglycemia on tissues, thereby reducing the risk and severity of diabetic
complications [3,19]. This emphasizes the significance of research efforts aimed at identify-
ing and developing effective aldose reductase inhibitors, which offer hope for improving
the quality of life for individuals affected by DM and its associated complications.

Moreover, herbs have a longstanding history of use in traditional medicine and encom-
pass a diverse array of phytochemical components, such as terpenoids, phenols, lignins, stil-
benes, tannins, flavonoids, quinones, coumarins, alkaloids, amines, betalains, and various
other metabolites [20]. Among these, flavonoids stand out as low molecular weight pheno-
lic compounds found abundantly in numerous plant species [21]. Flavonoids are renowned
for their wide-ranging biological properties, including anti-cancer, anti-inflammatory, an-
tioxidant, anti-mutagenic, anti-allergic, and anti-viral activities [22,23]. Previously, a study
explored Acumitin and Agathisflavone as potent flavonoid compounds against aldose
reductase, primarily focusing on molecular docking studies [24].

This study aims to explore the potential of flavonoids against aldose reductase. By
targeting aldose reductase, flavonoids may help mitigate these complications by reducing
sorbitol accumulation and oxidative stress, thereby preserving nerve conduction velocity,
improving nerve blood flow, and potentially alleviating symptoms associated with diabetic
neuropathy [25,26]. This study enhances the current knowledge of flavonoids in diabetes
management by offering detailed molecular insights, bridging the gap between existing
experimental evidence and potential therapeutic applications. The unique group of struc-
turally diverse flavonoid compounds across different subclasses (Figure 1) emphasizes the
potential of flavonoid compounds as promising aldose reductase inhibitors. Identifying
flavonoids that exhibit strong binding affinity and favorable interactions with aldose reduc-
tase could pave the way for developing novel treatments or supplements to complement
existing diabetic management strategies.

Figure 1. The representative compounds from the respective flavonoid subfamily.
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2. Materials and Methods
2.1. Aldose Reductase Structure Retrieval

The three-dimensional structure of human aldose reductase (PDB ID: 1 PWM, 0.92 Å
resolution bound to NADP and Fidarestat) was obtained from the Protein Data Bank
(https://www.rcsb.org/ (accessed on 10 October 2024)). Energy minimization receptor
preparations were performed using UCSF Chimera v1.16 and Discovery Studio Client
v22 [27,28]. (See Supplementary Data Section S1).

2.2. Prediction of Active Binding Site

The bound ligand (Fidarestat) was selected for the binding pocket generation, and the
binding sphere was created using the Define Binding Site window in Discovery Studio. To
enhance docking accuracy, the binding sphere was refined with constraints specific to the
selected amino acids (See Supplementary Data Section S2).

2.3. Molecular Docking

Molecular docking is a widely used method for evaluating ligand–receptor interactions.
It predicts the binding strength or binding energy of protein–ligand complexes by analyzing
their preferred orientations using scoring algorithms [29,30]. The protein was prepared by
removing the already bound ligand and water molecules, followed by adding hydrogen
atoms using Discovery Studio’s receptor preparation module. Ligand preparations for
candidate compounds involved generating tautomers, adjusting ionization states, and
correcting any valence issues, utilizing the Ligands Preparation module in Discovery
Studio Client v22. Molecular docking of the ligands against the target protein, aldose
reductase, was performed using the CDocker module in Discovery Studio with default
orientation and conformation settings. The best-docked complexes were evaluated based
on the lowest docking energy values, measured in kcal/mol.

2.4. MD Simulations

The top compounds with the lowest docking energy were selected for a 100 ns MD
simulation. The protocols for the MD simulation experiment were adapted from our
previously published papers [31,32]. The CHARMM36 force field was set up using the
solution builder protocol on the CHARMM-GUI server (https://www.charmm-gui.org/
?doc=input/solution (accessed on 10 October 2024)). This interface was also used to
generate input files for MD simulations with GROMACS 2019.3 [33].

The system was solvated using the TIP3P-3 point water model in a cubic box with
periodic boundary conditions. Neutralization was achieved by adding counter ions. Elec-
trostatic and van der Waals interactions were calculated using the Verlet method with a
10 Å cut-off radius, and the LINCS algorithm was employed to constrain the bond lengths
during simulations. Additionally, accurate electrostatic interactions were computed using
the Particle Mesh Ewald (PME) approach. The solvated systems were prepared using
the steepest descent energy minimization method. Two equilibration phases were then
conducted: first under constant temperature, constant volume (NVT) conditions, followed
by constant temperature, constant pressure (NPT) conditions. A built-in Python script
from CHARMM-GUI was used to convert the GROMACS topology (top) and parameter
(itp) files for the MD simulations. Structural analysis of the protein–ligand complexes was
performed using GROMACS v2019.3 on a Linux platform [34]. Therefore, a 2 fs time step
was employed to run the MD simulations in GROMACS.

2.5. gmxMMPBSA Binding Free Energy Calculation

A program gmx_MMPBSA v1.6.3 was developed to compute the end state-free ener-
gies of protein–ligand complexes from GROMACS MD trajectory data [35]. Binding free
energy predictions were made using an MM/PBSA approach from the MD simulation tra-
jectories in explicit solvent, analyzing the three components, such as the complex, receptor,

https://www.rcsb.org/
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and ligand, separately [36]. The binding free energy (∆Gbinding) of the lead compounds in
complex with the protein was determined using the following equation:

∆Gbinding = Gcomplex − (Gprotein + Gligand) (1)

In this equation, Gcomplex represents the energy of the lead compound–protein com-
plexes, and Gprotein and Gligand demonstrate the proteins’ and ligands’ energy in an aqueous
environment, respectively.

3. Results and Discussion
3.1. Structural Analysis of the Aldose Reductase Protein

The aldose reductase enzyme consists of a single chain composed of 316 amino acids.
The protein’s architecture includes α-helices, β-sheets, and coils. VADAR 1.8 statistical
analysis indicates that the protein comprises approximately 35% α-helices, 24% β-sheets,
40% coils, and 27% turns. Ramachandran plots show that 98% of the residues are located in
favored regions, 99.8% are in allowed regions, with a single outlier (Glu84) for the dihedral
angles phi (φ) and psi (ψ) (Supplementary Data Section S1).

3.2. The Binding Pocket Analysis

Using Discovery Studio’s ligand interaction method, the binding pocket residues of
aldose reductase were identified as Val47, Trp111, Trp79, His110, Tyr48, Trp20, Trp219,
Cys298, Ala299, Leu300, and Phe122. These residues were further validated against the
existing published data [37]. To investigate the accurate interaction of flavonoid compounds
within the active site of aldose reductase, the binding sphere coordinates were set to
X = 22.9571, Y = 1.0560, and Z = 34.0032, with a radius of 8.2904, based on the binding
pocket residues (Supplementary Data Section S2).

3.3. Ligands Preparation

Aldose reductase has a smaller and more hydrophobic active site, which requires
inhibitors to be designed with higher specificity to effectively block its activity without
affecting the related enzymes. Unlike traditional ANSAID, which often targets complex
active sites of enzymes like COX-1 and COX-2, flavonoids are particularly well-suited to in-
teract with the smaller and more hydrophobic active site of aldose reductase. Moreover, the
specificity of flavonoids in targeting aldose reductase without affecting the related enzymes
minimizes the risk of off-target effects, which is a common concern with synthetic inhibitors.

Flavonoids possess various beneficial properties, including anti-cancer, antioxidant,
anti-allergic, and anti-inflammatory effects, making them effective against a range of
diseases [22,38]. The 3D structures of representative flavonoid compounds from different
subclasses of flavonoids were acquired from PubChem based on their recent anti-diabetic
biological activities (Table 1). These structures were further optimized using Discovery
Studio and UCSF Chimera v1.16. Following the structural analysis (both 2D and 3D), the
most promising ligands were selected for subsequent molecular docking studies (Figure 2).

Table 1. The molecular weight and the target diseases of the selected flavonoid compounds.

Compounds Mol Weight g/mol Target Disease Reference

Daidzein 254.2 DM [39–41]

Quercetin 302.2 DM [42–44]

Genistein 270.2 DM [45,46]

Kaempferol 286.2 DM [47–49]
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Table 1. Cont.

Compounds Mol Weight g/mol Target Disease Reference

Butin 272.2 Ischemia, DM [50–52]

Sterubin 302.3 Alzheimer’s disease, DM [53,54]

Baicalein 270.2 DM [55–57]

Pulchellidin 317.3 DM [58]

Wogonin 284.3 DM [59,60]

Biochanin A 284.3 DM [61,62]

Pelargonidin 306.7 DM [63,64]

Natsudaidain 418.4 Antioxidant,
Antihyperglycemic [65]

Hirsutidin 345.3 Parkinson’s Disease, DM [66,67]

Nobiletin 402.4 DM [68,69]

Naringin 580.5 DM [70,71]

Hesperidin 610.6 DM [72–74]

Figure 2. The structural assessment of 2D structures of screened flavonoids for molecular docking.

3.4. Molecular Docking Analysis

The CDocker module in Discovery Studio was used to predict two types of energy
values: CDocker energy and CDocker interaction energy. CDocker energy reflects the
overall docking energy considering the 3D structural and physicochemical properties of
both the ligand and protein. On the other hand, CDocker interaction energy specifically
measures the energy associated with interactions between the ligand and the receptor. This
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includes contributions from various intermolecular forces such as van der Waals forces,
electrostatic interactions, and hydrogen bonding, collectively influencing the binding
affinity. CDocker interaction energy provides detailed insights into the strength and nature
of specific interactions between the ligand and the receptor [75].

Daidzein exhibited a CDocker energy of −41.0403 kcal/mol and a CDocker interaction
energy of −42.9466, indicating strong overall docking energy and favorable interaction with
the enzyme. Quercetin showed a CDocker energy of −37.6379 and a CDocker interaction
energy of −47.167, demonstrating substantial binding affinity and interaction strength.
Kaempferol recorded a CDocker energy of −34.4646 and a CDocker interaction energy
of −44.7002, suggesting good binding properties and interaction potential. Butin, with a
CDocker energy of −31.0165 and a CDocker interaction energy of −36.0224, also showed
notable docking and interaction characteristics (Table 2). Naringin and hesperidin exhibited
positive docking energy values. While their interactions are comparable, the overall
CDocker energy is high, indicating the lowest compatibility with aldose reductase.

Table 2. The docking energy values (kcal/mol) of flavonoids against aldose reductase were calculated
by Discovery Studio.

Compounds CDocker Energy
(kcal/mol)

CDocker Interaction Energy
(kcal/mol)

Daidzein −41.0403 −42.9466

Quercetin −37.6379 −47.1670

Kaempferol −34.4646 −44.7002

Butin −31.0165 −36.0224

Genistein −30.3677 −35.1992

Sterubin −29.5728 −37.2468

Baicalein −29.4959 −31.2928

Pulchellidin −27.2066 −43.7286

Wogonin −22.8362 −31.4787

Biochanin A −22.4452 −34.6934

Pelargonidin −19.4438 −38.2605

Natsudaidain −14.8916 −54.1690

Hirsutidin −13.4281 −44.4850

Nobiletin −10.6368 −47.4056

Naringin 0.6767 −49.4979

Hesperidin 11.1379 −46.3707

The results indicate that the top flavonoids, particularly Daidzein, Quercetin, and
Kaempferol, possess strong binding and interaction energies with aldose reductase. This
suggests that these compounds might be effective in inhibiting the enzyme’s activity,
potentially mitigating the harmful effects of hyperglycemia in diabetic complications. The
low CDocker interaction energy values of these compounds reflect their strong and specific
interactions with the active site of aldose reductase, which could translate to effective
inhibition. Previously, a study explored Acumitin and Agathisflavone as promising aldose
reductase inhibitors, primarily focusing on molecular docking studies [24]. They found that
these compounds formed more interactions against the key residues of aldose reductase.
Therefore, to analyze the stability of the docked compounds over time, it is important to
carry out MD simulations. Therefore, we choose the top 10 docked flavonoid compounds
for MD simulation.



Curr. Issues Mol. Biol. 2024, 46 11509

3.5. Molecular Dynamics (MD) Simulations

To assess the stability of the screened compounds against aldose reductase, the docked
complexes were subjected to MD simulations using GROMACS. These simulations were
carried out for a duration of 100 ns to investigate the behavior and stability of the complexes
over time.

3.5.1. Root Mean Square Deviation

The root mean square deviation (RMSD) analysis of the flavonoid compounds pro-
vides key insights into their stability when bound to aldose reductase. RMSD is a crucial
parameter in assessing the stability of the ligand–receptor complex during MD simulations,
with lower RMSD values generally indicating greater stability and more reliable binding
interactions (Supplementary Data Figure S4).

Daidzein, Quercetin, and Baicalein displayed notably stable RMSD values, which re-
mained consistent throughout the simulation. This stability suggests that these compounds
maintain a strong and stable binding conformation within the aldose reductase active
site, reinforcing the results from the molecular docking analysis, where these compounds
also showed strong binding affinities. Butin exhibited relatively low RMSD values as
well, indicating good stability, while Kaempferol, despite a slight increase in the RMSD
after 40 ns, maintained overall stability, suggesting that its binding conformation remains
largely intact with minimal fluctuations. This slight increase in RMSD may indicate minor
adjustments in the ligand’s position within the binding pocket but does not significantly
detract from its overall binding stability (Figure 3). Genistein, which ranked fifth in the
molecular docking analysis, showed stable but comparatively higher RMSD values. The
higher RMSD indicates more pronounced conformational adjustments or flexibility within
the binding pocket. However, this does not necessarily undermine its binding affinity
but rather suggests a dynamic interaction, which can still be favorable after the ligand’s
structural optimization.

Figure 3. Graph (A) depicts the RMSD bar graphs for Daidzein, Kaempferol, Baicalein, Quercetin, and
Butin. Graph (B) displays the RMSD bar graphs for Genistein, Pulchellidin, Biochanin A, Sterubin,
and Wogonin.

In contrast, compounds like Sterubin, Pulchellidin, Biochanin A, and Wogonin exhib-
ited relatively higher RMSD fluctuations. These fluctuations suggest that these ligands
may not maintain a stable binding conformation, possibly due to weaker interactions with
the active site or a lack of key stabilizing contacts. The higher RMSD values for these
compounds correlate with their lower docking scores, indicating that both their binding
affinity and stability are less favorable.

The correlation between RMSD fluctuations and ligand stability is evident from this
analysis. Compounds with strong docking affinities that also maintain low and stable
RMSD values are more likely to form robust, reliable interactions with aldose reductase,
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making them better candidates as potential inhibitors. On the other hand, higher RMSD
fluctuations, even in the presence of moderate docking scores, could indicate less favorable
binding dynamics.

3.5.2. Hydrogen Bond Plot

Daidzein and Quercetin formed two actual hydrogen bonds and consistently main-
tained two potential hydrogen bonds, with the peaks indicating the possibility of forming
additional hydrogen bonds. Butin, Kaempferol, and Baicalein also established one consis-
tent actual hydrogen bond along with two or three potential hydrogen bonds, with the
peaks suggesting up to ten potential hydrogen bonds. Biochanin A, Genistein, Sterubin,
and Wogonin maintained one actual hydrogen bond and several potential hydrogen bonds.
Despite the relatively lower overall stability of these compounds, as indicated by the RMSD
analysis, their interaction profiles were sustained throughout the 100 ns MD simulation
(Figure 4).

Figure 4. The hydrogen bond plot of the simulated flavonoid compounds.
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Comparing these hydrogen bond interactions with the RMSD results, we observe that
compounds like Daidzein and Quercetin, which have strong docking scores and stable
RMSD values, also maintain multiple hydrogen bonds consistently. This suggests that
their stable binding interactions contribute to their overall structural stability. On the other
hand, Biochanin A, Genistein, Sterubin, and Wogonin, while showing consistent hydrogen
bond interactions, have higher RMSD fluctuations. This indicates that their overall binding
stability is less reliable.

3.5.3. MD Interaction Energy

The interaction energies of various flavonoid compounds with aldose reductase were ana-
lyzed, focusing on Coulomb–SR, Lennard–Jones–SR, and the total interaction energy (Table 3).
Daidzein exhibited the highest total interaction energy at −201.3170 KJ/mol, with signifi-
cant contributions from both the Coulomb–SR (−84.11102 KJ/mol) and Lennard–Jones–SR
(−117.2060 KJ/mol) interactions, indicating strong and stable binding with the enzyme.
Quercetin, with a total interaction energy of −159.8031 KJ/mol, showed a substantial
Lennard–Jones–SR interaction (−123.0920 KJ/mol), highlighting its favorable binding
characteristics. Kaempferol displayed a total interaction energy of −167.8917 KJ/mol,
supported by the robust Lennard–Jones–SR interaction (−128.0307 KJ/mol), suggesting
strong binding affinity.

Table 3. The calculated interaction energy of simulated compounds both in Coulomb–SR and
Lennard–Jones–SR. The calculated sum of both is total energy.

Sr No. Compound
Interaction Energy (KJ/mol)

Coul-SR LJ-SR Total Energy

1 Daidzein −84.1110 −117.2060 −201.3170

2 Quercetin −36.7111 −123.0920 −159.8031

3 Kaempferol −39.8610 −128.0307 −167.8917

4 Butin −44.9313 −116.6480 −161.5793

5 Genistein −24.2369 −93.9965 −118.2334

6 Sterubin −52.7002 −85.8427 −138.5429

7 Baicalein −42.8931 −130.7540 −173.6471

8 Pulchellidin −66.2548 −86.5400 −152.7948

9 Wogonin −31.6840 −94.8263 −126.5103

10 Biochanin A −60.9063 −93.4600 −154.3663

Baicalein, with a total interaction energy of −173.6471 KJ/mol, showed strong binding
affinity, particularly due to its substantial Lennard–Jones–SR interaction (−130.754 KJ/mol).
Pulchellidin displayed a total interaction energy of −152.7948 KJ/mol, with a significant
Coulomb–SR interaction (−66.2548 KJ/mol). Wogonin had a total interaction energy of
−126.5103 KJ/mol, with moderate interaction contributions. Biochanin A exhibited a total
interaction energy of −154.3663 KJ/mol, with a notable Lennard–Jones–SR interaction
(−93.4600 KJ/mol). The interaction energy over a 100 ns MD trajectory is graphically
represented in Figure 5. The individual graphs for each compound are depicted in Supple-
mentary Data Figure S5.
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Figure 5. The calculated interaction energy of Daidzein, Quercetin, Kaempferol, Butin, and, Baicalein
is depicted in graph (A) while the interaction energy of Genistein, Pulchellidin, Sterubin, Wogonin,
and Biochanin A is manifested in graph (B) during the 100 ns MD trajectory.

Comparing these interaction energies with previous RMSDs and hydrogen bond
analyses, it is evident that compounds such as Daidzein, Quercetin, and Kaempferol, which
demonstrated strong binding affinities and stable interaction profiles, are corroborated
by their low total interaction energies. These compounds not only maintain stable RMSD
values but also exhibit strong Coulombic and van der Waals interactions, reinforcing their
potential effectiveness as aldose reductase inhibitors. On the other hand, compounds like
Genistein and Sterubin, despite lower total interaction energies, still showed consistent
hydrogen bonding and moderate RMSD stability, indicating their potential but less robust
binding stability. The higher fluctuations in RMSD values for compounds like Pulchellidin,
Wogonin, and Biochanin A, despite their interaction energies, suggest that while they can
form significant interactions, their overall binding stability may be less reliable.

3.5.4. Binding at 100 ns

To confirm the stability of flavonoids against aldose reductase, snapshots at 100 ns
of MD simulation were captured and analyzed using Discovery Studio. The interaction
profile revealed that the ligands remained docked to the active site amino acids of aldose
reductase, maintaining specific interactions throughout the simulation (Figure 6). Daidzein
and Quercetin each formed four conventional hydrogen bonds and exhibited additional hy-
drophobic interactions, indicating strong and stable binding. Conventional hydrogen bonds
involve a hydrogen atom bonded to an electronegative atom that interacts with another
electronegative atom. These bonds are relatively strong as compared to carbon–hydrogen
bonds. Carbon–hydrogen bonds, on the other hand, involve a hydrogen atom bonded
to a carbon atom interacting with an electronegative atom. Kaempferol formed three
conventional hydrogen bonds along with other hydrophobic interactions, demonstrating
substantial binding affinity. Baicalein formed two conventional hydrogen bonds and two
carbon–hydrogen bonds, suggesting a balanced interaction profile. Biochanin A displayed
three conventional hydrogen bonds and two carbon–hydrogen bonds, showing a mix of
strong and moderate interactions. In contrast, Butin, Genistein, Sterubin, Pulchellidin,
and Wogonin each formed one or two conventional hydrogen bonds, indicating relatively
weaker interactions.

Daidzein and Quercetin, which formed multiple conventional hydrogen bonds, ex-
hibited both high interaction energy and stable RMSD values. Kaempferol, with its three
conventional hydrogen bonds, also showed strong binding, aligning with its favorable
docking and RMSD results. Baicalein and Biochanin A, with their mix of conventional and
carbon–hydrogen bonds, demonstrated moderate stability and binding strength, corrobo-
rating their interaction energy profiles. The weaker binding observed for Butin, Genistein,
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Sterubin, Pulchellidin, and Wogonin, which formed fewer conventional hydrogen bonds, is
consistent with their higher RMSD fluctuations and lower overall interaction energies.

Figure 6. The conformation and interaction analysis of simulated compounds at 100 ns MD simulation.

3.6. Binding Free Energy Calculation

The binding free energy for Daidzein, Quercetin, Kaempferol, Butin, and Baicalein,
which exhibited good stability profiles in the 100 ns MD simulations, was calculated using
the entire MD trajectory data. The MD trajectory was divided into five segments, and the
free energy was calculated for each segment individually to provide detailed MMPBSA
insights. The gmx_MMPBSA tool of GROMACS and the MM/PBSA method with default
parameters were employed to compute the binding energy (Figure 7).
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Figure 7. The graphical depiction of gmx_MMPBSA free energy trajectory of top 5 simulation
best compounds.

The free energy calculations for the flavonoid compounds against aldose reductase
were determined, with the results summarized in terms of average ∆G and standard de-
viation. Quercetin exhibited the most favorable free energy of binding with an ∆G of
−19.74 kcal/mol, indicating a strong binding affinity. Diadzein followed closely with an
∆G of −19.68, also suggesting a high binding potential. Baicalein demonstrated a compara-
ble binding affinity with an ∆G of −19.22, while Butin and Kaempferol showed slightly
lower affinities with ∆G values of −16.28 and −15.65, respectively (Table 4). The lower
average ∆G values for Quercetin, Daidzein, and Baicalein correlate with their stable inter-
action profiles observed during the MD simulations. These compounds formed multiple
conventional hydrogen bonds, contributing to their higher binding affinities. Butin and
Kaempferol, although showing slightly higher ∆G values, still demonstrated significant
binding interactions, supported by their RMSD stability and hydrogen bonding patterns
(Supplementary Data Figure S6). Overall, the free energy data supports the molecular
docking and MD simulation results, highlighting Daidzein and Quercetin as promising
aldose reductase inhibitors in our computational study. The stability and strength of these
interactions suggest that these flavonoid compounds could be effective in mitigating the
effects of hyperglycemia and preventing diabetic complications.

Table 4. The MMPBSA binding free energy of the top 5 simulated compounds in every 20 ns
simulation.

Sr No. Compound
1 ns–20 ns 20 ns–40 ns 40 ns–60 ns 60 ns–80 ns 80 ns–100 ns Average

∆G SD ∆G SD ∆G SD ∆G SD ∆G SD ∆G SD

1 Daidzein −24.82 3.32 −22.59 3.88 −19.40 3.55 −15.87 3.72 −15.73 4.24 −19.68 3.74

2 Quercetin −18.26 5.05 −20.94 3.71 −18.45 2.88 −19.86 3.12 −21.18 4.10 −19.74 3.77

3 Kaempferol −14.18 4.18 −18.09 3.06 −16.86 3.04 −13.49 3.74 −15.61 4.05 −15.65 3.61

4 Butin −18.15 3.31 −16.52 3.23 −16.64 3.98 −14.32 4.00 −15.80 4.10 −16.28 3.72

5 Baicalein −18.18 4.50 −18.49 2.72 −19.07 2.52 −20.07 3.57 −20.33 3.57 −19.22 3.37

4. Conclusions

This study systematically evaluated the inhibitory potential of several flavonoid
compounds against aldose reductase, a pivotal enzyme involved in diabetic complications.
Through a combination of molecular docking, MD simulations, and MMPBSA free energy
calculations, we identified Daidzein and Quercetin as the top candidates, demonstrating
strong binding interactions, stable hydrogen bonding profiles, and favorable binding free
energies. Kaempferol, Butin, and Baicalein also showed significant binding affinities,
though with slightly lower stability in comparison to the leading compounds. Importantly,
the detailed analysis of the interaction energies and stability profiles revealed key insights
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into the compatibility of flavonoids with the smaller, hydrophobic binding pocket of
aldose reductase.

This work extends the current understanding of flavonoids in diabetes management by
providing in-depth molecular insights that bridge the gap between existing experimental
evidence and potential therapeutic applications. The findings not only underscore the
relevance of flavonoid compounds as promising aldose reductase inhibitors but also pave
the way for their further optimization. While the results present promising computational
evidence, future studies will be crucial to confirm their efficacy in clinical contexts. There-
fore, this study serves as a critical foundation for guiding experimental validation and the
rational design of novel therapeutics to mitigate diabetic complications.

Supplementary Materials: The following supporting information can be downloaded at: https://
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