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Abstract: Premature ventricular contractions (PVCs) are a common arrhythmia characterized by
ectopic excitations within the ventricles. Accurately estimating the ablation site using an electrocardio-
gram (ECG) is crucial for the initial classification of PVC origins, typically focusing on the right and
left ventricular outflow tracts. However, finer classification, specifically identifying the left cusp (LC),
anterior cusp (AC), and right cusp (RC), is essential for detailed preoperative planning. This study
aims to improve the accuracy of cardiac waveform source estimation and classification in 27 patients
with PVCs originating from the pulmonary valve. We utilized an anatomical human model and
electromagnetic simulations to estimate wave source positions from 12-lead ECG data. Time-series
source points were identified for each measured ECG waveform, focusing on the moment when the
distance between the estimated wave source and the pulmonary valve was minimal. Computational
analysis revealed that the distance between the estimated wave source and the pulmonary valve was
reduced to less than 1 cm, with LC localization achieving errors under 5 mm. Additionally, 74.1%
of the subjects were accurately classified into the correct origin (LC, AC, or RC), with each origin
demonstrating the highest percentage of subjects corresponding to the targeted excitation origin.
Our findings underscore the novel potential of this source localization method as a valuable comple-
ment to traditional waveform classification, offering enhanced diagnostic precision and improved
preoperative planning for PVC ablation procedures.

Keywords: diagnosis; electrocardiogram; source localization; wearable sensing

1. Introduction

Heart diseases remain a leading cause of mortality worldwide, necessitating continual
advancements in diagnostic and therapeutic techniques [1]. Arrhythmias often evade de-
tection through imaging diagnostics, such as echocardiography or MRI, due to the absence
of structural abnormalities, making electrocardiogram (ECG) diagnosis invaluable [2]. The
12-lead ECG, a cornerstone in clinical practice, monitors electrical potentials through six
chest and three limb electrodes, creating 12 distinct vector patterns [1].

Premature ventricular contractions (PVCs) are a common arrhythmia characterized
by ectopic excitations within the ventricles. Standard treatment involves catheter ablation,
where the ectopic focus is identified and ablated to prevent recurrence [3–5]. While ECG
is crucial for the initial classification of the PVC origin, the precise localization of the
ablation site still relies heavily on intraoperative exploration using catheter electrodes [4].
This approach is time-consuming, burdensome for patients, and highly dependent on the
operator’s skill [6]. As a result, developing accurate, ECG-based preoperative techniques is
urgently required for estimating cardiac sources.

PVCs can originate from outflow tracts, most arising from the right or left ventricular
outflow tracts (RVOT or LVOT) [7–11]. Further simple classifications, such as normal
or abnormal, are also considered [12,13]. Previous studies have primarily focused on
classifying the origin as RVOT or LVOT using machine learning or identifying ectopic
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excitations targeting these outflow tracts [14,15]. The results can provide high accuracy
for classifying these two targets. However, for clinical purposes, further classification is
desirable for operational planning, mainly left cusp (LC), anterior cusp (AC), and right
cusp (RC) origins [16–18], but such studies are limited.

Additionally, computational studies have utilized anatomically based human body
models for source estimation in the specific context of cardiac diagnosis [19–22]. These stud-
ies have made significant advances in using personalized models for accurate simulation
and localization, particularly in atrial and ventricular arrhythmias. However, ECG-based
source estimation for PVCs originating at the pulmonary valve remains unexplored. Precise
localization and classification in these cases are clinically valuable for reducing diagnostic
time and improving operational planning. ECG-based source estimation has not yet been
applied to subjects with PVCs originating at the pulmonary valve. Accurate localization
and classification in these cases would be clinically valuable, particularly in reducing the
time needed for diagnosis and improving operational planning.

This study addresses a critical gap in the preoperative estimation of PVC origins,
particularly those arising from the pulmonary valve, which existing methods have largely
overlooked. We aimed to estimate the sources of cardiac waveforms in patients with
PVCs originating from the pulmonary valve. To achieve this, we utilized detailed human
models to perform source estimation of ectopic excitations using 12-lead ECG waveforms
from 27 patients. We assessed the accuracy of our source estimation method for cardiac
waveforms originating at the pulmonary valve. We further explored the classification of
these ablation origins by calculating the Euclidean distance between the estimated wave
source positions and the actual ablation sites. ECG monitoring with wearable sensors
is becoming increasingly prevalent [23–25], and its potential for enhanced diagnostic
applications is anticipated. The proposed approach, utilizing a single standard human
body model, could prove valuable in estimating the origin of ECG signals for broader
diagnostic purposes.

2. Method

In this study, we use previously reported experimental data to replicate source local-
ization and classification using a numerical approach. Section 2.1 outlines the experimental
scenarios in detail. The remainder of this section focuses on the computational replication
based on the experimental data presented in Section 2.1. Specifically, for a standardized
human body model in Section 2.2, electrical phenomena, such as EEG, are replicated within
the computational domain for the electromagnetics method described in Section 2.3. The
source location in the heart is then estimated by solving an inverse problem in Section 2.4.
For the scenarios, settings, and procedures in Sections 2.5 and 2.6, the source origin was
estimated in the time domain.

2.1. Data Source and Its Acquisition Scenario

We have stated that the original dataset contains 334 subjects who successfully under-
went catheter ablation [26], which validated the accurate origins of idiopathic ventricular
arrhythmia. From this dataset, we selected 27 patients whose anatomical sources were
identified as LC, AC, and RC.

The ablation procedure was as follows: Antiarrhythmic medications were discontinued
at least 5 half-lives before the procedure. The ablation was performed under the guidance
of fluoroscopy and a three-dimensional electroanatomic mapping system. Activation
mapping was conducted during VT or PVC episodes, and pace mapping was performed
when VT or PVCs were infrequent, using a pacing cycle length of 500 ms and the minimum
stimulus amplitude required for consistent capture.

Maximum radiofrequency energy was delivered with a power of up to 50 W and an
electrode–tissue interface temperature of 55 ◦C. If VT or PVCs diminished or disappeared
after 30 s of ablation, the energy was applied continuously for 60 to 180 s. Ablation success
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was defined as the absence of spontaneous or induced outflow tract ventricular arrhythmias
30 min after the last energy delivery.

For post-procedural monitoring, success was confirmed through continuous cardiac
telemetry over the next 24 h of inpatient care. Typical ECG waveforms for the origins from
LC, AC, and RC are shown in Figure 1.
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Figure 1. Examples of ECG waveforms (voltage) for the origins from left cusp (LC), anterior cusp
(AC), and right cusp (RC). (a) V1, (b) V2, (c) V3, (d) V4, (e) V5, and (f) V6.

2.2. Human Body Model

An anatomical numerical human body model (XCAT) developed by Duke University
Medical Center was used [27]. XCAT is a voxel model with a resolution of 1 mm created
based on CT images, comprising 18 types of biological tissues, including skin, muscles, fat,
bones, and heart. The heart tissue in XCAT is simplified, lacking a clear separation between
atria and ventricles, and is represented as a single tissue. Different conductivities for
17 biological tissue types, excluding the skin, were assigned according to the 4-Cole–Cole
dispersion model [28], with a conductivity of 0.1 S/m for the skin [29]. Minor tuning has
been carried out for this purpose, as per our previous study [30].

2.3. Volume Conductor Model

Displacement currents are negligible given the low frequency of ECG waveforms
(~1 Hz) [1,24]. We used the scalar-potential finite-difference (SPFD) method [31,32] to
efficiently compute the electric field in a voxel-based body model, addressing the computa-
tional intensity associated with the finite element method analysis [21].

The scalar potential ϕ in the volume conductor is governed by the Poisson equation:{
∇ · (σ∇ϕ) = −∇ · J in Ω
(σ∇ϕ) · nB = 0 on BS

, (1)

where σ, J, nB, Ω, and BS are the tissue electrical conductivity, current density, a unit vector
outwardly normal to the body surface, volume conductor, and body surface, respectively.
This equation was discretized using a quasi-static approximation [25]:(

6

∑
n=1

Sn

)
ϕ0 −

6

∑
n=1

Snϕn = −jωq, (2)
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where n represents the node index, ϕn is the electric potential at the n-th node, ω is the
angular frequency, q is the electric charge at the central node, and Sn is the conductance
between the n-th node and the central node, calculated based on the conductivity of the
surrounding tissue voxels.

Boundary conditions were enforced by setting air voxels adjacent to the body surface.
The resulting equations were solved using Kirchhoff’s current law and an iterative process,
enhanced by the successive over-relaxation method [27] and a multigrid method [28]. Six
multigrid levels were used to expedite the solution, with computations continuing until
the relative residual fell below 10−6.

2.4. Lead Field Matrix

The position of the cardiac electrical sources was estimated using a lead field matrix
(LFM) [7], known for solving inverse problems with high accuracy. The coefficient matrix
representing the relationship between the current density of equivalent current sources in
the heart tissue and the observed potential is expressed in Equation (3):

L · j = Φ, (3)

where L is an LFM of size M × 3N, j is a current density vector of size 3N × 1, and Φ is an
observed potential vector of size M × 1. Electric dipoles simulating the heart’s electrical
activity were placed in the basal direction of the heart tissue for the forward problem to
generate LFM. The observed potential was normalized by the dipole moment direction of
the positive charge position, and the column vectors of LFM were obtained [14].

2.5. Scenarios

Nine electrodes were placed based on the standard 12-lead ECG [1]. LFM was con-
structed by performing forward problem analysis for the basal three directions next to the
estimation target in the heart tissue. An orthogonal matching pursuit (OMP) method esti-
mated the cardiac wave source positions [15]. This algorithm sequentially selects column
vectors from LFM to reconstruct the elements of the estimated vector, starting from the one
with the maximum correlation coefficient with the residual. The estimation algorithm is
presented in Algorithm 1. The iteration was performed five times, and a weighted average
using the updated residual was used to calculate one estimated current density vector for
any input potential.

Algorithm 1 Pseudocode of the proposed algorithm using orthogonal matching pursuit

Initialize current density vector: ĵ = 0

Initialize support vector:
^
L = 0

for i = 1 : 3N
corrcoe f (i) = ϕ·Li

∥ϕ∥∥Li∥
end for
Estimated source location: î = argmax

i
corrcoe f (i)

Support vector: L̂ =
[
L̂, Lî

]
Reconstruction of current density: ĵ = L̂+·ϕ
Update the residual: ϕ = ϕ − L̂·ĵ

The input potentials were the standard 12-lead ECG waveforms of patients with
PVCs [16]. PVCs are classified in detail based on the origin of abnormal excitations,
using the position relationship of blood vessels and valves as references. Twenty-seven
patients with PVCs originating from the pulmonary valve of the RVOT were studied,
including fifteen with LC, six with AC, and six with RC origin (Figure 2). Waveform
processing included noise removal using the wavelet transform applied to the dataset,
and DC offset removal by dividing with the baseline. The sampling frequency was 2 kHz,
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and the time-series data of the input potentials were taken from the rise to the peak of the
ECG waveform.
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2.6. Analysis Procedure

A flowchart of the analysis and estimation is presented in Figure 3. First, electric
dipoles were set as wave sources on the numerical human body model, and electromagnetic
field analysis was performed using the SPFD method. Then, LFM was constructed using
the observed potential and the distribution of internal current density obtained from the
forward problem analysis. Furthermore, for a given time, the OMP method was applied
to LFM to calculate the current density vector j, and the estimated wave source for each
time was determined by repeating this for each time step. Our previous studies verified the
analysis procedure for healthy subjects’ data [30,33,34]. The source localization following
this procedure estimates the location of the source at each time step.
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Figure 3. Flowchart of analysis and estimation. Electrodes (observation points) are set on the XCAT
human body model. Then, the wave source is assumed to be distributed in the heart volume for the
inverse problem. Then, the LFM is constructed from scalar potential and finite difference (SPFD)
method. From the measured data, the wave source is estimated in the time domain.

The minimum Euclidean distance between the source location at each time step and
the corresponding target regions (AC, RC, and LC) is calculated. The target region with
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the minimum distance is classified as the origin of the source. What distinguishes our
approach from other studies is that the analysis is conducted in the time domain during
the post-processing stage. The minimum distance from each potential origin (AC, RC, and
LC) is identified over time, and the region with the overall minimum distance is classified
as the origin, i.e., AC, RC, or LC.

3. Results

The estimated wave source for one subject is presented in Figure 4 as an example.
The time point when the Euclidean distance between the estimated wave source positions
and the pulmonary valve is minimal corresponds to a temporally localized period during
the rise of the input waveform (Figure 4a). Before this estimated target time, the small
amplitude observed during the early excitation phase may cause significant estimation
errors. Therefore, the analysis focuses on excitation propagation from this critical time
point. Figure 4b demonstrates that excitation begins at this time and spreads to the right
ventricle, indicating that the estimation aligns with the excitation mechanism observed in
PVCs. At 0.025 s, a few plots appear around pulmonary valve, corresponding to the origin
in RC. The minimum point distance between the plot and RC was 5.23 mm.
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Figure 4. Example of wave source estimation results. (a) Minimum Euclidean distance between
estimated point and pulmonary valve, and (b) estimated source location in the time domain of wave
source and pulmonary valve from 0.024 s to 0.082 s. The distance was calculated for different target
regions. The region with the minimum distance was classified as the source origin.

Table 1 summarizes the average minimum Euclidean distance between the estimated
origin of excitation and the pulmonary valve across the 27 subjects. The table confirms that
for LC and RC origins, there is an estimated point with a minimum distance of less than
10 mm from the pulmonary valve, while the distance is more considerable for AC.

Table 1. Minimum Euclidean distance from pulmonary valve. SD represents standard deviation.

Subjects Minimum Point Distance (Mean ± SD [mm])

LC (n = 15) 4.59 ± 8.54

AC (n = 6) 10.42 ± 12.45

RC (n = 6) 9.06 ± 6.00

The minimum Euclidean distance from the origins LC, AC, and RC to the pulmonary
valve, the site of abnormal excitation, was calculated and compared for origin classification.
Four out of six subjects (66.7%) with RC as the origin had the minimum Euclidean distance
associated with RC. Twenty out of twenty-one subjects (95.2%) with LC or AC as the origin
had the minimum Euclidean distance associated with LC. This is likely due to the similarity
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in excitation propagation between LC and AC [17] and the smaller amount of myocardial
tissue near AC. However, differences were observed in the excitation sequence of my-
ocardial tissue near each origin (LC, AC). The classification was performed by comparing
the timing at which each origin exhibited the minimum Euclidean distance to account
for the abovementioned differences. The excitation sequence was applicable in 11 out of
14 subjects with LC as the origin (78.6%) and in 5 out of 6 subjects with AC as the origin
(83.3%), successfully classifying 16 out of 20 subjects (80.0%).

Table 2 presents the classification results for subjects with the pulmonary valve as
the origin. The table indicates that among the 27 subjects with the pulmonary valve
as the origin, 20 (74.1%) were correctly classified as the target origin. Additionally, the
highest percentage of targeted excitation origin for each subject was confirmed, highlighting
the effectiveness of the origin classification for cardiac waveforms originating from the
pulmonary valve.

Table 2. Classification results in subjects of pulmonary artery origin.

Subject
Origin in the Pulmonary Valve

LC AC RC

LC (n = 15) 73.3% (n = 11) 20.0% (n = 3) 6.7% (n = 1)

AC (n = 6) 16.7% (n = 1) 83.3% (n = 5) 0%

RC (n = 6) 33.3% (n = 2) 0% 66.7% (n = 4)

4. Discussion and Concluding Remarks

This study conducted wave source estimation for the cardiac waveforms of 27 patients
with the pulmonary valve as the origin. The study aimed to demonstrate that source
localization could provide valuable insights in addition to waveform classification. Despite
the increasing use of machine learning for waveform classification, studies focusing on the
classification of LC, AC, and RC origins have been limited.

Through electromagnetic computer simulations, we confirmed moments when the
distance between the estimated wave source position and the pulmonary valve was small.
The error was generally less than 1 cm using the minimum distance in the time domain,
with LC localization achieving an error of less than 5 mm. Comparing our results with
previous studies is challenging, as no study has explored these specific classifications or the
same target areas. Recent studies using anatomically realistic human body models have
reported mean localization errors was 12.6 ± 11.35 mm [33] and 10.13 ± 5.13 mm [35] for
different targets. The estimation error in this study (Table 1) is comparable to or better than
those in previous studies. Variations in waveform considerations across different studies
may also affect localization accuracy. For example, the necessity of offset correction for
signals has been suggested as an important factor [36], and this study also considered it.

Subsequently, we explored the classification of cardiac waveforms originating from
the pulmonary valve. In 74.1% of the subjects, they were classified into the target origin,
and for each origin, the percentage of subjects with the targeted excitation origin was
the highest; the highest rate of subjects corresponded to the targeted excitation origin.
These findings suggest the effectiveness of the wave source estimation method and the
origin classification for cardiac waveforms originating from the pulmonary valve. The
origin estimation’s accuracy would be improved if combined with machine learning for
waveform classification.

Future research should address individual differences by incorporating body size into
the model and enhancing the accuracy of the estimation algorithm by applying correc-
tion methods for time-series data. Additionally, for a standardized body model, achiev-
ing efficient localization with low computational cost would be essential for wearable
diagnostic applications.
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