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Abstract: We assessed the anti-inflammatory activity of the TSPO ligand 2-Cl-MGV-1. Lipopolysac-
charide (LPS) was used to induce inflammatory response in a murine RAW264.7 macrophage model
(LPS: 100 ng/mL) and a mouse model (C57BL/6) of lung inflammation (LPS: 5 mg/kg). In the
macrophage model, the presence of 2-Cl-MGV-1 (25 µM) caused the LPS-induced elevation in nitrite
levels to decrease by 70% (p < 0.0001) and interleukin (IL)-6 by 50% (p < 0.05). In the mouse model,
2-Cl-MGV-1, administered 30 min before, or co-administered with, an LPS injection, significantly
inhibited the elevation in serum IL-5 levels (both by 65%; p < 0.001 and p < 0.01, respectively).
2-Cl-MGV-1 administration to mice 30 min before LPS injection and 1 h thereafter significantly
inhibited the elevation in IL-1β serum levels (both by 63%, p < 0.005). IL-6 elevation was inhibited
by 73% (p < 0.005) when 2-Cl-MGV-1 was administered 30 min before LPS, by 60% (p < 0.05) when
co-administered with LPS, and by 64% (p < 0.05) when administered 1 h after LPS. All cytokine as-
sessments were conducted 6 h post LPS injection. Histological analyses showed decreased leukocyte
adherence in the lung tissue of the ligand-treated mice. 2-Cl-MGV-1 administration 30 min prior
to exposure to LPS inhibited inflammation-induced open field immobility. The beneficial effect of
2-Cl-MGV-1 suggests its potential as a therapeutic option for inflammatory diseases.

Keywords: inflammatory response; cytokines; lipopolysaccharide (LPS); 2-Cl-MGV-1; translocator
protein (TSPO); RAW264.7 macrophages

1. Introduction

Systemic inflammation (SI) is an exaggerated response of the immune system triggered
by a broad spectrum of pathological conditions and infections [1]. While inflammation
typically acts as a protective mechanism that aims to maintain homeostasis in the human
body, severe and prolonged inflammatory responses may result in severe and irreversible
organ damage, leading to multi-organ dysfunction [2,3]. One should also keep in mind
that SI is a significant contributor to the pathogenesis of life-threatening diseases such as
sepsis, neuroinflammation, and neurodegenerative and autoimmune diseases [4–6].

While the precise mechanisms underlying SI are not yet fully understood, studies
suggest that a complex set of stimuli triggers the activation of various immune blood cells,
particularly lymphocytes, neutrophils, and macrophages [7]. This, in turn, leads to the over-
secretion of several pro-inflammatory mediators, including cytokines, chemokines, and

Cells 2024, 13, 1702. https://doi.org/10.3390/cells13201702 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells13201702
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-7326-6083
https://orcid.org/0000-0002-9765-8938
https://doi.org/10.3390/cells13201702
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells13201702?type=check_update&version=3


Cells 2024, 13, 1702 2 of 12

reactive oxygen species [8]. The cytokines released during this process include interleukin
(IL)-6, IL-5, and IL-1β.

IL-6 is a soluble cytokine with a pleiotropic effect on inflammation, immune response,
and hematopoiesis [9,10]. It is synthesized in local lesions in the initial stage of inflammation
and moves to the liver through the bloodstream. This process initiates the rapid synthesis of
acute-phase proteins such as C-reactive protein (CRP), serum amyloid A (SAA), fibrinogen,
haptoglobin, and alpha1-antichymotrypsin [11].

Other cytokines relevant to inflammation include IL-1β, also known as lymphocyte-
activating factor [12], and IL-5, which is involved in the differentiation, recruitment, sur-
vival, and degranulation of eosinophils and is particularly relevant to bronchial asthma [13].

Several medications are used for treating SI, but their efficacy is impeded by various
factors, including suboptimal pharmacokinetic properties, off-target effects, and insufficient
selectivity for key inflammatory pathways. Established drugs, including nonsteroidal anti-
inflammatory drugs (NSAIDs), corticosteroids, and immunosuppressants, have demon-
strated some effectiveness in attenuating the inflammatory response. Experience, however,
raises concerns regarding their safety, tolerability, and long-term use and limits their clinical
utility [14,15].

The translocator protein (TSPO) is an 18 KDa protein known to play a key role in
numerous essential biological processes [16,17]. Recent studies have shown that TSPO is
involved in systemic inflammatory responses [18,19]. In these cases, it is highly expressed
in distinct immune cells, especially in macrophage cells [20]. A neuro-inflammatory study
has shown that, in microglial cells, the anti-inflammatory effect of the ligand may be
achieved by the suppression of NF-κB protein expression [19]. Another possibility is that
the stimulation of steroid synthesis contributes to the anti-inflammatory effect of TSPO
ligands [21].

Given the significant morbidity and mortality associated with diseases characterized
by SI [22], and the scarcity of drugs to treat these conditions [15], there is clearly an unmet
need for the development of novel therapeutic strategies to effectively mitigate pathological
consequences and improve patient outcomes. As a key player in SI, TSPO presents a
promising opportunity for targeted therapeutic interventions. Our lab has, therefore,
developed a novel TSPO ligand called 2-Cl-MGV-1 that was characterized extensively [23]
and shown to possess anti-inflammatory effects in in vitro models [18,19].

The present study aims to explore the therapeutic potential of TSPO immuno-modulatory
activity by treating SI in in vitro and in vivo models using LPS-induced inflammation in a
RAW264.7 macrophage cell line and the lungs of C57BL/6 mouse models of SI.

2. Materials and Methods
2.1. The In Vitro Cellular Model of Inflammation

RAW264.7 macrophage cells (ATCC, Rockville, MD, USA) were cultured at 37 ◦C with
5% CO2 in 90% relative humidity. Cells were incubated in Dulbecco’s modified Eagle’s
medium (DMEM) containing 4.5 g/L glucose and 2 mM L-glutamine and supplemented
with 10% fetal bovine serum, 1% sodium pyruvate, penicillin (100 U/mL), and streptomycin
(100 µg/mL).

2.1.1. Viable Cell Counting with Trypan Blue Exclusion Dye Assay

Cells were counted using Neubauer slides, whereby viable cells do not take up trypan
blue dye, while non-viable cells absorb the dye and appear blue.

The process started with cells being scraped off the plates and suspended in a fresh
medium. Next, a 200 µL sample was collected for cell counting. Trypan blue (Sigma-
Aldrich, Rehovot, Israel) at a final concentration of 0.05% was used to stain the cell sample.
The medium and dye were mixed at a volume ratio of 1:1 and the stained cells were counted
using a hemocytometer with an inverted microscope (Sigma-Aldrich-Merck, Jerusalem,
Israel). All cells were found to be viable and were counted in the in vitro groups described
later in Materials and Methods.
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2.1.2. LPS Stimulation of Macrophages

RAW264.7 cells were seeded in a 12-well plate for 24 h. Subsequently, the cells were
exposed to 100 ng/mL LPS (Sigma-Aldrich, Rehovot, Israel). Twenty-four hours after LPS
exposure, the cells were trypsinized and the media samples were collected for several
assays. The serotype of the LPS was Escherichia coli O55:B5.

2.1.3. Nitrite Assay as an Inflammatory Marker

Nitrite production was determined by mixing 100 µL of cell culture supernatant with
Griess reagent at a ratio of 1:1. Sodium nitrate (0.1 M) was used to create the calibration
curve. Absorbance at 540 nm was measured with the Spectrophotometer Infinite® 200
PRO (Tecan Trading AG, Männedorf, Switzerland) after leaving the sample on a shaker for
15 min.

2.1.4. Enzyme-Linked Immunosorbent Assay for Assessment of Cytokine Levels

The levels of cytokines were assessed using specific enzyme-linked immunosorbent as-
say (ELISA) kits. All the samples were diluted according to the manufacturer’s instructions
and cytokine levels were compared between groups. All the reagents came ready-for-use in
commercial kits and were stored according to the manufacturer’s (Abcam, Cambridge, UK)
instructions. The kits included the following: Mouse IL-6 ELISA Kit (ab222503; Abcam,
Cambridge, UK): 11.3 pg/mL sensitivity. This kit recognizes both native and recombinant
mouse IL-6 protein, as well as rat IL-6 protein. Mouse IL-1β ELISA Kit (ab197742; Abcam,
Cambridge, UK): 1 pg/mL sensitivity. No cross-reactivity was observed with Mouse IL-1α
and Mouse IL-1 receptor1. Mouse IL-5 ELISA Kit (ab204523; Abcam, Cambridge, UK):
1.2 pg/mL sensitivity.

2.1.5. Assessing the Effects of 2-Cl-MGV-1 on RAW264.7 Inflammatory Response to LPS

RAW264.7 murine macrophages were exposed to 100 ng/mL of LPS with or without
the TSPO ligand 2-Cl-MGV-1 (25 µM). The cell culture supernatant was collected and
aliquoted and the cell lysates were prepared using a lysis buffer as previously described [24].
Alterations in nitrite content and cytokines in the supernatant were assessed.

2.2. The In Vivo Mouse Model for Systemic Inflammation

Male C57BL/6 mice (6 weeks old, 20 ± 2 g), obtained from Envigo (Rehovot, Israel),
were housed in a pathogen-free room under controlled temperature (22–23 ◦C), humidity
(55% ± 15%), and lighting (12-hour light–dark cycles) and were given access to food and
water ad libitum.

The study was approved by the Technion committee for experiments in animals
(IL-084-07-2020).

The mice were divided into five treatment groups:

• Vehicle: vehicle (20 µL DMSO; S.C.);
• LPS + vehicle: LPS (5 mg/kg; I.P.) + vehicle (20 µL DMSO; S.C.);
• Pre-administration group: 2-Cl-MGV-1 (7.5 mg/kg; S.C.) administered 30 min before

LPS (5 mg/kg; I.P);
• Co-administration group: co-administration of 2-Cl-MGV-1 (7.5 mg/kg; S.C.) + LPS

(5 mg/kg; I.P.) administered at the same time;
• Post-administration group [LPS+2-Cl-MGV-1(post LPS)]: 2-Cl-MGV-1 (7.5 mg/kg) S.C.

administered 1 h after LPS (5 mg/kg) I.P. This group did not participate in the in vivo
IL-5 experiment due to technical problems.

The mouse survival rate was 100%.

2.2.1. Blood Collection

Blood was collected 6 h after LPS or vehicle administration. The mice were sacrificed
by placing them in a closed container and introducing isoflurane via a vaporizer (5%
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isoflurane). They inhaled the vapors until respiration ceased and death ensued. They were
then decapitated and blood samples were collected for cytokine assessments.

After 20 min at room temperature, the sera were separated by centrifugation and
were stored at −80 ◦C until they were assayed for cytokines. Serum cytokine levels were
determined with ELISA using a Spectrophotometer Infinite® 200 PRO microplate reader
(Tecan Trading AG, Männedorf, Switzerland).

2.2.2. Histology of Lung Tissue

Mouse lungs were collected 6 h after LPS or vehicle administration and were then
inflated with 3ml of neutral buffered formalin (4%) and fixed for 24 h [25]. Following
fixation, lungs were processed using a Tissue-Tek VIP6 tissue processor (Sakura Finetek
USA, Inc., Torrance, CA, USA) and were paraffin-embedded. Sections 4 µm in size were
stained with hematoxylin–eosin and imaged at ×40 using a Nikon DS-Fi2 camera (Nikon
Corporation, Tokyo, Japan). Analysis of adherent leukocyte density was performed using
Image-Pro Plus v. 6.0 (Media Cybernetics, Rockville, MD, USA).

Five representative images of large pulmonary vessels were analyzed for each group.
The inner circumference of each blood vessel was measured in pixels, and then adherent
leukocytes were counted manually. The density of leukocyte adherence to endothelial
cells was calculated as the number of leukocytes per 1000 pixels of blood vessel circum-
ference. The adherence of leukocytes to the blood vessel walls represents an immediate
inflammatory response.

2.2.3. In Vivo Behavioral Assessment

Six hours after the administration of the various treatments, the mice were observed
for 5 min in an open field (52.5 × 48.5 × 12 cm arena). For each mouse, it was recorded
whether the mouse spent the whole 5 min staying in a corner (Corner).

2.3. Statistical Analyses

Results are presented as mean ± standard error of mean (SEM). The data were an-
alyzed using the one-way analysis of variance (ANOVA) test followed by Bonferroni’s
post hoc test. Fisher’s Exact Test was used for the categorical behavioral data. Statistical
significance was set at p < 0.05.

For the in vitro cellular model of inflammation experiments, all samples were chosen
to include 4 mice, as this size was deemed large enough for statistical analysis.

Initially, the samples for all cytokine experiments were chosen to include 4 mice for
the vehicle group and 7 for the other groups. However, due to unknown and unexplained
technical issues, no results were obtained in the IL-6 experiment for the “2-Cl-MGV-1
administered 1 h after LPS” group for one sample. The sample could therefore not be
included in the analysis, so the size of this group in the experiment ended up being n = 6.

In the in vivo experiments, the groups containing vehicle were chosen to be larger
(n = 10) than the other groups (n = 5, i.e., ratio of 2:1) in order to ascertain that the control
groups were large enough to represent the normal range. For the behavioral experiments,
we used Fisher’s Exact Test.

3. Results
3.1. In Vitro Cellular Model of Inflammation

The exposure of RAW264.7 cells to LPS was associated with marked elevation in nitrite
and IL-6 compared to vehicle (DMSO). These elevations were attenuated by 2-Cl-MGV-1
(Figure 1A,B). In this in vitro paradigm, 2-Cl-MGV-1 successfully inhibited the production
of nitrite (65%, p < 0.0001) and reduced the release of the pro-inflammatory cytokine IL-6
(54%, p < 0.05) as compared to LPS (with or without vehicle). The ligand 2-Cl-MGV-1 alone
did not affect the nitrite and IL-6 levels and they remained in the vehicle range.
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Figure 1. (A) Nitrite levels; (B) IL-6 levels in RAW264.7 cells exposed to 100 ng/mL of LPS and 25 µM
of 2-Cl-MGV-1 for 24 h. ANOVA followed by the Bonferroni post hoc test was performed. Results
were calculated using a standard calibration curve and are presented as mean ± SEM.
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3.2. In Vivo Mouse Model of Systemic Inflammation

Circulatory inflammatory cytokine levels increased considerably 6 h after LPS admin-
istration.

IL-6 Serum Levels

The IL-6 serum levels of C57BL/6 mice were assessed 6 h after administering LPS
I.P. (5 mg/kg). 2-Cl-MGV-1 (7.5 mg/kg) administered 30 min before LPS inhibited the
LPS-induced increase in IL-6 by 73% (p < 0.005), while co-administration with LPS inhibited
IL-6 elevation by 60% (p < 0.05), and administration 1 h after LPS inhibited IL-6 elevation
by 64% (p < 0.05 for all; Figure 2).
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Figure 2. The impact of 2-Cl-MGV-1 administration on LPS-induced serum IL-6 elevation in
C57BL/6 mice. Assessment of IL-6 serum levels was performed 6 h after administration of LPS
(LPS—5 mg/kg I.P., 2-Cl-MGV-1–7.5 mg/kg S.C., vehicle—DMSO). Serum IL-6 levels (pg/mL) were
assessed using a standard calibration curve and are presented as mean ± SEM. One-way ANOVA
followed by the Bonferroni post hoc test was performed.

Figure 3 shows the alterations in IL-1β serum levels following exposure to LPS. The
IL-1β serum levels in the LPS+2-Cl-MGV-1 groups were about 56–61% lower than in the
LPS+vehicle group. (p < 0.005 for all, Figure 3).

Figure 4 shows the changes in IL-5 serum levels following the administration of LPS.
The LPS+vehicle group showed a significant up-regulation of IL-5 serum levels. IL-5 serum
levels in the LPS+2-Cl-MGV-1 groups when administered 30 min before, or co-administered
with, LPS were significantly lower compared to the LPS+vehicle group (57% reduction for
both, p < 0.001 and p < 0.01, respectively).
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C57BL/6 mice. Assessment of IL-5 serum levels was conducted 6 h after administration of LPS
(LPS—5 mg/kg I.P., 2-Cl-MGV-1—7.5 mg/kg S.C., vehicle—DMSO). IL-5 levels (pg/mL) were mea-
sured using a standard calibration curve and are presented as mean ± SEM. One-way ANOVA
followed by the Bonferroni post hoc test was performed.
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3.3. Histology of Lung Tissue

As shown in Figure 5, LPS I.P. (5 mg/kg) administration was associated with a robust
increase in leukocyte adherence to pulmonary blood vessels, while 2-Cl-MGV-1 (7.5 mg/kg
S.C.) co-administration prevented the elevation of leukocyte adherence, leaving it in the
vehicle range. The administration of 2-Cl-MGV-1 alone did not affect leukocyte adherence.
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of leukocyte adherence to endothelial cells in the pulmonary blood vessels (density per 1000 pixels) in
the 4 groups. Histology of lung tissue was performed 6 h after LPS or vehicle administration. Results
are expressed as mean ± SEM. ANOVA followed by the Bonferroni post hoc test was performed.
Samples of adherent leukocytes are marked by circles.

3.4. In Vivo Behavioral Assessment

Six hours after the administration of the various treatments, the elevation in IL-6
(Figure 2) was associated with depression-like behavior, reflected by staying in a corner
of the cage for the whole 5 min of observation (Table 1). The administration of 2-Cl-
MGV-1 30 min prior to the administration of LPS significantly inhibited the LPS-induced
depression-like behavior. These results indicate the ability of the ligand to prevent the
inflammation-induced suppression of mobility in an open field. No significant results were
obtained, however, when the ligand was administered simultaneously with LPS or 1 h after
LPS exposure (p = 0.07 for both; Table 1).

Table 1. Behavioral assessment in open field.

Staying in the Corner
Corner/Total (%)

Statistics
(Fisher’s Exact Test):
P of Comparisons
vs. LPS + Vehicle

Vehicle 0/4 (0) 0.003

LPS + Vehicle 7/7 (100) -

2-Cl-MGV-1 administered 30 min before LPS 1/7 (14) 0.005

2-Cl-MGV-1 co-administered with LPS 3/7 (42) 0.07

2-Cl-MGV-1 administered 1 h after LPS 3/6 (50) 0.07

4. Discussion

The major finding of this study is that the TSPO ligand 2-Cl-MGV-1 exhibits anti-
inflammatory activity in both in vitro cellular and in vivo LPS models of SI.

RAW264.7 macrophage cells and C57BL/6 male mice were used for the cellular and
animal models of SI, respectively. It was shown that the novel TSPO ligand 2-Cl-MGV-1
inhibited LPS-induced inflammation, as reflected by the attenuation of nitrite accumulation
and pro-inflammatory cytokine release (IL-6) in the medium (in vitro) and IL-1β, IL-6, and
IL-5 in serum (in vivo). The immunomodulatory effect of 2-Cl-MGV-1 and other TSPO
ligands has been previously reported in other cellular [18,26–29] and in vivo models of
inflammation [30].

LPS IP administration to mice causes SI. The innovative TSPO ligand 2-Cl-MGV-1
attenuated the synthesis or the release of inflammatory molecules, or both. It is possible
that the anti-inflammatory activity was achieved by the inhibition of NF-κB protein expres-
sion [19,31]. In a previous study, pre-treatment (3 days) of C57BL/6 mice with the classical
TSPO ligand PK 11195, followed by 11 days of systemic chronic injection of LPS, attenuated
LPS-induced cognitive dysfunction [25,31]. This protective effect was related to the nor-
malization of cyclooxygenase-2 levels, increased synthesis of the protective neurosteroids
progesterone and allopregnanolone, and down-regulation of β-site APP-cleaving enzyme-
1 [31]. Similar neuroprotective effects were shown with etifoxine. The PK 11195 TSPO
ligand also attenuated systemic LPS-induced neuroinflammation and cognitive dysfunction
in C57BL/6 mice. Such anti-neuro-inflammatory activity was achieved by the alleviation of
hippocampal inflammation, associated with an increase in brain neurosteroids [25,31].

In our mouse model of pulmonary inflammation, 2-Cl-MGV-1 prevented the inflam-
matory response to LPS, as reflected by a lesser adherence of leukocytes to endothelial cells
in pulmonary blood vessels [32]. Such adherence is a marker of pulmonary inflammation
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(i.e., a bacterial-pneumonia-like condition). The ligand restored leukocyte adherence to the
vehicle range (Figure 5).

On the behavioral level, the LPS-induced depression-like behavior (i.e., staying in the
corner) in mice was significantly attenuated when the ligand was administered 30 min
prior to LPS, and the protective effect approached significance (p = 0.07) when the ligand
was co-administered or administered 1 h after exposure to LPS. Thus, it appears that the
ligand can prevent the LPS-induced mobility deficit related to SI. Future studies should
assess the effect of the ligand on LPS-induced deficits in social behavior and the increase in
anxiety and depressive-like behavior [9]. Such studies should include the assessment of
NF-κB protein, neurosteroids, and the relevant inflammatory pathways.

Limitations

Unfortunately, in the present study, we did not analyze specific M1 and M2 markers.
However, both in vitro and in vivo experimental approaches consistently demonstrated
the suppression and even prevention of inflammatory pathways following treatment
with 2-Cl-MGV-1.

In a previous study [19], we demonstrated that 2-Cl-MGV-1 is a suppressor of NF-κB
protein expression. Unfortunately, in the present study, we did not assess the NF-κB protein
expression in RAW264.7 macrophages.

Another limitation of this study is the fact that the authors did not investigate the
effects of 2-Cl-MGV-1 on the inflammatory responses in macrophages and mouse lungs
caused by LPS through TSPO protein signaling. Another study to this effect using TSPO-
knockout cells and mice is planned for the near future.

Notably, in this study, only the low-affinity (2.6 ± 1.0 nM) 2-Cl-MGV-1 TSPO ligand
was used in all experiments. A comparison to high-affinity TSPO ligands is needed to
substantiate the role of TSPO in the immunomodulatory effects of 2-Cl-MGV-1. Although
speculative, it is possible that the safety of the low-affinity ligand is better than that of
high-affinity ligands.

5. Conclusions

In conclusion, we showed that the novel TSPO ligand 2-Cl-MGV-1 is a potent inhibitor
of inflammatory pathways in cellular and animal models of inflammation. The anti-
inflammatory effects may be mediated by a suppressive effect of the ligand on NF-κB
protein and steroid expression [19,31]. TSPO may thus serve as a novel target for the
treatment of inflammatory diseases. Further investigation of this ligand in acute and
chronic inflammatory conditions, including autoimmune diseases, is warranted.
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