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Abstract: This study addresses the problem that the traditional method is not effective in improving
the adsorption performance of vacuum suckers. From the perspective of bionics, the adsorption
performance of bionic suckers based on the excellent adsorption of the abalone abdominal foot was
studied. A bionic sucker was designed by extracting the sealing ring structure of the abdominal foot
tentacle. The bionic sucker was subjected to tensile experiments using an orthogonal experimental
design, and the adsorption of the bionic sucker was simulated and analyzed to explore its adsorption
mechanism. The results show that the primary and secondary factors affecting the adsorption of the
sucker are the number of sealing rings, the width of sealing rings and the spacing of sealing rings. At
60% vacuum, the bionic sucker with two sealing rings, a 1.5 mm sealing ring width and 3 mm sealing
ring spacing has the largest adsorption force, and its maximum adsorption force is 15.8% higher than
that of the standard sucker. This study shows that the bionic sucker design can effectively improve
the adsorption performance of the sucker. The bionic sucker had a different stress distribution on the
sucker bottom, which resulted in greater Mises stress in the sealing ring and the surrounding area,
while the Mises stress in the central area of the sucker was smaller.

Keywords: engineering bionics; sucker; abalone; sealing ring; adsorption

1. Introduction

As important terminal actuators in vacuum adsorption devices, vacuum suckers
have the advantages of high work efficiency, many application scenarios, low cost and
no pollution. Therefore, they have been widely used in industrial and civil fields to meet
increasingly diverse needs [1–3]. When a vacuum sucker is working, a certain degree of
vacuum is generated in the closed space between the sucker and the adsorption surface
by excluding the gas between the sucker and the adsorption surface, so that the sucker is
firmly adsorbed on the surface of the object through atmospheric pressure [4,5]. However,
vacuum suckers are prone to problems such as poor sealing of the sucker and vacuum
leakage during adsorption, which leads to a decrease in the adsorption force of the sucker
and even adsorption failure, resulting in an increase in production costs and serious safety
concerns [6,7]. Therefore, in order to improve the adsorption capacity of vacuum suckers
and meet the higher functional requirements for vacuum suckers in all fields, it is of great
significance to develop vacuum suckers with strong adsorption capacity, good stability and
high compatibility with adsorption surfaces.

To date, domestic and foreign scholars and related engineers and technicians have
carried out comprehensive and in-depth research on improving the adsorption perfor-
mance of vacuum suckers. The research focuses mainly on two aspects, namely, sucker
structure optimization and sucker material improvement. The structural optimization
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of the sucker is mainly based on the use environment of the sucker. For example, the
corrugated pipe type sucker with sealed lip designed by the Schmalz Company in Ger-
many can adapt to the adsorption of different food packaging bags, and can also be firmly
grasped under the high-speed movement of the sucker [8]. The sucker with a sponge at
the bottom designed by Aribest is suitable for objects with very rough or uneven adsorp-
tion surfaces [9]. At present, vacuum suckers are mainly divided into the standard flat
type, deep concave type, sponge type, short bellows type, long bellows type, elliptical
type, thin object type, elliptical concave type, nozzle type and so on. These different
structures are suitable for different working environments and adsorption surfaces, such
as flat, curved, rough, slender tubular and other surfaces. The sucker material is mainly
selected according to the surface roughness, ambient temperature, oil resistance and other
conditions of use. At present, there are diverse vacuum suckers with differences in struc-
ture, but the basic structure has been finalized. Therefore, it is difficult to carry out novel
innovations in structure to improve the adsorption capacity of suckers. The selection
of vacuum sucker materials is mainly based on the requirements of the actual use envi-
ronment. There are many limiting factors for improving the adsorption performance by
changing the sucker material, and the actual effects are not obvious. In order to further
improve the adsorption performance of vacuum suckers to meet the development needs of
industry, the theory of engineering bionics has become a new approach to improving their
adsorption performance.

After a long period of evolution, organisms have formed their own unique abilities
to adapt to the natural environment. Among them, adsorption is one of the abilities of
organisms. Through adsorption, animals can carry out various activities such as crawling,
predation, grabbing, escaping, etc., thus protecting themselves and the survival and re-
production of populations [10–12]. Common organisms with adsorption capacity include
octopus, leech, abalone, clingfish and remora. The suckers on these organisms have strong
adsorption capacity, and can not only adsorb on smooth surfaces, but also have good
adsorption capacity on non-smooth surfaces [13–16]. In order to improve the adsorption
performance of the vacuum sucker, relevant researchers have used engineering bionics
methods to design the sucker to improve its adsorption capacity. Francesca Tramacere
et al. established a three-dimensional model of the octopus sucker by means of ultrasonic
and nuclear magnetic imaging, and prepared an imitation octopus sucker entity using
silicone materials. It can be seen from their experiment that the adsorption force of the
imitation octopus sucker with a diameter of 2 cm was about 8 N, which results in good
adsorption capacity [17]. Petra Ditsche et al. designed a bionic sucker with a soft and hard
double-layer structure based on the sucker structure of the Northern clingfish, which has
good adsorption effect on both smooth and rough surfaces [18,19]. Ding et al. designed
a bionic sucker with multiple folds and an array of small holes based on the pore cavity
structure of a leech sucker. It can be seen from their experimental analysis that these suckers
have the advantages of large Mises stress, good sealing properties, a strong adsorption force
and good shear resistance [20]. Based on the study of octopus suckers and muscles, Greco
et al. developed a flexible integrated bionic sucker for wet conditions, which achieved
an adsorption pressure of 6 kPa in 300 ms and had good adsorption effects [21]. Cong
et al. designed and processed the pit shape on the bottom surface of a sucker imitating
a leech sucker, so that the working surface of the sucker formed a number of smaller
multi-dimensional suckers. Through experiments and finite element analysis, it could
be seen that the existence of pit structures on the working surface of the bionic sucker
significantly increased its adsorption force. Compared with the average adsorption force of
the standard sucker on the substrate surface, the maximum and minimum growth rates of
the average adsorption force of the bionic sucker were 49.21% and 14.00%, respectively [22].
By further observing the structure of the octopus sucker, Kim et al. used a flexible film
to separate the vacuum cavity between the suckers, so that the leakage of a single sucker
in the sucker array only affected the leaking sucker, which greatly improved the stability
of the sucker adsorption [23]. Wang et al. have developed remora-like suckers that can
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achieve remora-like ‘hitchhiking’ capabilities by generating considerable shear resistance
through carbon fiber spines inside the sucker [24].

At present, there are many studies on the bionic design of suckers using octopus, leech,
clingfish and other adsorption organisms as bionic prototypes, but there are few studies on the
design of bionic suckers with abalone as a bionic prototype Abalone is an adhesive organism
in the ocean whose abdominal foot has strong adhesion capabilities [25–27]. According to
reports, an abalone with a body length of about 15 cm has an adhesion force of up to 200 kg,
highlighting the organism’s strong adhesion force [28]. Due to the strong adhesive properties
of abalone, researchers have conducted extensive studies on the adhesion of the organism’s
muscular foot. Lin et al. studied the American red abalone and found that its abdominal
foot surface is composed of fibers with two sizes. This multi-level fiber structure enables
the abdominal foot sucker to form an interlocking structure on surfaces with a variety of
roughness types, effectively improving the adaptability of abalone to different adhesion
surfaces [29]. Li et al. tested the adhesion force of abalone in both water and air using
various force measuring plates. The authors found that the adhesion force of the abalone’s
abdominal foot primarily comes from vacuum adhesion forces, van der Waals forces, and
capillary forces [30]. Xi analyzed measurements of abalone’s adhesion force on different force
measuring plates and determined that the vacuum adhesion force plays a significant role in
the total adhesion force of abalone [31].

Based on the good adsorption and adaptability of abalone on different morphological
surfaces, this paper selects abalone with good adsorption as a bionic prototype from the
perspective of bionics. The bionic vacuum sucker is designed by extracting the surface
morphology of an abalone gastropod, and the designed bionic sucker is processed and
prepared. According to the method of experimental optimization design, adsorption tests
of standard and bionic suckers were carried out, and the influence of bionic structural
parameters on the adsorption of suckers was analyzed. The finite element method was
used to analyze the force on the bottom surface of the sucker, and the mechanism of the
high adsorption of the bionic sucker was analyzed based on the adsorption results of
the sucker.

2. Materials and Methods
2.1. Observation of Abalone Abdominal Foot

The abalone used in the experiment is Haliotis discus hannai, purchased from an
aquatic market. The mass of abalone used was in the range 55–65 g [32,33]. Abalone
comprise the surface shell and the internal gastropod, as shown in Figure 1a–c. The
state of abalone gastropod adsorption is shown in Figure 1d. The abalone gastropod was
observed by a stereomicroscope (Stemi 2000-C, ZEISS, Oberkochen, Germany), and it was
found that the gastropod was surrounded by tentacles, as shown by the red dotted line in
Figure 1d. When the abalone is pulled upward, the circular abdominal foot tentacles will
quickly shrink inward and squeeze each other, forming a sealing ring structure to improve
the sealing performance of the abdominal foot sucker, thereby improving the adsorption
capacity of the abalone. In this paper, the sealing ring structure formed by abalone tentacles
is extracted and used as a design feature of the bionic sucker.
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2.2. Bionic Sucker Design

In order to carry out bionic design on the bottom surface of the vacuum sucker, the flat
sucker commonly used in the industry was selected as the standard sucker. The diameter
of the sucker is 60 mm. The structural parameters of the standard sucker were as shown
in Figure 2. Using the structural parameters of the standard sucker, a three-dimensional
model of the sucker was established, as shown in Figure 3.

Biomimetics 2024, 9, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. (a) Abalone shell; (b) abalone abdominal foot (crouching state); (c) the positional relation-
ship between the abdominal foot and the shell; (d) abalone abdominal foot surface and tentacle. 

2.2. Bionic Sucker Design 
In order to carry out bionic design on the bottom surface of the vacuum sucker, the 

flat sucker commonly used in the industry was selected as the standard sucker. The diam-
eter of the sucker is 60 mm. The structural parameters of the standard sucker were as 
shown in Figure 2. Using the structural parameters of the standard sucker, a three-dimen-
sional model of the sucker was established, as shown in Figure 3. 

 
Figure 2. Structural parameters of the standard sucker. 

 
Figure 3. A 3D model of the standard sucker (part sectioned view). 

Figure 2. Structural parameters of the standard sucker.

Biomimetics 2024, 9, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. (a) Abalone shell; (b) abalone abdominal foot (crouching state); (c) the positional relation-
ship between the abdominal foot and the shell; (d) abalone abdominal foot surface and tentacle. 

2.2. Bionic Sucker Design 
In order to carry out bionic design on the bottom surface of the vacuum sucker, the 

flat sucker commonly used in the industry was selected as the standard sucker. The diam-
eter of the sucker is 60 mm. The structural parameters of the standard sucker were as 
shown in Figure 2. Using the structural parameters of the standard sucker, a three-dimen-
sional model of the sucker was established, as shown in Figure 3. 

 
Figure 2. Structural parameters of the standard sucker. 

 
Figure 3. A 3D model of the standard sucker (part sectioned view). 

Figure 3. A 3D model of the standard sucker (part sectioned view).



Biomimetics 2024, 9, 623 5 of 13

According to the structural size of the standard sucker and based on the structural
characteristics of the sealing ring formed by the tentacle, the bionic design of the standard
sucker was carried out. The width, number and spacing of the sealing rings were selected
as the design feature factors of the bionic sucker.

Based on the characteristics of the sealing ring formed by the contraction of the
abdominal foot tentacles during abalone adsorption, the bionic design of the standard
sucker was carried out. Because the width and number of sealing rings affect the contact
pressure and sealing between the sucker and the adsorption surface, and because the
spacing of the sealing rings affects the stress distribution on the bottom surface of the sucker,
the width, number and the spacing of the sealing rings were selected as the characteristic
design factors of the bionic sucker. Depending on the size of the bottom surface of the
standard sucker and the width of the abdominal foot tentacles, reasonable values for these
three characteristics (width, number and spacing of the sealing rings) were selected. Three
levels were selected for each factor. The widths of the sealing rings (D) were 1.5 mm,
2.5 mm and 3.5 mm; the numbers of sealing rings (N) were 1, 2 and 3; and the sealing
ring spacings (L) were 2 mm, 3 mm and 4 mm. The characteristics of the bionic sucker are
shown in Table 1. The three-dimensional model of the bionic sucker is shown in Figure 4.
The height of the sealing ring is designed to be 0.3 mm, and the outermost sealing ring is
4 mm away from the edge of the sucker. When designing the bionic sucker, the sealing ring
is first arranged from the outer edge of the sucker. The height of the sealing ring is designed
to be 0.3 mm. If the height is too large, only the sealing ring will contact the adsorption
surface when the sucker is adsorbed, and other areas of the sucker have difficulty attaching
to the adsorption surface. If the height is too small, the sealing ring will fail or cannot play
a role.

Table 1. Factor levels of the bionic sucker.

Level
Factor Sealing Ring

Width D/mm
Sealing Ring

Number N
Sealing Ring

Spacing L/mm

1 1.5 1 2
2 2.5 2 3
3 3.5 3 4
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2.3. Adsorption Experiment of Suckers
2.3.1. Preparation of Sucker Samples

In this paper, the standard and bionic suckers were prepared by mold pouring. The
specific process of preparing the sucker was as follows: (1) According to the structural
parameters of the standard and bionic suckers, the mold for pouring the sucker was
designed. The mold was divided into an upper mold and lower mold; (2) The designed
sucker mold was processed and prepared by 3D printing. (3) A layer of vaseline was
coated on the surface of the inner cavity formed by the mold to facilitate the forming and
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demolding of the sucker. (4) The mixture of silica gel and stationary liquid was prepared
according to the ratio of 100:2 and fully stirred evenly. (5) The mixture was poured into the
cavity formed by the upper mold and the lower mold, and a 1 kg weight was placed on
top of the upper mold to facilitate the extrusion of the excess mixture in the cavity. (6) The
sucker mold was left standing for 3–4 h and was removed when the mixture had solidified
to obtain the sucker. The sucker mold is shown in Figure 5, and the prepared suckers are
shown in Figure 6.
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2.3.2. Sucker Tensile Test

The tensile testing machine used in this experiment was the HLD-500N (HANDPI,
Wenzhou, China) device, and a smooth glass plate was selected as the adsorption bottom
surface for the experiment. In the experiment, the glass plate was first fixed on the base
of the tensile testing machine, and the sucker was connected with the hook of the testing
machine. Then, the test machine was slowly lowered until the bottom of the sucker was
in contact with the glass plate, and a vertical downward pressure of 20 N was applied at
the top of the measured sucker so that the bottom of sucker was completely attached to
the glass plate, the air between them is discharged and the sucker was adsorbed to the
glass plate. Then, the tensile testing machine was started and raised until the sucker was
completely separated from the glass plate. The tensile testing machine is shown in Figure 7a.
The tensile force of the sucker during the whole experiment process was recorded by the
testing machine and is shown in Figure 7b.
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It can be seen from Figure 7b that when the experiment began, with the gradual
upward lifting of the tensile testing machine, the pull force of the vacuum sucker rapidly
increased, and the adsorption force curve rose rapidly until the adsorption force between
the sucker and the glass plate could not resist the upward pull of the sucker, and the sucker
was detached from the glass plate. At this time, the adsorption force curve of the sucker
rapidly decreased. As the sucker was contracted and deformed by the upward pulling
force, the edge of the sucker formed a sealing structure again with the glass plate to resist
the upward pulling force, and the adsorption force curve in Figure 7b increased briefly
again. When the sucker completely separated from the glass plate, the adsorption force
curve of the sucker decreased directly to zero. The maximum value in the tensile test was
used as the adsorption force of the sucker on the glass plate. In the experiment, five tensile
tests were performed on each sucker, and the average value of the five test results was
taken as the final result.

3. Results
3.1. Orthogonal Experimental Design

According to the design characteristics of the three factors and three levels of the bionic
sucker, the L9(34) level table was selected for the preparation of the test plan. Regardless of
the interaction between the factors, the No.10 group was used as the control group to select
the standard sucker. The orthogonal test scheme of the suckers and the range analysis of
the test results are shown in Table 2.

Table 2. Test scheme and results analysis of the suckers.

Test Number
Factor Sealing Ring

Width D/mm
Sealing Ring

Number N
Sealing Ring

Spacing L/mm
Adsorption Force

F/N

1 1.5 1 2 52
2 1.5 2 3 63
3 1.5 3 4 56.3
4 2.5 1 4 47
5 2.5 2 2 55.8
6 2.5 3 3 52.1
7 3.5 1 3 50
8 3.5 2 4 52.6
9 3.5 3 2 52
10 0 0 0 54.4
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Table 2. Cont.

Test Number
Factor Sealing Ring

Width D/mm
Sealing Ring

Number N
Sealing Ring

Spacing L/mm
Adsorption Force

F/N

ȳFj1 57.1 49.7 53.3
ȳFj2 51.6 57.1 55
ȳFj3 51.5 53.5 52
RFj 5.6 7.4 3

Primary and secondary factors N, D, L

Optimal combination N2D1L2

3.2. Analysis of Orthogonal Test Results

According to the test results in Table 2, the adsorption forces of the No.2, No.3 and
No.5 bionic suckers were greater than that of the No.10 standard sucker, and the adsorption
forces of the other bionic suckers were less than that of the No.10 standard sucker, while
the adsorption force of No.2 bionic sucker was the largest, as shown in Figure 8. The range
analysis method was used to analyze the test results. It was determined that the primary
and secondary factors affecting the adsorption force of the bionic sealing rings were the
number of sealing rings (N), the width of the sealing rings (D) and the spacing of the sealing
rings (L). The optimal combination of the test was N2D1L2, corresponding to the structural
parameters of the No.2 bionic sucker. The adsorption force of the No.2 bionic sucker was
15.8% higher than that of the No.10 standard sucker. In order to further verify the test
results of the optimal combination and estimate the test error, the No.2 bionic sucker with
the optimal combination parameters was repeatedly tested under the same test conditions,
and the square sum of test error deviation Se and its degree of freedom fe were calculated,
as shown in Table 3. The repeated tests showed that the average adsorption force of the
optimal combination of bionic No.2 sucker was 61.8 N, and the sum of squared errors was
0.187. The test had good repeatability.
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Table 3. Repeated experiments on the optimal combination of bionic suckers.

Test Number
Factor Sealing Ring

Width D/mm
Sealing Ring

Number N
Sealing Ring

Spacing L/mm
Adsorption
Force F/N

1 1.5 2 3 61.9
Se = 0.187

fe = 2
2 1.5 2 3 61.5
3 1.5 2 3 62.1
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The No.2 bionic sucker had the largest adsorption force, and the structural parameters
of the sealing rings with the greatest influence on the adsorption force were the number of
sealing rings (N) and the width of the sealing rings (D). It can be seen from Table 2 that
when the sealing ring width (D) was 1.5 mm, 2.5 mm and 3.5 mm, the No.2, No.5 and No.8
bionic suckers with two sealing rings had the largest adsorption force among the No.1–3,
No.4–6 and No.7–9 bionic suckers, respectively. The bionic suckers with two sealing rings
had a relatively large adsorption force, indicating that one sealing ring is not sufficient to
achieve the best sealing effect between the sucker and the adsorption surface. When there
are three sealing rings, too many sealing rings are in contact with the adsorption surface,
which disperses the contact pressure of the sealing rings, thus reducing the adsorption
effect of the sucker. Sealing ring width (D) also plays an important role in the adsorption of
suckers. The No.1, No.2 and No.3 bionic suckers had the largest adsorption force among
the bionic suckers with 1, 2 and 3 sealing rings, respectively. The results show that the
smaller the sealing ring width, the better the adsorption effect. When the sealing ring width
was 1.5 mm, the contact pressure between the sealing ring and the adsorption surface was
the largest, and the friction force of the sucker edge was greater when resisting the upward
pull of the sucker, resulting in the best sealing effect. Therefore, the No.2 bionic sucker had
the best adsorption effect.

3.3. Simulation Analysis of Sucker Adsorption

In order to explore the mechanism of the bionic sealing ring structure on the adsorp-
tion performance of suckers, the finite element simulation method was used. The finite
element analysis software ansysworkbench16.0 was used for simulation analysis. The force
measuring plate used in the adsorption test was a glass plate with a density of 2.46 g/cm3

and an elastic modulus of 68.9 GPa. The material of the vacuum sucker was rubber, which
is a hyperelastic material. The Mooney−Rivlin 2 Parameter model was selected in the
material library. Since the adsorption of a sucker is a type of contact problem, the force
measuring plate was set as the target surface, and the vacuum sucker was set as the contact
surface. The force measuring plate was set as a fixed constraint, and then a certain load was
loaded on the top of the sucker. In this paper, the internal vacuum degree was 60% when
the vacuum sucker was adsorbed, and the 60% standard atmospheric pressure, which was
60,795 Pa, was loaded vertically downward on the upper surface of the sucker. The loaded
pressures are shown in Figure 9. The parameter setting of the bionic sucker is consistent
with that of the standard sucker.
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3.4. Adsorption Mechanism Analysis of Sucker

Based on the finite element simulation, the Mises stress diagram of the bottom surface
of the sucker was obtained. The No.2 bionic sucker with the best adsorption in the tensile
test, the No.4 bionic sucker with the worst adsorption and the standard sucker were
selected for comparative analysis. In the Mises stress diagram of the simulation results, the
Mises stress in different regions was measured from the edge to the center along the radial
direction of the sucker bottom through the probe function. Among them, the Mises stress
of the No.2 and No.4 bionic sucker was selected in six regions, as shown in Figure 10a,b
(The six regions of the No.2 bionic sucker were the outer edge of the outer sealing ring of
the sucker, the outer sealing ring of the sucker, the middle area of the two sealing rings, the
inner sealing ring, and the inner deep blue center area of the sucker, respectively. The six
areas of the No.4 bionic sucker were the outer edge of the sucker sealing ring, the sealing
ring, and the deep blue area inside the sealing ring, respectively). The Mises stress levels of
seven areas in the standard sucker were selected at the corresponding positions on the No.2
and No.4 bionic suckers, as shown in Figure 10c. By comparing the Mises stress values
of the bottom surface of the No.2 and No.4 bionic suckers in Figure 9 with the standard
sucker, it can be seen that the Mises stress on the bottom surface of the bionic sucker is very
different from that of the standard sucker. Compared with the standard sucker, the Mises
stress value of the bionic sucker on the sealing ring and its surrounding area is larger, while
the Mises stress value in the deep blue area in the center of the sucker is smaller.
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Figure 10. (a) The Mises stress of No.2 bionic sucker; (b) the Mises stress of No.4 bionic sucker; (c) the
Mises stress of standard sucker.

The Mises stress (50,548 Pa, 58,226 Pa, 39,544 Pa, 46,848 Pa) of the No.2 bionic sucker
on the two sealing rings and the surrounding areas on both sides are greater than the Mises
stress (38,488 Pa, 23,827 Pa, 16,531 Pa, 12,076 Pa) in the same area of the standard sucker,
as shown in Figure 11a. The No.4 bionic sucker has the same characteristics, as shown in
Figure 11b. The Mises stress values of the No.2 and No.4 bionic suckers in the center dark
blue area are slightly lower than those of the standard suckers in the same area, as shown
in Figure 11c,d.

Comparing the Mises stress values of the No.2 and No.4 bionic suckers, it can be seen
that the Mises stress of the No.4 bionic sucker on the sealing ring and the surrounding
area is greater, while the Mises stress of No.2 bionic sucker is relatively small, as shown in
Figure 11e. In the deep blue area of the center of the sucker, the Mises stress values of the
two are basically equal, as shown in Figure 11f. These results demonstrate that the No.2
bionic sucker has better adsorption than the No.4 bionic sucker.
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Figure 11. Mises stress comparison of No. 2, No. 4 bionic suckers and standard suckers in different
areas on the bottom surface of suckers. (a) The Mises stress of No.2 bionic sucker and standard
sucker on the outside area of the sucker bottom; (b) The Mises stress of No.4 bionic sucker and
standard sucker on the outside area of the sucker bottom; (c) The Mises stress of No.2 bionic sucker
and standard sucker on the central area of the sucker bottom; (d) The Mises stress of No.4 bionic
sucker and standard sucker on the central area of the sucker bottom; (e) The Mises stress of No.2 and
No.4 bionic sucker on the outside area of the sucker bottom; (f) The Mises stress of No.2 and No.4
bionic sucker on the central area of the sucker bottom.

It can be seen that the bionic design of the vacuum sucker changes the stress distribu-
tion on the bottom surface of the sucker. Compared with the standard sucker, the Mises
stress value on the sealing ring and the surrounding area is larger, while the Mises stress
value in the central area of the sucker is smaller. However, the increase in Mises stress in
the sealing ring area of the sucker is greater than the decrease in Mises stress in the central
area of the sucker, so that the adsorption of the No.2 bionic sucker is greater than that of
the standard sucker.

4. Conclusions

(1) The bionic design of the vacuum sucker can effectively improve the adsorption
performance of the sucker. The primary and secondary factors affecting the adsorption
performance of the sucker are the number, width and spacing of the sealing rings.

(2) From the adsorption experiments of the sucker, it can be seen that at 60% vacuum, the
bionic sucker with two sealing rings, a sealing ring width of 1.5 mm, and sealing ring
spacing of 3 mm has the largest adsorption force. The maximum adsorption force is
15.8% higher than the standard sucker.
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(3) Compared with the standard sucker, the bionic sucker has a larger Mises stress on the
sealing ring and the surrounding area, while the Mises stress in the central area of the
sucker is smaller.

In this paper, the adsorption performance of vacuum suckers is improved by bionic
methods, and the adsorption mechanism of the bionic sucker is analyzed. However, based
on the various sizes and types of vacuum suckers and the different surface shapes required
for adsorption, the bionic shape and size parameters that need to be matched and adapted
are also different. Therefore, improving the application range of bionic shape size and
establishing selection principles for bionic shape size for different suckers that can be
applied in different production environments, need to be further studied.
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