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Abstract: Oligonucleotides have been identified as powerful therapeutics for treating genetic disor-
ders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions.
However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake
due to their large size and often highly charged nature. Peptide–oligonucleotide conjugation is an
extensively utilized approach for addressing the challenges associated with oligonucleotide-based
therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing
their overall therapeutic efficiency. In this review, we present an overview of the conjugation of
oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide–
oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with
the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic
(PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods
and applications of POCs are also described.

Keywords: peptide–oligonucleotide conjugates; conjugation chemistry; receptor-mediated oligonucleotide
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1. Introduction

One of the major factors limiting oligonucleotide-based therapeutics from reaching
their full potential is the limited ability of these relatively large and often highly charged
molecules to effectively cross cellular membranes, making it difficult for them to attain
therapeutic concentrations at the site of action in the cytosol or nucleus [1,2]. Poor pharma-
cokinetic properties and cell permeability limit the application of this class of therapeutics.
To realize the full potential of oligonucleotide therapeutics, the pharmacokinetic proper-
ties need to be improved, which can be achieved by conjugation with uptake-enhancing
ligands that can modulate pharmacokinetic behaviour or target specific receptors. The
chemical conjugation of oligonucleotides with transporter molecules is one of the most
convenient approaches employed to improve the intracellular delivery and therapeutic
potential of these agents [3]. Moreover, conjugation can also improve specificity by en-
suring specific binding to a desired biological target. The commonly used molecules that
are conjugated to oligonucleotides to increase cellular uptake are lipophilic compounds
such as cholesterol, fatty acids, tocopherol and cell-penetrating peptides (CPPs). To achieve
tissue-specific delivery, proteins for antigen-specific binding and small-molecule-based
targeting moieties like carbohydrate N-acetyl galactosamine (GalNAc) have been used
as oligonucleotide ligands. Despite recent advances, achieving efficient oligonucleotide
delivery, especially to extra-hepatic tissues, remains a major challenge. In this review, we
will be providing an overview of peptide–oligonucleotide conjugation as one of the key ap-
proaches to address the challenges associated with nucleic acid therapeutics. The progress
in chemical approaches to peptide–oligonucleotide conjugation is regularly and thoroughly
reviewed [4–8] and will be only briefly described here. Instead, we will focus on recent
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reports describing the conjugation of oligonucleotides to cell-penetrating and, especially,
receptor-targeting peptides for the improved cell/tissue delivery of the conjugates and
their potential therapeutic applications.

2. Discussion
2.1. CPP–Oligonucleotide Conjugates

Peptide–oligonucleotide conjugation has been extensively studied as a promising
choice for oligonucleotide delivery, among which, cell-penetrating peptides (CPPs) have
been widely used for oligonucleotide conjugation due to their ability to cross cellular
membranes. CPPs are short peptides, usually containing fewer than 30 amino acids, that
can penetrate biological membranes and allow the intracellular delivery of bioactive cargo
molecules. Discovered in the 1990s, Tat peptide (derived from the transcription protein
of HIV-1) [9,10] and penetratin (derived from the amphiphilic Drosophila Antennapedia
homeodomain) [11] were the first reported examples of CPPs. Inspired by these molecules
and focused mainly on positively charged sequences, thereafter, several CPPs with varied
charges, polarities and structures have been designed [12]. Although their intracellular
delivery mechanism has not been fully elucidated, CPP-based cellular uptake, mainly
mediated by direct transduction or endocytosis, depends on the structural characteristics,
type and concentration of CPPs or cargos and the cell types being treated. Based on their
physicochemical properties, CPPs are broadly divided into three main classes: cationic,
amphipathic and hydrophobic peptides.

Cationic CPPs predominantly consist of positively charged amino acid residues such
as Arg, Lys or His. The key factors influencing the activity of cationic CPPs are the number
and position of positively charged arginines present [13]. Various studies have been carried
out to determine the optimal requirement of the amount of positively charged amino
acid residues. Based on these studies, it was found that peptides rich in Lys, His or Orn
residues are less efficiently absorbed by cells compared to arginine-rich peptides due to the
higher pKa of guanidine groups of arginine and their ability to form bidentate hydrogen
bonds with negatively charged phospholipids, acidic polysaccharides and proteins that
are present in the cellular membrane. Moreover, the minimum amount of Arg residues
required is not less than 6, but, to ensure effective cellular uptake, the optimal amount is 8–
10 residues [14]. Higher values can have detrimental effects on the cells and reduce overall
delivery efficiency [15]. Most of the cationic CPPs are of natural origin; however, synthetic
CPPs have also been developed and include arginine homopolymers, peptides of the
Pipseries developed by the Gait group [16]. Under normal physiological pH conditions, the
positive charge of cationic CPPs shows excellent affinity with the cytoplasmic membrane.
The cationic CPP attaches itself to the negatively charged cell membrane glycoprotein
through an electrostatic interaction and then internalises into the cell through a mechanism
independent of the receptor. Currently, most of the existing CPPs consist of multiple
positively charged arginine residues, which are often a source of toxicity [17]. As an
example, Sun et al. [18] showed that among the arginine-rich peptides, (RRRRRRRRRRR),
a peptide composed purely of arginine residues, has the lowest LD50 value (16.5 mg/kg)
and manifests the highest toxicity, whereas (ACSSSPSKHCG), a peptide without arginine
residue, shows much lower toxicity and higher survival rates in mice. Moreover, the ability
of CPPs to translocate through cell membranes can be accompanied by toxic effects resulting
from membrane perturbation at higher peptide concentrations. Clinical applications of
CPPs also depend on the improvement of endosomal escape efficiency. Among the potential
mechanisms for endosomal escape, one probable explanation is based on positively charged
CPPs, which are thought to bind to negatively charged components in the endosomal
membrane. This leads to the formation of a membrane pore, which results in the leakage of
CPPs. Another possible reason for escape is the formation of ionic pairs between negatively
charged phospholipids and positively charged CPPs, which would partition across the
endosomal membrane.
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Amphipathic CPPs are the most abundant class of peptides among the CPPs and
make up about 40% of all CPPs. Amphipathic peptides consist of polar and non-polar
amino acid regions, and the non-polar region contains hydrophobic amino acid residues
such as alanine, valine, leucine, isoleucine, etc. Although most of the amphipathic CPPs
are chimeric or synthetic, they can also be derived from natural proteins such as pVEC
or ARF (19–31) [19]. Amphipathic CPPs can again be subdivided into three subclasses:
primary, secondary and proline-rich CPPs. Primary amphipathic CPPs are usually chimeric
peptides obtained by covalently binding hydrophobic amino acid domains with a nuclear
localisation signal (NLS) such as MPG peptides [20] and Pep-1 [21], which are both based
on the SV40 NLS [22]. Secondary amphipathic CPPs usually have α-helical conformation,
with hydrophilic and hydrophobic residues grouped on opposite sides of the helix. A few
examples of amphipathic peptides are MAP [23], transportan [24] and CADY [25].

Hydrophobic CPPs are the smallest class of CPPs and they contain non-polar or
less-charged amino acid residues. Their mechanisms of cellular penetration are not fully
elucidated, but it is believed that it occurs due to their high affinity for the hydrophobic
domains of cell membranes. A few examples of hydrophobic CPPs are C105Y [26] and
Pep-7 [27].

The interactions between a CPP and its cargo can be broadly classified into two types—
covalent and non-covalent. For example, CPPs can be conjugated to their oligonucleotide
cargo by direct covalent conjugation through a linker, such as via cationic or amphipathic
CPP conjugation to a neutral-charge oligonucleotide like phosphorodiamidate morpholino
oligonucleotide (PMO). The chemical methods for the synthesis of peptide–oligonucleotide
conjugates are discussed in detail later in this review. On the contrary, non-covalent conjugation
occurs through electrostatic and hydrophobic interactions between the CPP and the oligonu-
cleotide to form nanoparticulate complexes that can pass through the cell membrane efficiently
via endocytosis [28]. The initial example using the non-covalent strategy for oligonucleotide
delivery was the MPG peptide [20], after which, it was extended to several other CPPs such as
Pep-1 or Tat.

Peptide–oligonucleotide conjugates can be prepared via post-synthetic coupling, that
is, the separate assembly of peptides and oligonucleotides using their respective automated
solid-phase syntheses, and then performing the conjugation in a solid or solution phase. The
alternative method is a stepwise solid-phase assembly in succession on the same solid sup-
port, commonly known as in-line solid-phase synthesis. For the latter, usually, the peptide
part is first assembled using t-butoxycarbonyl (Boc) amino acids with base-labile protecting
groups, avoiding the use of strong acids in the presence of the oligonucleotide [29]. How-
ever, in some cases, fluorenylmethoxycarbonyl (Fmoc) amino acids with Boc protection [30]
or 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene) ethyl (Dde) [31]-protecting groups have
also been reported. The stepwise method holds advantages in terms of purification and
higher yields. Yet, there are certain disadvantages of this method arising due to the non-
compatibility of peptides and oligonucleotides with the synthetic methods. On the other
hand, post-synthetic conjugations require multiple steps involving the separate solid-phase
synthesis of both partner compounds followed by purification, performing the conjugation
with these two fragments, and subsequent purification, resulting in lower yields of the
final product. Despite the limitations, the post-synthetic method is favourable and more
frequently used due to the availability of a wide range of conjugation chemistry techniques
that are mentioned here.

In the case of post-synthetic reactions, different methods have been used for peptide–
oligonucleotide conjugations, among which, the most important are amide coupling [32],
disulfide bond formation [33], thiol–maleimide click chemistry [34], oxime [35,36], hydra-
zone [37] or thiazole [36] bond formation and copper-catalysed azido–alkyne cycloaddition
(CuAAC) click chemistry [38] (Scheme 1). Other novel post-synthetic methods include
native chemical ligation [39], Diels–Alder reactions [40], nitrile–aminothiol conjugation [41]
and metal-free thiol-ene click reaction with vinylpyrimidine linkers [42]. It is to be noted
that the synthesis of siRNA–peptide conjugates is further challenging due to the labilityof
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small interfering RNAs (siRNAs) to basic conditions and the additional requirement for
protection of the 2′-OH group. Although there are some reports in the literature regarding
the preparation of siRNA–peptide conjugates by stepwise synthesis [43], in most cases,
these conjugates are prepared by post-synthetic methods. Recently, Gothelf et al. [44]
reported the synthesis of peptide–siRNA constructs by conjugation at internal phosphorus
positions via sulfonyl phosphoramidate modifications. These modifications were beneficial
as they could be directly incorporated into chemically modified oligonucleotides simply by
changing the oxidation step during synthesis.

The conjugation of peptides to oligonucleotides through amide bond formation in-
volves the reaction of an amino group with an activated carboxylic group. Amide conjuga-
tions can be performed using conventional amide coupling methods such as carbodiimide-
mediated (HATU/HBTU/HOBt) [45] coupling, NHS ester activation or the acid chloride
method. In this method, the oligonucleotide, while still attached to the solid support, can
be detritylated to obtain the free carboxylic acid group, which can be activated by the
coupling agents, and then the conjugation can be carried out with the N-terminus of the
peptide. The reverse approach has also been successfully employed where the C-termini of
amino acids and dipeptides have been conjugated with the N-terminus of the amino group
of the oligonucleotide, using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as the
coupling reagent [46]. A drawback of this method is the possibility of racemisation of the
peptide.

The disulfide linkages can be synthesised by oxidation of two free thiol groups [47] or
by modifying one of the thiols to form an activated disulfide [48,49]. Disulfide linkages
are designed to be cleaved in the reductive environment in endosomes after successful
cellular uptake [50]. Disulfide bridges can be specially used for peptide–oligonucleotide
conjugates, for which a cysteine-containing amino acid can be used as a handle. Recently,
another disulfide bond formation method for the synthesis of POCs was developed using
S-sulfonate-protected cysteine of the peptide, both in a solution phase [51] and a solid
phase [52]. S-sulfonates undergo thiolysis to afford disulfide-linked conjugates. Thiol
linkers are also commercially available for attachment to oligonucleotides at the 5′-end
during solid-phase synthesis and can also be attached to the amino linkers. Thiol func-
tionalities can be used for preparing maleimide-type linkages, which are widely used for
labelling proteins, proceed without a catalyst in aqueous buffers, and result in stable cova-
lent linkages [53]. In the case of thioether bond formation, this occurs either via the Michael
addition of thiols to maleimides or through the nucleophilic substitution of haloacetamides.
The maleimido group can be introduced into the peptide or oligonucleotide using reagents
containing activated esters such as β-maleimidopropionic acid [54]. For the synthesis of
haloacetamides, either of the conjugating partners is modified with an aminohexyl group
using halogenoacetic anhydride treatment [55].

Due to its specificity and efficiency, click chemistry is considered a useful method
for the generation of bioconjugates. Azide–alkyne cycloadditions with or without copper
catalysts can be carried out in aqueous buffers at room temperature [56]. Strömberg
et al. developed a copper (I) bromide–dimethyl sulfide complex catalysed alkyne–azide
cycloaddition method for the synthesis of phosphorothioate conjugates in high yields [38].
Copper-free click chemistry is the desired method as copper-based catalysts can be difficult
to remove post-reaction and can lead to cytotoxicity. Linkers for introducing an alkyne- or
dibenzo-cyclooctyne group during oligonucleotide synthesis are commercially available,
and ligands can be easily derivatised for click reactions [57]. Azides and alkynes can be
attached to terminal hydroxyl groups with phosphoramidite reagents or by coupling to
amine linkers. Alkyne functionalities tethered to C5 of uridine can be employed for click
reactions at the nucleobase.
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Scheme 1. Post-synthetic methods for the synthesis of POCs. (a) Amide coupling reaction. (b) Disul-
fide activation reaction with thiol. (c) S-sulfonate-protected cysteine reaction with thiol. (d) Thiol–
maleimido reaction. (e) Thiol–bromoacetamido reaction. (f) Azide—-alkyne click reaction. (g) Oxime
reaction. (h) Thiazolidine reaction. (i) Hydrazone reaction. (j) Diene–maleimido Diels–Alder reaction.
Adapted from [6,8].
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Peptide–oligonucleotide conjugates linked by oxime, thiazolidine or hydrazone groups
can be obtained by the reaction of carbonyl groups with an aminooxy group, 1,2-aminothiol
and hydrazino, or hydrazido group, respectively. Usually, the reactions can be performed
under mild conditions. Such conjugation methods have been reported extensively for
synthesising POCs with oligonucleotides containing aldehyde or masked aldehyde groups
at the 3′- or 5′-ends via thiazolidine [58], oxime [36] or hydrazone [59] formation. Re-
cently, Virta et al. [60] reported an interesting approach for obtaining 2′-conjugates via
N-methoxyoxazolidine formation. In this method, a peptide with an aldehyde group was
conjugated to an oligonucleotide containing a 2′-N-methoxyamino and a free 3′-OH group.
The stability of the conjugate was pH-dependent as the reaction was reversible under
slightly acidic conditions, displaying properties of a cleavable linker that could release its
cargo after entering cells via endocytosis.

The Diels–Alder reaction is a more novel approach that has been employed for the syn-
thesis of POCs. Grandas et al. performed a Diels–Alder reaction between an acyclic diene at
the 5′-end of the oligonucleotide and a maleimido peptide [61]. An inverse electron-demand
Diels–Alder reaction was also applied for the synthesis of POCs, where 7-oxanorbornene
was used as a dienophile and tetrazine was used as the diene [62]. The oligonucleotide
or peptide fragments were derived from oxanorbornene-containing phosphoramidite or
carboxylic acid, respectively.

The conjugation of CPPs to phosphorodiamidate morpholino oligonucleotides has
shown promising results in terms of improving the pharmacokinetic profile of these
molecules [63]. As PMOs have limited cell permeability, CPP conjugation has been used to
improve cellular uptake and delivery, such as with the arginine-rich B-peptide (B-PMO),
which demonstrated approximately 50% wild-type dystrophin levels following a single
25 mg/kg dose compared to the naked PMO that was administered weekly at 200 mg/kg
for 12 weeks, achieving only 10% wild-type dystrophin levels. Peptide–PMO (PPMO)
conjugates have been extensively studied for hereditary neuromuscular diseases such as
Duchenne muscular dystrophy (DMD) [64]. Although unconjugated PMOs have been
approved for DMD treatment, in some cases, low activity and poor delivery to muscles
have been reported. For this purpose, PPMOs such as PGN-EDO51 (PepGen), SRP-5051
(Sarepta) and ENTR-601-44 (Entrada) are being explored for DMD treatment [65]. The
Pip-6a PMO discovered by Wood et al. [66] is formed of a CPP containing a hydrophobic
core flanked by arginine-rich domains consisting of β-alanine and aminohexanoyl spac-
ers. In preclinical studies, it was demonstrated that compared to unconjugated PMO, the
Pip-6a-conjugated PMO significantly enhanced antisense oligonucleotide (ASO) delivery
into striated muscles of mice following systemic administration [67]. Amide conjugation
methods have been used for connecting the C-terminus of the peptide with the 3′-terminal
NH group of the PMO [68] using coupling reagents like HBTU/HOBt/DIEA. Other nucleic
acid conjugates that have been investigated are peptide nucleic acids (PNAs) conjugated to
peptides, especially CPPs. Peptide–PNA conjugates have demonstrated promising antibac-
terial activity [69] and they are usually synthesised by the stepwise method on the same
solid support [70].

Although CPP–oligonucleotide conjugates have been extensively studied and, despite
their widespread application, to date, no CPP-conjugated drugs have been approved by
the FDA, and several clinical trials have been terminated, since these exhibited narrow
clinical applications due to positive charge-induced non-target and systemic toxicity, endo-
somal sequestration, a lack of cell/tissue specificity, in vivo instability, rapid clearance and
immunogenicity [32]. Another drawback of positively charged CPPs is that conjugation
to negatively charged nucleic acids results in electrostatic interactions that can lead to
self-aggregation and potential interference with oligonucleotide target binding. Moreover,
peptide–oligonucleotide conjugates are challenging to synthesise due to the structure and
solubility issues of both peptides and oligonucleotides, incompatible synthetic methods,
and poor yields. There is no universal method for the synthesis of peptide–oligonucleotide
conjugates and, in most cases, the choice of method and the conditions for synthesis are
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on a case-by-case basis. However, the increasing potential of oligonucleotide therapeu-
tics and the need to enhance their targeted delivery by conjugation with peptides are
paving the way for the development of more efficient methods for the preparation of
peptide–oligonucleotide conjugates.

2.2. Receptor-Mediated Targeted Delivery of Peptide–Oligonucleotide Conjugates

There is an increasing interest in the targeted delivery of oligonucleotides via conju-
gation of the oligonucleotides to ligands binding specific receptors present at the plasma
membrane of target cells [71]. This high-affinity interaction should ideally cause efficient
internalisation, endocytosis, trafficking through endosomes (with ligand–receptor dissocia-
tion) and recycling of the receptor with the concomitant delivery and release of the cargo
(oligonucleotide) (Figure 1) [71–74]. The flagship example of receptor-mediated delivery is
conjugation of oligonucleotides to GalNAc, a carbohydrate moiety that binds to the asialo-
glycoprotein receptor (ASGPR) and facilitates the productive uptake of oligonucleotides
into hepatocytes [75,76]. The conjugation of oligonucleotides to triantennary GalNAc leads
to the successful clinical application of these molecules [77]. Following this example, other
moieties, such as lipids, peptides, small molecules and antibodies, are being investigated
as targeting ligands for extra-hepatic cell/tissue-specific delivery [3,8,78].
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Figure 1. Mechanism of receptor-mediated targeted delivery of peptide–ASO conjugates. Adapted
from [79].

The main advantage of the application of peptides as targeting ligands is that, while
being shorter, they can mimic the biological behaviour of full-length proteins, their chemical
synthesis is more feasible and it is possible to introduce non-canonical and/or modified
amino acids into the sequence. Selected examples of peptide-mediated selective tissue
targeting are presented below.

The pancreas is a vital organ responsible for maintaining metabolic homeostasis in
the human body, and the ability to deliver oligonucleotides to specific cell or tissue types
within the pancreas would be extremely beneficial. In a proof-of-concept study, Ämmälä
et al. explored the targeted delivery of ASOs to pancreatic β-cells through ligand-induced
internalisation of the glucagon-like peptide-1 receptor (GLP1R) [72]. GLP1R belongs to
the family of G protein-coupled receptors (GPCRs), which, as the largest family of human
membrane proteins involved in maintaining various physiological processes, constitutes
an important class of drug targets [80]. In the human pancreas, GLP1R is predominantly
expressed in β-cells present within the pancreatic islets of Langerhans [81,82]. Glucagon-
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like peptide 1 (GLP1) is an endogenous intestinal peptide hormone responsible for the
stimulation of insulin secretion and the inhibition of glucagon release [83], and GLP1
analogues (such as liraglutide and exenatide) have been extensively used in the treatment
of type 2 diabetes (T2D) [81,82].

Finan et al. engineered a GLP1 analogue, a hybrid of two peptide sequences derived
from human GLP1 (amino acids 1–29) and the C-terminal extension of exenatide (amino
acids 30–39), which was used for the targeted delivery of estrogen to pancreatic islets [84,85].
Additionally, alanine at position 2 was substituted with 2-aminoisobutiric acid (Aib) to
prevent proteolytic degradation by dipeptidyl peptidase IV (DPP-IV) [86], while glycine
at position 16 was replaced by glutamic acid for improved potency [84,85]. Ämmälä et al.
adopted the same peptide sequence by replacing C-terminal lysine (added as a handle for
conjugation) with cysteine carboxyamide, which gave rise to eGLP1 peptides [72]. eGLP1
was attached at the 5′-end of the ASO gapmers via two types of cleavable linkers: the
disulfide linker and the DNA phosphodiester TmCA [d(TmCA)] linker (Figure 2a) [87,88],
employed to ensure the release of the free ASO inside cells, and separated by an aminohexyl
spacer. eGLP1 was attached to the ASO gapmers targeting metastasis-associated lung ade-
nocarcinoma transcript 1 (MALAT1) and forkhead box protein O1 (FOXO1). Experiments
conducted both in vitro and in vivo showed that conjugation to the eGLP1 contributed to
the improved productive uptake of conjugated oligonucleotides, as shown at the mRNA
and protein levels.

Curr. Issues Mol. Biol. 2024, 46, FOR PEER REVIEW 8 
 

 

expressed in β-cells present within the pancreatic islets of Langerhans [81,82]. Glucagon-
like peptide 1 (GLP1) is an endogenous intestinal peptide hormone responsible for the 
stimulation of insulin secretion and the inhibition of glucagon release [83], and GLP1 an-
alogues (such as liraglutide and exenatide) have been extensively used in the treatment of 
type 2 diabetes (T2D) [81,82]. 

Finan et al. engineered a GLP1 analogue, a hybrid of two peptide sequences derived 
from human GLP1 (amino acids 1–29) and the C-terminal extension of exenatide (amino 
acids 30–39), which was used for the targeted delivery of estrogen to pancreatic islets 
[84,85]. Additionally, alanine at position 2 was substituted with 2-aminoisobutiric acid 
(Aib) to prevent proteolytic degradation by dipeptidyl peptidase IV (DPP-IV) [86], while 
glycine at position 16 was replaced by glutamic acid for improved potency [84,85]. 
Ämmälä et al. adopted the same peptide sequence by replacing C-terminal lysine (added 
as a handle for conjugation) with cysteine carboxyamide, which gave rise to eGLP1 pep-
tides [72]. eGLP1 was attached at the 5′-end of the ASO gapmers via two types of cleavable 
linkers: the disulfide linker and the DNA phosphodiester TmCA [d(TmCA)] linker (Figure 
2a) [87,88], employed to ensure the release of the free ASO inside cells, and separated by 
an aminohexyl spacer. eGLP1 was attached to the ASO gapmers targeting metastasis-as-
sociated lung adenocarcinoma transcript 1 (MALAT1) and forkhead box protein O1 
(FOXO1). Experiments conducted both in vitro and in vivo showed that conjugation to 
the eGLP1 contributed to the improved productive uptake of conjugated oligonucleotides, 
as shown at the mRNA and protein levels. 

 
Figure 2. Various linker and spacer types used for conjugation of the peptides to oligonucleotides 
for receptor-mediated targeted delivery described in this review. Adapted from (a) Ämmälä et al. 
[72], (b) Knerr et al. [79], (c) Ming et al. [53], (d) Gandioso et al. [89], (e) Halloy et al. [90], (f) Nikan 
et al. [91] and (g) Broc et al. [92]. 

In a follow-up study, Knerr et al. focused on exploring the structure–activity relation-
ship (SAR) of ASO-GLP1R peptide agonist conjugates [79]. Originating from previously 
described eGLP-Malat-1 ASO [72], the authors explored the impact of features such as 
targeting peptide sequence/length or the nature of the linker/spacer on the activity of the 
conjugates in vitro and in vivo. This study underlined the importance of the optimisation 
of linker and spacer chemistries in construct design to obtain compounds that would be 
more potent in vivo. Among the different linker systems tested, the ring-opened malei-
mide analogue was identified as a lead structure (Figure 2b), as the conjugates carrying 
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jugates to be active in mice. The study highlighted the complexity of conjugate design 
associated with discrepancies between the results obtained from experiments performed 
in vitro and in vivo and stressed the importance of the latter. The new maleimide acid-

Figure 2. Various linker and spacer types used for conjugation of the peptides to oligonucleotides for
receptor-mediated targeted delivery described in this review. Adapted from (a) Ämmälä et al. [72],
(b) Knerr et al. [79], (c) Ming et al. [53], (d) Gandioso et al. [89], (e) Halloy et al. [90], (f) Nikan
et al. [91] and (g) Broc et al. [92].

In a follow-up study, Knerr et al. focused on exploring the structure–activity relation-
ship (SAR) of ASO-GLP1R peptide agonist conjugates [79]. Originating from previously
described eGLP-Malat-1 ASO [72], the authors explored the impact of features such as
targeting peptide sequence/length or the nature of the linker/spacer on the activity of the
conjugates in vitro and in vivo. This study underlined the importance of the optimisation
of linker and spacer chemistries in construct design to obtain compounds that would be
more potent in vivo. Among the different linker systems tested, the ring-opened maleimide
analogue was identified as a lead structure (Figure 2b), as the conjugates carrying this linker
showed the highest efficacy in vivo. Moreover, the results suggested that an additional
d(TmCA) linker was not necessary, as the PO linker was sufficient for the conjugates to
be active in mice. The study highlighted the complexity of conjugate design associated
with discrepancies between the results obtained from experiments performed in vitro and
in vivo and stressed the importance of the latter. The new maleimide acid-base linker
design was also used to deliver ASOs against Islet Amyloid Polypeptide (IAPP) mRNA
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in mouse pancreatic β-cells and showed robust and sequence-specific target inhibition.
IAPP (amylin) is co-expressed and co-secreted with insulin by β-cells [93]. In an insulin-
resistant state, the expression of IAPP is increased, which can lead to the formation of toxic
aggregates. These amyloid deposits of IAPP are usually present in the diabetic islet of
Langerhans and have been associated with β-cell dysfunction and disease. Gurlo et al. used
eGLP1-IAPP-ASO to suppress the expression of IAPP in mouse and human β-cells to verify
its potential therapeutic application in T2D [94]. While the tested conjugate decreased the
expression of the target mRNA in mouse cells, both in vitro and in vivo, it seemed to have
no noticeable effect on target levels in human islets.

The BB2 receptor, also known as the gastrin-releasing peptide receptor (GRPR), is a member
of the mammalian bombesin receptor family, which, in turn, belongs to the GPCRs superfam-
ily [95]. BB2 is widely expressed in the gastrointestinal and central nervous systems, where
it regulates various physiological processes. The overexpression of BB2 has been associated
with numerous cancers, such as prostate, breast or small lung cancer [96–98]. Being an am-
phibian counterpart of mammalian gastrin-releasing peptide (GRP), the bombesin peptide is
known to activate bombesin receptors. Conjugation to bombesin agonists and antagonists has
been widely used for the selective delivery of chemotherapy agents or radioligands for cancer
treatment and detection, respectively [98–100]. Ming et al. conjugated bombesin analogues to
deliver splice-switching oligonucleotides (SSOs) to GRPR-positive PC3 prostate cancer cells to
correct the aberrant splicing of the firefly luciferase reporter gene [53]. The bombesin peptide
analogue (BBN; amino acids 6–14 of the original bombesin peptide sequence) was attached post-
synthetically at the 5′-end of the oligonucleotide (2′-OMe phosphorothioate 20-mer) carrying a
thiol linker via maleimide chemistry (Figure 2c). The study showed that treatment of the cells
with conjugates resulted in a significant increase in luciferase gene expression when compared
to the treatment with unconjugated oligonucleotides with the same sequence. BBN-SSO was pri-
marily taken up by receptor-mediated endocytosis and was trafficked to deep endomembrane
compartments. Contrary to lipofectamine-supported oligonucleotide delivery, the gymnotic
delivery of the peptide conjugate resulted in a gradual increase in luciferase expression, peaking
at 72 h, suggesting the engagement of different delivery mechanisms.

Gandioso et al. employed CuAAC click chemistry to attach three different targeting
peptides to the siRNA for selective receptor-mediated delivery to cancer cells [89]. The
peptides investigated were cyclic RGD (arginine–glycine–aspartic acid) containing cy-
clopentapeptide c(RGDfK), octreotide and cyclic anti-HER2/neu peptide (AHNP) attached
to a Tat cell-penetrating peptide (Tat-AHNP).

RGD peptide, especially in a cyclic form, is known to be a high-affinity ligand for the
ανβ3 integrin receptor [101,102], and the conjugation of peptides containing the RGD se-
quence for the receptor-mediated delivery of oligonucleotides was reported previously [74].
Integrins are a superfamily of heterodimeric transmembrane cell adhesion receptors con-
sisting of various α and β subunits [102]. The cellular function of integrins is to coor-
dinate adhesion and interaction with the extracellular matrix (ECM) with cytoskeletal
re-arrangements and intracellular signalling via signal transmission across the membrane
upon binding of the ligand [101,102]. The dysregulation of integrins is associated with
the pathogenesis of many diseases with altered angiogenesis or inflammation [103]. ανβ3
was found to be expressed on various tumours and tumour-associated vessels and to be
engaged in invasion and metastasis [101,104]. Octreotide is a clinically approved analogue
of the endogenous somatostatin hormone, a peptide hormone responsible for various
inhibitory activities including the inhibition of hormone secretion and the suppression of
proliferation [105,106]. While somatostatin can activate five somatostatin receptor subtypes
(SSTR1-SSTR5) [107], it has been shown that cyclic octapeptide octreotide selectively binds
to the somatostatin subtype-2 (SSTR2) receptor (and, to a lesser extent, SSTR5), which is
predominantly expressed in neuroendocrine tumours. Human epidermal growth factor
receptor 2 (HER2), also known as erbB2, belongs to the family of receptor tyrosine kinases
and is engaged in the activation of downstream signalling pathways related to cell prolif-
eration, angiogenesis and survival [108,109]. HER2 is overexpressed in 25–30% of breast
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cancers, and drugs targeting this receptor (such as humanised recombinant monoclonal
antibody Herceptin) have been developed for the treatment of the subset of HER2-positive
breast cancers. AHNP is an exocyclic peptide that was designed to mimic the CDR3 loop
of Herceptin [110,111]. As described in the previous section, TAT (Transactivating tran-
scriptional activator) was the first CPP discovered; Tat-AHNP has been shown to efficiently
penetrate HER2-positive breast cancer cells [112].

As stated above, all of these receptors are frequently over-expressed in tumours. To
perform the conjugation, deoxyuridine phosphoramidite with octadiyne functionality at C5
(5oU) was introduced at the 5′-end of the sense strand of the siRNA (Figure 2d) targeting
endogenous HER2 mRNA, while peptides were derivatised with an azide functionality [89].
An optimised CuAAC click reaction was performed post-synthetically and allowed for
efficient conversion to the desired products for each of the peptides. The ability of the
newly synthesised siRNA–peptide conjugates to enter the selected cancer cells and induce
knockdown of the target expression was then investigated. SK-BR-3 human breast cancer
cells were used to assess the biological activity of Tat-AHNP- and octreotide-siRNA conju-
gates, while the melanoma SK-MEL-28 cell line was employed to test the c(RGDfK)-siRNA
construct. As shown by Western blot analysis, all conjugates were able to induce downreg-
ulation (although to a different extent and at high doses), which confirmed their productive
uptake and activation of the RNAi machinery.

A bone marrow-homing heptapeptide [113] was tested, among other targeting moi-
eties, for the delivery of SSO to bone marrow in order to modulate ferrochelatase splicing
in a mouse model of erythropoietic protoporphyria [90]. Erythropoietic protoporphyria
(EPP) is a rare genetic disorder caused (in the majority of patients) by a mutation in a gene
encoding ferrochelatase (FECH), resulting in decreased levels of ferrochelatase enzymes
involved in heme biosynthesis. Consequently, protoporphyrin is accumulated in the ery-
throcytes, plasma, skin and liver [114,115]. The retention of photoporphyrin in the skin
leads to acute episodes of photosensitivity. Even a small increase in FECH synthesis could
result in a therapeutic benefit, hence the idea of correcting the aberrant splicing with the
use of SSO. However, this would require the delivery of oligonucleotides to bone marrow.
Peptide was conjugated at the 5′-end of the phosphorothioate 2′-O-methoxyethyl (PS MOE)
oligonucleotide via thiol–maleimide chemistry (Figure 2e) [90]. Although conjugation to
the peptide increased the accumulation of the SSO in bone marrow, the splicing of the
FECH transcript was not significantly improved, illustrating that increased delivery is not
always followed by improved potency of the oligonucleotides.

The strain-promoted azide–alkyne cycloaddition (SPAAC) reaction [116] was applied
to attach neurotensin peptides to ASO in order to investigate its influence on the productive
cellular uptake and activity of the conjugates in vitro and in vivo (Figure 2f) [91]. Ad-
ditionally, a thorough study of the structure–activity relationship of the conjugates was
performed, taking into consideration features such as ASO length, ASO and peptide charge
or linker type. The 13-amino-acid neuropeptide neurotensin (NT), found in the central
nervous system (CNS) and gastrointestinal tract [117], was shown to be implicated in
various biological processes including the modulation of dopaminergic transmission or
hypothermic and analgesic responses [118]. NT binds with high affinity to two G-protein
coupled receptors (NTS1 and NTS2) and the type 1 family receptor sortilin/NTS3 present
in the plasma membrane of target cells [117,119]. As a receptor predominantly present
in neurons of the central and peripheral nervous systems, sortilin plays an important
role in regulating neuronal viability and function [118]. However, its engagement in the
pathogenesis of CNS, vascular and metabolic diseases has been also reported [117,120].

The general synthetic strategy to obtain NT-oligonucleotide conjugates was as follows:
phosphodiester (PO) MOE ASOs modified at the 5′-end with hexylamine was reacted
with bicyclo[(6.1.0)]nonyne (BCN)-N-hydroxysuccinimide ester (NHS) [91]. The azide was
introduced at the N-terminus of the neurotensin (KNT) [121]. To achieve this, N-terminal
pyroglutamic acid residue was replaced with lysine. Finally, an SPAAC reaction between
the modified peptide and oligonucleotide under mild conditions was performed (Figure 2f).
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It was shown that KNT-ASO was not internalised by the sortilin receptor expressing human
embryonic kidney 293 (SORT1 HEK293) cells, possibly due to the undesired interaction
between the positively charged amino acid residues in NT and the polyanionic backbone of
the ASO. Conjugation of the NT to the PMOs with a neutral backbone resulted in increased
uptake of the conjugates. Next, an SAR study was performed on the PO MOE ASOs to
investigate the structural determinants of sortilin receptor-mediated uptake in cells. The
key findings were that (1) the length of the ASO played a key role, as shortening the
oligonucleotide improved uptake (with the shortest oligonucleotide showing the highest
uptake); (2) the replacement of Arg8 and Arg9 (present in the binding site of NT) with
lysine did not improve the activity of the conjugates, and Arg at positions 8 and 9 was
crucial for NT interaction with the receptor; (3) long and flexible linkers did not augment
the uptake; and (4) the insertion of a more rigid nine-amino-acid-long peptide linker at
the N-terminus of NT (eNT) contributed to the improved internalisation of the conjugate.
The latter eNT ligand design was then used for conjugation with the PS ASO gapmer to
explore its effect on potency in the CNS in vivo. Oligonucleotides targeting the Malat1
RNA with 3-10-3 cEt BNA (2′,4′-constrained ethyl bicyclic nucleic acids) chemistry with a
d(TmCA) linker at the 5′-end were used. The eNT-Malat1 conjugate demonstrated higher
potency in the in vitro activity assay as well as in the spinal cord of the treated mice; no
improvement was observed in the cortex, striatum or cerebellum. Lastly, the effect of
neurotensin-mediated delivery on the potency of splice-modulating morpholino ASOs
was evaluated. A previously reported morpholino ASO, known to correct survival motor
neuron (SMN2) splicing, was used. Conjugation of the KNT to the morpholino ASO
contributed to a modest increase in the potency of the oligonucleotide in mice brains.

Along similar lines, the angiotensin II peptide was attached to the ASO for improved
delivery to extrahepatic tissues [122]. The peptide hormone Angiotensin II (Ang II) is a key
bioactive molecule in the renin–angiotensin system (RAS) responsible for the regulation
of blood pressure and plasma volume [123]. Angiotensin II acts through binding to its
receptors, angiotensin II receptor type 1 (AGTR1) or angiotensin II receptor type 2 (AGTR2),
with AGTR1 being the principal receptor for Ang II, expressed predominantly in the heart,
adrenal gland and kidney [124,125]. Binding of Ang II to AGTR1 results in vasoconstriction,
sodium and water retention and vasopressin release [125,126]. However, recent studies
show that Ang II may also be involved in processes such as inflammation and ageing [123].

Also, in this case, SPAAC was employed to attach the Ang II peptide to PO MOE
ASO [122], following an analogous synthetic strategy, as for neurotensin [91]. To make the
Ang II peptide suitable for conjugation, azide–acetyllysine was added either at its N- or
C-terminus. Additionally, a conjugate with a previously reported nine-amino-acid proline-
rich linker at the N-terminus of Ang II (extended Ang II, eAng II) was prepared. This
linker was introduced to diminish the charge interaction between the peptide and ASO and
increase the rigidity. Contrary to conjugation via the C-terminus, conjugation through the
N-terminus of the peptide resulted in the robust internalisation of the conjugates in the cell
uptake study [(HEK293 cells stably expressed β-fluorogen-activating peptide (FAP)-tagged
AGTR1)], with eAng II-ASO showing the best results. Next, Ang II/eAng II with an azido
group at the N-terminus was attached to PS ASO [3-10-3 cEt BNA design with a d(TmCA)
linker at the 5′-end] targeting Malat1 mRNA. Both conjugates showed improved potency in
AGTR1-expressing FAP cells and mouse Purkinje-like cardiomyocytes. When administered
to mice, a moderate increase in activity was observed for conjugates in the heart, adipose
and adrenal gland, based on qPCR data. However, in situ hybridisation (ISH) analysis
showed more pronounced activity in these tissues, especially in adrenal tissue, which may
suggest a cell type-specific enhancement of ASO activity.

The low-density lipoprotein receptor (LDLR) represents an attractive cell surface
target for siRNA delivery as it plays a key role in LDL–cholesterol plasma clearance [127].
Broc et al. [92] identified a library of peptide-based vectors that target the LDLR. The
authors developed several VH4127 peptide–siRNA conjugates targeting the ubiquitously
expressed superoxide dismutase 1 (SOD1) mRNA and explored the binding properties
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of these conjugates to LDLR and their efficiency in delivering siRNA into the cells. The
peptide–siRNA conjugates were synthesised either by a copper-free click reaction (SPAAC)
(Figure 2g) or by a direct amide coupling method using HATU. Although the LDLR-binding
peptide was bulky and charged due to the presence of constrained cyclic octapeptides and
arginine residues, it maintained its binding potential when conjugated to a siRNA and
supported efficient uptake, resulting in appreciable gene knockdown both in vitro and
in vivo.

Presented above are a few important examples of peptide–oligonucleotide conjugation
for the receptor-mediated targeted delivery of oligonucleotides, highlighting the impor-
tance of this class of conjugates in the search for new, improved, oligonucleotide-based
therapeutics.

3. Conclusions

The field of oligonucleotide therapeutics has witnessed great progress over the last few
years, as reflected by a steady increase in the number of clinically approved therapeutics of
this class. Although the use of GalNAc conjugation is a significant breakthrough, specific
delivery to extra-hepatic cells/tissues, as well as productive uptake of the oligonucleotides,
remain challenging. Therefore, the search for ‘new GalNAc’ is ongoing, and many re-
searchers are working on the development of novel conjugates. Imetelstat (brand name
Rytelo) is the first lipid–oligonucleotide conjugate and was recently approved for clinical
use [128,129]. This first-in-class telomerase inhibitor found application in the treatment of
myeloid hematologic malignancies. Although peptide–oligonucleotide conjugates have
reached clinical trials, none of the representatives of this class has been clinically approved
so far, but that has the potential to change with further research in this field.
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