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Abstract: Background: Mulberry (Morus L.), a vital perennial woody plant with significant eco-
nomic importance, is utilized for silkworm rearing, human consumption and medicinal use. The
availability of mulberry’s whole-genome sequencing data has underscored the demand for an ef-
fective, user-friendly, and high-throughput protocol to facilitate the elucidation of gene functions.
Methods and Results: In this investigation, we established a transient transformation approach using
Agrobacterium tumefaciens-mediated sonication followed by vacuum infiltration in mulberry tissue
culture seedlings. Simultaneously, we optimized the transformation conditions, including mulberry
genotypes, A. tumefaciens strain, acetosyringone concentration, bacterial density, sonication time, and
days after agroinfiltration. These optimizations aimed to achieve heightened transformation efficiency,
employing GFP as a reporter gene to monitor transformation events. The optimized method included
the use of an infiltration medium (10 mM MgCl2, 10 mM MES (2-(N-morpholino)ethanesulfonic
acid sodium salt), 150 µM acetosyringone, and OD600 0.5 of A. tumefaciens LBA4404) supplemented
with the surfactant 0.02% Silwet L-77, with 20 s sonication followed by 20 min vacuum infiltration
(0.07 MPa). Among the four mulberry genotypes, ‘Taiguo’ was the most responsive genotype and
produced the highest levels of GFP expression at 7 d after infiltration. Furthermore, the optimized
transient transformation approach has been proven to be successfully applicable for transiently
overexpressing MaANS and MaDFR in mulberry fruits of ‘Taiguo’, in vitro, which distinctly enhanced
fruit coloring and significantly increased anthocyanin accumulation, respectively. Conclusions: In
summary, we devised a dependable, stable and highly efficient transient transformation approach
suitable for rapid gene function examination in mulberry leaves and fruits, in vitro.

Keywords: mulberry; A. tumefaciens; transient transformation; vacuum infiltration

1. Introduction

Mulberry (Morus L.), boasting significant economic importance and deeply rooted in
Chinese history, primarily serves as the key source of leaves for silkworm (Bombyx mori
L.) rearing, contributing to the production of exquisite silk fibers [1–3]. The mulberry tree
exhibits a robust and intricately networked root system, imparting resistance to drought,
flood, and sandstorms, and facilitating water and soil conservation [4–6]. Renowned for
its rich content of proteins, flavonoids, carotene, amino acids, pectin, carbohydrates, fiber,
minerals, and vitamins, the mulberry fruit holds the status of a third-generation fruit,
enjoying a lengthy history of use in traditional Chinese medicine as well as being an edible
fruit [2,7–9]. Recent clinical application studies have unveiled different pharmacological
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effects, including blood sugar level reduction, blood lipid level decrease, and anti-aging
properties [10–15]. With the successive release of genomes for Morus notabilis [16,17], Morus
alba [18], Morus indica [19], and Morus atropurpurea [20] since 2013, mulberry research has
seamlessly transitioned into the post-genomic era, setting the stage for in-depth molec-
ular mechanism examination and utilization of mulberry’s outstanding traits, and the
comprehensive development and deployment of mulberry resources. Consequently, the
establishment of an efficient and stable genetic transformation system for mulberry trees
has been taken as a necessary strategy to verify the gene functions in the post-genomic era,
bearing immense significance for elevating the quality and efficiency of the mulberry trade
and advancing select mulberry disciplines.

In the realm of plant studies, stable genetic transformation and transient transforma-
tion mediated by A. tumefaciens have become widely adopted for gene function verification
in various crops, including citrus [21], apple [22,23], poplar [24,25], and more. The initial
report on leaf disc transformation of mulberry (M. alba L.) through Agrobacterium-mediated
methods dates back to Machii [26]. Subsequently, A. tumefaciens-mediated stable genetic
transformation of M. indica cv. K2 has been constructed and improved [27–29]. Despite
numerous reports on the efficient transformation of various explants in mulberry [30,31],
achieving stable and efficient genetic transformation across mulberry species is still a chal-
lenge. Limitations stem from the high antibiotic content/selection pressure, leading to
callus browning, genotype-dependent adventitious bud regeneration, and a transformation
system confined to specific mulberry genotypes, such as M. indica cv. K2 [27,28,32] and
M. indica cv. M5 [29]. Additionally, the existing transformation system faces constraints
related to low efficiency and high labor costs, rendering it unsuitable for rapid and high-
throughput gene function examination.

Conversely, in comparison to stable genetic transformation, the transient transfor-
mation mediated by A. tumefaciens has gained widespread popularity in characterizing
gene functions in woody plants, offering numerous advantages, including simplicity, a
short timeframe, high efficiency, easy implementation, and cost and labor savings [33–39].
To date, only one study has documented the development of a transient transformation
system in mulberry seedlings using A. tumefaciens via syringe [40]. Furthermore, plant
virus-mediated transient transformation approaches, like VIGS, for gene functional con-
firmation in mulberry have been explored [41]. However, syringe infiltration limitations
related to leaf architecture hinder Agrobacterium cell access to plant tissues, leading to
unstable transformation efficiency [34,35]. Prior research advocates the use of vacuum
infiltration for Agrobacterium-mediated transient transformation in plants, overcoming
leaf architecture challenges and enhancing foreign gene expression compared to syringe
infiltration [33,42–45]. Additionally, sonication has been employed to boost Agrobacterium
delivery, creating numerous microwounds in target tissues through cavitation, facilitating
more efficient bacterial access to internal structures [45–48].

This study presents the development of a straightforward, highly efficient, and user-
friendly Agrobacterium-mediated transient transformation approach in mulberry tissue
culture seedlings, employing GFP as a reporter gene and utilizing sonication and vacuum
infiltration. Furthermore, key factors influencing the efficiency of transient transformation,
including Agrobacterium strains, mulberry genotypes, sonication treatment time, acetosy-
ringone concentration, bacterial density (OD600), and days after agroinfiltration, were
thoroughly assessed and enhanced. To examine the system’s efficiency, MaANS (antho-
cyanidin synthase) and MaDFR (dihydroflavonol reductase), involved in anthocyanin
accumulation, were transiently overexpressed in mulberry fruit, causing a substantial
enhancement of fruit coloring and anthocyanin levels.

2. Materials and Methods
2.1. Plant Material

The investigation utilized tissue culture shoots derived from four distinct mulberry
genotypes: ‘Taiguo’ (M. alba L. 2n = 2X = 28), ‘Aoyu’ (Morus multicaulis Perr. 2n = 2X = 28),
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‘8632’ (M. multicaulis Perr. 2n = 2X = 28), and ‘Yaosang’ (Morus nigra L. 2n = 22X = 308).
The in vitro cultures were nurtured under controlled conditions at 24–26 ◦C with con-
tinuous 16 h illumination provided by white fluorescent tubes (2000–3000 lux). Subcul-
turing was performed every 5 to 6 weeks. The subculture medium composition varied
based on the genotype: the tissue culture shoots of ‘Taiguo’, ‘Aoyu’, and ‘8632’ were
maintained on Murashige and Skoog’s (MS) medium (pH 5.8, composed of 6.5 g·L−1

agar, 1.0 mg·L−1 6-benzyladenine (6-BA), 30 g·L−1 sucrose, and 0.5 mg·L−1 naphthale-
neacetic acid (NAA) [49,50]. In the case of ‘Yaosang’, the Driver and Kuniyuki Walnut
(DKW) medium was employed, enriched with 30 g·L−1 sucrose, 3.0 mg·L−1 zeatin (ZT),
3.0 mg·L−1 6-BA, 0.5 mg·L−1 NAA, and 6.5 g·L−1 agar with the final pH set at 5.8. Here,
leaves from actively growing tissue culture shoots, sampled after 4 weeks in subculture,
served as the primary material for all experimental procedures.

The mulberry fruits of ‘Taiguo’ were used in this study. The mulberry trees were
grafted onto ‘Guisangyou 12’ (M. atropurpurea Roxb.) rootstocks using pocket grafting in
2018 and were planted at a spacing of 1.5 × 3.5 m in the Mulberry Repository of Hubei
Province (latitude: 30◦48′7′′, longitude: 114◦33′4′′, and altitude: 28 m) in Wuhan, China.
The fruits were harvested 10 d after flowering (DAF) for transient genetic transformation
experiments.

2.2. Formulation of Agrobacterium Strains Used in Infiltration

The pMV2-GFP vector [34], a construct featuring the GFP reporter gene regulated
by the CaMV 35S promoter, was introduced into three distinct strains of A. tumefaciens,
namely LBA4404, EHA105, and GV3101. In accordance with established protocols [34,35],
an actively growing A. tumefaciens cell culture underwent a 1 mL transfer into 50 mL of
LB media for an overnight incubation at 28 ◦C. Subsequently, the Agrobacterium cells were
harvested via centrifugation (4000× g, 10 min) and eventually resuspended to an OD600
of 0.75 using the infiltration medium (composed of 10 mM MES, 10 mM MgCl2, 0.02%
Silwet L-77, and 150 µM acetosyringone) [45]. It is noteworthy that the Agrobacterium cell
suspension underwent a 3 h incubation at room temperature before the infiltration process.

To assess the impact of different Agrobacterium strains and mulberry genotypes on
transient transformation efficiency, a vacuum (0.07 MPa) was applied for 20 min intervals,
consistent with established procedures [45]. The suspensions of A. tumefaciens strains
GV3101, EHA105, and LBA4404, each carrying the pMV2-GFP vector, were injected into
the leaves of the ‘Taiguo’ genotype (Table S1). Additionally, the A. tumefaciens strain
LBA4404 suspensions were introduced into the leaves of four mulberry genotypes: ‘Taiguo’,
‘Yaosang’, ‘Aoyu’, and ‘8632’, respectively (Table S1). Subsequently, the infiltrated leaves
underwent cocultivation with Agrobacterium on MS medium and DKW medium (‘Yaosang’),
as described above, for a duration of 4 d at 28 ◦C with a continuous 16 h illumination
provided by white fluorescent tubes (2000–3000 lux). Following this incubation period, one
part of the infiltrated leaves from ‘Taiguo’, ‘Yaosang’, ‘Aoyu’, and ‘8632’ were subjected to
GFP imaging, and the other part was used to assess GFP fluorescent protein determination.

One part of the infiltrated leaves from ‘Taiguo’, ‘Yaosang’, ‘Aoyu’, and ‘8632’ was used
for GFP fluorescence detection, and the other part was used for GFP protein determination.

2.3. Optimization of Experimental Parameters

To comprehensively assess the myriad factors influencing transient transformation
efficiency, an extensive exploration of parameters was conducted in mulberry leaves of the
‘Taiguo’ genotype using A. tumefaciens strain LBA4404-mediated vacuum infiltration. In
total, each treatment involved the analysis of ten single-leaf replicates. The investigated
parameters encompassed bacterial density (OD600 0.5, 0.75, and 1.0) in the infiltration
medium, comprising 150 µM acetosyringone, 10 mM MES, and 10 mM MgCl2, as well
as acetosyringone concentration (50, 100, 150, and 200 µM) in the infiltration medium,
comprising 10 mM MES, 10 mM MgCl2, and a final OD600 of 0.75 (Table S1). Additional
parameters included sonication time (0, 10, 20, 30 s, respectively) and days after infection



Genes 2024, 15, 1277 4 of 13

(4, 7, 10, 15 d, respectively) (Table S1). With the exception of the ultrasonic treatment
experiment, all leaves were initially subjected to a 30 s sonication using a 40-kHz ultrasonic
cleaner in double-distilled water before agroinfiltration [45,48]. Post-infiltration, the leaves
underwent cocultivation with Agrobacterium with MS medium, as described earlier, for 4 d
at 28 ◦C under light conditions, after which they were utilized for GFP fluorescence content
detection. Additionally, following 4 d of cocultivation, part of the infected leaves was
transferred to freshly prepared MS medium (supplemented with 300 mg·L−1 cefotaxime)
for 7, 10, and 15 d, respectively, before being employed for GFP quantitative assessments.

2.4. Green Fluorescent Protein (GFP) Microscopy and Quantitative Assays

To meticulously scrutinize and analyze the GFP fluorescence exhibited by mulberry
leaves subjected to transformation with the pMV2-GFP vector, comprehensive observations
were conducted utilizing a Leica DMi8 inverted fluorescence microscope (Leica microsys-
tems, Wetzlar, Germany) by using GFP (450–490 nm excitation, dichroic 495 nm, and
500–550 nm emission) filter sets at 4 d after infiltration. In order to assess the transient
expression of GFP in mulberry leaves, the quantitative measurement of GFP fluorescent
protein content was undertaken using a Plant GFP ELISA Kit (Tianjin Coweino Biotech-
nology Co., Ltd., Tianjin, China) as per the established procedures described in previous
studies [34]. Briefly, mulberry leaf tissues were rapidly frozen in liquid nitrogen and ground
separately. 0.1 g of sample was precisely weighed and 800 µL of prechilled PBS (pH = 7.4)
was added for extraction for 20 min. The supernatant was separated via centrifugation at
13,000 rpm for 10 min. Standard wells and blank comparison wells were set separately from
the testing sample wells, with standard concentrations of 0, 5, 10, 20, 40, 80 ng·mg−1. 50 µL
of standard solution was added to the standard wells, while 40 µL of sample dilution was
added to the testing sample wells. Subsequently, 100 µL of HRP-Conjugate reagent was
added to the microELISA strip plate. Blank comparison wells did not contain the sample
or the HRP-Conjugate reagent; all other steps were the same. After incubation for 60 min at
37 ◦C in the dark, the liquid was discarded, and the plate was dried by swinging before
adding 20-fold washing buffer to each well. The wells were kept still for 30 s, then drained,
and this process was repeated five times before drying by patting. Chromogen solution
A (50 µL) and chromogen solution B (50 µL) were added to each well. After reacting in
the dark for 15 min at 37 ◦C, 50 µL of stop solution was added to each well to stop the
reaction. The blank well was set to zero, and the absorbance at 450 nm was read using an
enzyme-labeler 800 TS microplate reader (BioTek Instruments Inc., Winooski, VT, USA)
within 15 min after adding 50 µL of stop solution.

2.5. Analysis of Anthocyanin Content

In an endeavor to comprehensively assess the robustness and practical applicability
of the meticulously derived transient transformation system, we conducted a series of
experiments involving the transient overexpression of MaANS [51,52] and MaDFR [51,52],
genes intricately involved in anthocyanin biosynthesis within mulberry fruits of the ‘Taiguo’
genotype. The coding sequences of MaANS and MaDFR were amplified from the cDNA of
‘Taiguo’ mulberry fruit by using a pair of primers (Table S2). As previously reported [34],
the PCR fragments were then purified and cloned into the pEASYTM-Blunt Cloning Vector
(TransGen Biotech, Beijing, China), resulting in plasmids pEASY-ANS and pEASY-DFR,
which were used for verification by sequencing, respectively. And then, the verified
plasmids pEASY-ANS, pEASY-DFR and pMV2-GFP were double digested by using Xba
I and Kpn I, respectively. Subsequently, the Xba I-Kpn I fragment containing MaANS and
MaDFR was cloned into the pMV2 binary vector, resulting in pMV2-ANS and pMV2-DFR,
respectively (Figure S1). The Agrobacterium strain LBA4404, harboring distinct constructs,
namely pMV2-GFP, pMV2-ANS, and pMV2-DFR, was individually introduced into the
mulberry fruits of ‘Taiguo’ harvested at the developmental stage of 10 d after flowering
(DAF). As explained earlier, all mulberry fruits, securely placed in glass triangular bottles
containing double-distilled water, were subjected to a preliminary sonication lasting 30 s
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before the subsequent agroinfiltration process. Subsequently, the infiltrated fruits were
meticulously incubated in vitro at a controlled temperature of 25 ◦C for varying durations
of 0, 2, 4, 5, and 7 d, as per the previously established protocol [52]. In-depth evaluations of
anthocyanin content were executed in strict adherence to a well-established method [52].
Notably, 0.5 g of mulberry fruits was meticulously immersed in 2 mL of a 1% HCL-
methanol (1:99, v/v) solution to facilitate the extraction of anthocyanins. This extraction
process was conducted under conditions of controlled darkness for 24 h at a temperature
of 4 ◦C [53]. Using a UV-Vis 2450 spectrophotometer, the absorption spectra at 420–700 nm
of the anthocyanin crude extracts were compared to the blank of HCL-methanol (1:99, v/v)
(Shimadzu, Tokyo, Japan). The pigment content was calculated as cyanidin 3-glucoside,
using an extinction coefficient of 29,600 L·cm−1·mg−1 and a molecular weight of 448.8 [53].
Each sample comprised three distinct biological replicates, and for each biological replicate,
a minimum of three fruits were sampled, ensuring the reliability and statistical robustness
of the experimental data.

2.6. Statistical Analysis

The entirety of the data presented in this manuscript underwent meticulous analysis
employing one-way ANOVA, followed by a comprehensive examination of differences
through Duncan’s multiple range tests [45]. All statistical assays were executed utilizing
SPSS 26.0 (IBM, Armonk, NY, USA) with a predefined significance threshold set at p < 0.05.

3. Results
3.1. Transient GFP Expression in the Leaves of Various Mulberry Genotypes

In the comprehensive evaluation of the transient expression of the GFP reporter gene in mul-
berry leaves, the pMV2-GFP vector was introduced into the leaves of distinct genotypes, namely
‘Taiguo’, ‘Yaosang’, ‘Aoyu’, and ‘8632’, employing Agrobacterium strain LBA4404-mediated
vacuum infiltration. The findings from the GFP fluorescence examination unveiled a notable
absence of any fluorescent signals in non-transformed leaves, except for the inherent auto-
fluorescence originating from chloroplasts (Figure 1). In contrast, conspicuous GFP fluorescence
signals manifested in the infiltrated leaves across all four mulberry genotypes, scattered at
the cellular level, indicating the successful expression of the GFP gene in diverse mulberry
genotypes (Figure 1). Furthermore, the intensity of the GFP fluorescence signals was notably
higher in the ‘Taiguo’ and ‘Yaosang’ leaves compared to other genotypes (Figure 1). The count
of cells exhibiting GFP signals was highest in ‘Taiguo’ leaves, with ‘Yaosang’, ‘Aoyu’, and ‘8632’
following in descending order (Figure 1). This detailed assessment provides a nuanced under-
standing of the differential expression patterns across various mulberry genotypes, offering
valuable insights into the transient transformation process.

3.2. Improvement of the In Vitro Transient Transformation Systems in Mulberry Leaves

In the pursuit of optimizing the transient transformation system, a thorough examina-
tion of various factors influencing the efficiency of transient GFP reporter gene expression
was conducted. These factors encompassed mulberry genotypes, Agrobacterium strain,
bacterial density, acetosyringone concentration, sonication duration, and days after in-
fection. Initially, the impact of mulberry genotypes on transient GFP gene expression
was assessed, revealing that the GFP content in ‘Taiguo’ leaves exceeded that in ‘Yaosang’,
‘Aoyu’, and ‘8632’, demonstrating statistical significance (p < 0.05) (Figure 2A). The GFP con-
tent was not significantly different among mulberry genotypes ‘Yaosang’, ‘Aoyu’, and ‘8632’
(Figure 2A). Consequently, ‘Taiguo’ mulberry leaves were chosen for further investigating
transient transformation in all subsequent experiments. Subsequent comparisons involving
agroinfiltration performed with three Agrobacterium strains unveiled that mulberry leaves
agroinfiltrated with strain LBA4404 exhibited an obviously higher total GFP content than
those infiltrated with strains GV3101 and EHA105 in ‘Taiguo’ mulberry leaves (p < 0.05)
(Figure 2B). There is no significant difference in GFP content between the Agrobacterium
strains GV3101 and EHA105 (Figure 2B). Consequently, Agrobacterium strain LBA4404 was
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selected for subsequent infiltration tests. And then, the effect of different bacterial densities
of strain LBA4404 on transient transformation efficiency was also investigated. The final
OD600 in the infiltration medium was adjusted to 0.5, 0.75 and 1.0, respectively. The results
of GFP content detection indicated that although higher transient transformation efficiency
was observed at D600 = 0.5, no statisticaly significant differences with those at OD600 = 0.75
and OD600 = 1.0 were recorded (Figure 2C).
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tion. (A) Transient transformation efficiency impacted by diverse mulberry genotypes. (B) Transient
transformation efficiency influenced by various Agrobacterium strains in mulberry leaves of ‘Taiguo’.
(C) Transient transformation efficiency affected by different bacterial densities in mulberry leaves of
‘Taiguo’. Error bars represent SEs from 10 biological replicates. Means marked with different letters
are statistically different based on Duncan’s multiple range tests (p < 0.05).

Furthermore, an in-depth exploration into the dynamic changes of the GFP gene’s
transient expression levels was conducted, focusing on the variables of acetosyringone con-
centration, sonication duration, and days after infection (Figure 3). The findings unveiled
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that the optimal transformation efficiency was achieved with an acetosyringone concen-
tration of 150 µM in the infiltration medium (Figure 3A). Nevertheless, no statistically
significant differences in the GFP contents were observed among different acetosyringone
concentrations (Figure 3A). Additionally, the outcomes of GFP content detection indicated
that various sonication treatments could significantly enhance transient transformation
efficiency compared to the control (p < 0.05); however, no statistically significant differences
were observed between ultrasonic treatments (Figure 3B). Moreover, a comprehensive
investigation into transient expression levels of the GFP gene was conducted at 4, 7, 10, and
15 d after infection (Figure 3C). Notably, the peak GFP content was observed on the 7th d
after infiltration, followed by a gradual decline until the 15th d (Figure 3C). No statistically
significant differences were observed at 4, 7, and 10 d after infiltration; only a significant
decrease was observed at 15 d after infiltration (Figure 3C).
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Figure 3. In vitro transient expression levels of GFP in mulberry leaves of ‘Taiguo’. (A) Transient
transformation efficiency driven by different acetosyringone concentrations. GFP fluorescent protein
content was undertaken at 4 d after infiltration. (B) Transient transformation efficiency caused by dif-
ferent sonication treatments. GFP fluorescent protein content was undertaken at 4 d after infiltration.
(C) Transient transformation efficiency evaluated by the number of days after agroinfiltration. GFP
fluorescent protein content was undertaken at 4, 7, 10 and 15 d after infiltration. Error bars represent
SEs from 10 biological replicates. Means with distinct letters indicate significant differences as per
Duncan’s multiple range tests (p < 0.05).

3.3. Transient Overexpression of MaANS and MaDFR in Mulberry Fruits

Moreover, to assess the robustness and dependability of the established transient
transformation system utilizing Agrobacterium-mediated sonication followed by vac-
uum infiltration, MaANS and MaDFR were transiently overexpressed in the mulberry
fruits of ‘Taiguo’ at 10 DAF. The results exhibited a substantial increase in fruit coloring
at 5 d (Figure 4A) and 7 d (Figure 4B) post-infiltration due to the overexpression of
MaANS and MaDFR, respectively. Furthermore, the anthocyanin content assay dis-
closed a remarkably significant surge in anthocyanin levels in fruits infiltrated with
pMV2-ANS and pMV2-DFR at 7 d post-agroinfiltration, respectively (Figure 4C). Com-
paratively, the overexpression of MaDFR led to a more pronounced effect on promoting
anthocyanin accumulation in the fruits compared to MaANS (Figure 4B,C). These find-
ings affirm the involvement of MaANS and MaDFR in the biosynthesis process and
enrichment of anthocyanins in mulberry fruits.
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Figure 4. Transient overexpression of MaANS and MaDFR in ‘Taiguo’ mulberry fruits. (A) Mor-
phology of ‘Taiguo’ fruits at various times following agroinfiltration. (B) Morphology of ‘Taiguo’
fruits at 7 d after agroinfiltration. (C) Examination of the anthocyanin contents in ‘Taiguo’ fruits at
7 d following agroinfiltration. CK, MaANS, and MaDFR represent fruits transformed with vectors
pMV2-GFP, pMV2-ANS, and pMV2-DFR, respectively. Error bars were calculated from the results of
three biological replicates, and a minimum of 3 fruits were sampled for each biological replicate. ***
and **** represent statistically significant differences based on Duncan’s multiple range tests p < 0.01
and p < 0.001, respectively.

4. Discussion

By utilizing GFP, a reporter gene, to monitor transformation events, a well-established
practice in plant studies [33,34,39,44,45], vacuum infiltration and syringe infiltration have
emerged as the most prevalent strategies for Agrobacterium-mediated transient transfor-
mation [34,45,48,54]. Previous research has reported that a transient transformation assay
could be implemented in leaves of mulberry seedlings in vivo by syringe infiltration using
A. tumefaciens [40]. However, the high density of palisade and spongy mesophyll cells, low
density and/or small aperture of stomatal pores, and overall fragility of leaf tissue often re-
sult in poor infiltration and mechanical damage from the syringe infiltration [55,56]. When
compared with syringe infiltration, vacuum infiltration offers advantages in overcoming
challenges posed by the leaf structure and achieving rapid and high-throughput delivery
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of Agrobacterium, resulting in increased infection efficiency and stabilized transformation
outcomes. This technique has been successfully applied across various plant species, in-
cluding persimmon [45], soybean [48], and poplar [33]. In this investigation, the GFP gene
was introduced into the leaves of four mulberry genotypes (‘Taiguo’, ‘Yaosang’, ‘Aoyu’,
and ‘8632’) using Agrobacterium-mediated transformation through vacuum infiltration. The
results demonstrated clear GFP fluorescence signals in mulberry leaves transformed with
pMV2-GFP (Figure 1), affirming the successful and transient expression of the GFP reporter
gene in mulberry leaves, consistent with prior reports [40]. Variations in leaf tissue structure
among different mulberry genotypes might contribute to inconsistent transformation effi-
ciency, as reported in previous studies, indicating varying receptiveness to Agrobacterium
among different plant genotypes [48,57,58]. The intensity of GFP fluorescence signals
and the number of cells exhibiting GFP signals were notably higher in ‘Taiguo’ leaves,
followed by ‘Yaosang’, ‘Aoyu’, and ‘8632’ (Figure 1). Correspondingly, the GFP content
determination results followed a similar trend of level change (Figure 2A).

Factors such as high density of palisade and spongy mesophyll cells, small aperture of
stomatal pores in leaf tissue, and/or low density usually lead to poor Agrobacterium delivery
and reduced transformation efficiency [59,60]. Sonication, as reported in previous studies,
induces microwounds in the plant tissue, enhancing Agrobacterium delivery and allowing more
efficient bacterial access to internal tissues [46,47]. The sonication treatments could significantly
enhance transient transformation efficiency than the untreated control (p < 0.05), but no
statistically significant differences were recorded between sonication treatments (Figure 3B).
Similar results have also been observed in soybean, in which vacuum infiltration after 30 s of
sonication led to significantly greater expression of GUS than vacuum application alone [48].
Though sonication treatment increased the efficiency of agroinfiltration, the mechanical
damage resulting from sonication also caused necrosis in leaf tissue [48]. This may also
explain why the transient transformation efficiency of 30 s sonication treatment is lower than
that of 20 s sonication treatment, as shown in the data (Figure 3B). Although sonication and
vacuum infiltration have been used together for Agrobacterium-mediated transformation of
plant tissues and plants [61,62], these treatments have not been previously evaluated for
transient transformation in mulberry seedlings in vitro.

Additionally, the impact of different Agrobacterium strains and bacterial densities on
the transformation efficiency was assessed in vitro in mulberry leaves of ‘Taiguo’ (Fig-
ure 2B,C). Although Agrobacterium strains GV3101, EHA105, and LBA4404 are commonly
used [40,48], differential transformation rates were observed between different Agrobac-
terium strains in this study, as previously reported. The Agrobacterium strain LBA4404
exhibited significantly higher total GFP content in mulberry leaves (p < 0.05), compared
to strains EHA105 and GV3101 (Figure 2B). Notably, higher transformation efficiency was
observed at OD600 0.5, compared to OD600 0.75 and OD600 1.0 (Figure 2C), highlighting
that high-density Agrobacterium can potentially disrupt the physiological functions of plant
cells or even lead to cell death. Similar findings have been reported, emphasizing that the
infectivity of A. tumefaciens strain LBA4404 was stronger than that of GV2260 and A281
in M. indica cv. K2 [30], and the level of OD600 0.5 was chosen for consistent transient
expression of the GUS gene in mulberry seedlings (M. alba L.) [40]. Many different strains
of Agrobacterium are available and may show additional potential for agroinfiltration or
transformation of various plant species [63]. These findings underscore the necessity of
optimizing mulberry genotypes, A. tumefaciens strain, and bacterial density for an efficient
transient transformation system.

Acetosyringone, a phenolic signal known to enhance Agrobacterium’s ability to transform
host plants and improve transformation efficiency, is a key factor for successful transforma-
tion [59]. Four concentrations of acetosyringone (50, 100, 150 and 200 µM) in the infiltration
medium were investigated in this study. The results of GFP content detection indicated that
although a higher transient transformation efficiency was observed at 150 µM acetosyringone,
no statisticaly significant differences with other concentrations were recorded (Figure 3A).
The results exhibited an increase in transformation efficiency with increasing acetosyringone
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concentration, reaching its highest at 150 µM, and then decreasing at 200 µM (Figure 3A).
Comparable outcomes and trends have been reported in previous studies involving persim-
mon [34] and banana [60]. Typically, the expression of foreign genes can be detected within
12 h after infection and lasts for 3–4 d [34]. The results revealed that the foreign genes are either
lost via cell division or included into the host plant genome. The findings demonstrated that
GFP expression levels can be observed throughout the 4–15 d after infiltration and the levels
of GFP content remained unchanged from 4 to 10 d after infiltration, and then remarkably
decreased at 15 d after infiltration (Figure 3C). Comparable results have been identified in
persimmon [34], grapes [36], and tobacco [64].

To assess and characterize the stability and reliability of the transient transformation
system employing sonication followed by vacuum infiltration, the MaANS [51,52] and
MaDFR [51,52] involved in anthocyanin accumulation were inserted into mulberry fruits
of the ‘Taiguo’ for transient overexpression function verification in vitro. Compared to
the control fruit transformed with pMV2-GFP, the overexpression of MaANS and MaDFR
contributed to significantly enhancing fruit coloration (Figure 4A,B) and led to a substan-
tially increased level of anthocyanins in mulberry fruits (Figure 4C), respectively. The
overexpression of MaDFR could better promote the accrual of anthocyanins compared to
MaANS (Figure 4). These findings further confirmed that MaANS and MaDFR are critical
individual genes involved in the biosynthesis and accumulation of anthocyanins within
mulberry fruits, as reported in prior studies [51,52,65]. Taken together, our modified tran-
sient transformation approach can be suitable for transient overexpression of heterologous
genes and functional assessment and analysis in mulberry.

5. Conclusions

Utilizing GFP as a reliable reporter gene, we have successfully devised an uncom-
plicated, highly efficient, and stable transient transformation system in mulberry leaves
in vitro, by employing A. tumefaciens-mediated transformation with subsequent sonication
and vacuum infiltration. More importantly, this system was successfully used for the
transient overexpression of MaANS and MaDFR in mulberry fruits in vitro, leading to a
substantial increase in both fruit coloring and anthocyanin levels. In all, this optimized
transient transformation system not only showcases its versatility in gene functional analy-
sis but also establishes a foundation for further advancements in post-genomic studies of
mulberry trees.
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(NosP-NPTII); Table S1: Optimization of experimental parameters; Table S2: Sequences of the primers.
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