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Abstract: Non-small cell lung cancer (NSCLC), representing 85% of lung cancer cases, is characterized
by its heterogeneity and progression through distinct stages. This study applied Weighted Gene Co-
expression Network Analysis (WGCNA) to explore the molecular mechanisms of NSCLC and identify
potential therapeutic targets. Gene expression data from the GEO database were analyzed across four
NSCLC stages (NSCLC1, NSCLC2, NSCLC3, and NSCLC4), with the NSCLC2 dataset selected as the
reference for module preservation analysis. WGCNA identified eight highly preserved modules—
Cyan, Yellow, Red, Dark Turquoise, Turquoise, White, Purple, and Royal Blue—across datasets,
which were enriched in key pathways such as “Cell cycle” and “Pathways in cancer”, involving
processes like cell division and inflammatory responses. Hub genes, including PLK1, CDK1, and
EGFR, emerged as critical regulators of tumor proliferation and immune responses. Estrogen receptor
ESR1 was also highlighted, correlating with improved survival outcomes, suggesting its potential as
a prognostic marker. Signature-based drug repurposing analysis identified promising therapeutic
candidates, including GW-5074, which inhibits RAF and disrupts the EGFR–RAS–RAF–MEK–ERK
signaling cascade, and olomoucine, a CDK1 inhibitor. Additional candidates like pinocembrin, which
reduces NSCLC cell invasion by modulating epithelial-mesenchymal transition, and citalopram, an
SSRI with anti-carcinogenic properties, were also identified. These findings provide valuable insights
into the molecular underpinnings of NSCLC and suggest new directions for therapeutic strategies
through drug repurposing.

Keywords: non-small cell lung cancer (NSCLC); WGCNA; KEGG pathways; module preservation;
drug repurposing; GW-5074; olomoucine; pinocembrin; citalopram; cell cycle regulation; protein
binding; estrogen

1. Introduction

NSCLC, or non-small cell lung cancer, accounts for over 85% of all cases of lung
cancer and is one of the most common types [1,2]. This form of cancer is known for
its heterogeneous nature, distinguishing it from small cell lung cancer (SCLC) by its
typically slower progression and varied presentation. NSCLC is broadly classified into
several subtypes based on histological characteristics and the anatomical locations of
tumor development. The most common type, adenocarcinoma, often occurs in the lungs’
outer regions and arises from the glandular cells that border the alveoli [3]. Squamous
cell carcinoma is typically found in the core regions of the lungs and develops from the
squamous cells that border the airways [4]. Large cell carcinoma, while less common, can
appear in any lung area and is noted for its rapid growth and tendency to spread quickly [5].
The progression of NSCLC is categorized into four distinct stages, each reflecting the extent
of disease spread and influencing treatment decisions. Stage I NSCLC is categorized into
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two sub-stages, 1A and 1B, primarily based on tumor size. At this stage, the cancer remains
localized to the lungs and has not yet invaded nearby lymph nodes or other body parts.
Stage II is separated into IIA and IIB substages, with subcategories that consider tumor
size, location, and lymph node involvement. While the tumor has not spread to distant
organs, tumors in this stage may be larger than those in stage I and may have begun to
damage neighboring lymph nodes. In stage III, which is subdivided into IIIA, IIIB, and
IIIC, the cancer’s extent is assessed by tumor size, location, and the degree of lymph node
spread, often involving the lymph nodes in the mediastinum, the region between the lungs.
Stage IV represents the most advanced form of NSCLC, characterized by metastasis to the
lining of the lungs or other distant sites in the body [6].

Non-small cell lung cancer (NSCLC) is treated using a range of therapies, including
surgery, chemotherapy, radiation therapy, targeted therapy, and immunotherapy, modified
to the stage of cancer, the patient’s overall health, and specific mutations found in the
tumor [7]. Surgery is frequently the preferred therapy for early-stage NSCLC (stages I–IIIA),
with a target of completely removing the tumor. Chemotherapy is widely utilized in
advanced stages (IIIB and IV), either as neoadjuvant therapy to decrease tumors before
surgery or as adjuvant therapy to eradicate remaining cancer cells after surgery. Cisplatin,
carboplatin, paclitaxel, docetaxel, gemcitabine, and pemetrexed are common chemotherapy
medicines frequently used in combination to enhance efficacy [8]. Radiation therapy can be
used to treat patients who are unable to undergo surgery, as well as to provide palliative
care to alleviate symptoms caused by tumor growth. Targeted therapy is very effective
in advanced NSCLC, as it focuses on specific genetic abnormalities in cancer cells. Key
targeted therapies include RET inhibitors like selpercatinib for RET rearrangements, ALK
inhibitors like alectinib and crizotinib for ALK gene alterations, and EGFR inhibitors like
osimertinib and erlotinib for EGFR-mutated cancers. BRAF inhibitors like dabrafenib and
MET inhibitors like capmatinib are also utilized to treat particular mutations [9,10]. Overall,
the therapy landscape for NSCLC is diverse, with several modalities suited to particular
patient profiles and tumor features.

This study employs Weighted Gene Co-expression Network Analysis (WGCNA) to
gain a better understanding of the molecular pathways underlying non-small cell lung
cancer (NSCLC) and to discover possible treatment targets. Using gene expression data
analysis, WGCNA is a bioinformatics technique that may be used to discover gene groups
with similar expression patterns and build networks of co-expressed genes. Through
the association of these gene groups with clinical characteristics, WGCNA offers insights
into the molecular mechanisms underpinning distinct phases of the disease [11]. Four
datasets of NSCLC—NSCLC1 (GSE19804), NSCLC2 (GSE43580), NSCLC3 (GSE101929),
and NSCLC4 (GSE19804)—were examined using data from the Gene Expression Omnibus
(GEO). Gene modules that are consistent across various datasets were identified with the
help of WGCNA, and their biological relevance was determined using functional annotation
and pathway enrichment analysis. To identify significant hub genes in each module, protein–
protein interaction networks were also built. This could aid in the discovery of possible
drug candidates [12].

With this bioinformatics approach, the study aims to shed light on the genetic differ-
ences and similarities across various stages of NSCLC. This understanding could reveal
important insights that may contribute to enhancing current treatment strategies or devel-
oping new therapeutic options for NSCLC patients.

2. Materials and Methods
2.1. Dataset Acquisition

Microarray gene expression datasets for use in WGCNA analysis were obtained from
the Gene Expression Omnibus (NCBI GEO) of the National Center for Biotechnology Infor-
mation (https://www.ncbi.nlm.nih.gov/geo/, accessed on 25 July 2024). These datasets
included primary lung tumor samples from patients with different stages of non-small cell
lung cancer (NSCLC)—Stages 1 (NSCLC1), 2 (NSCLC2), 3 (NSCLC3), and 4 (NSCLC4)—
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and contained expression data. To ensure consistency and minimize variability due to
differences in hybridization settings, probe sequences, and other platform-specific char-
acteristics, only datasets generated with the GPL570-HG-U133 Plus 2 Affymetrix Human
Genome U133 Plus 2.0 Array were selected [13]. A total of 74 samples were obtained. An
overview of the information and sample distribution for each of the four NSCLC stages
can be seen in Table 1.

Table 1. GEO datasets summary.

Accession No. GSE19804 GSE43580 GSE101929 GSE19804

Stage 1 2 3 4
Type Expression profiling by array

Platform Affymetrix Human Genome U133 Plus 2.0 Array
Source Tumor lung tissue

Organism Homo sapiens
No. of patients 35 26 11 12

The Bioconductor affy package (Bioconductor v3.18, http://www.bioconductor.org,
accessed on 25 July 2024) provides an extensive toolset for analyzing Affymetrix microarray
data [14]. It includes functions for reading Affymetrix CEL files, preprocessing the data,
and performing various analyses. The robust multi-array average (RMA) method was
used to process all screened raw data, which involved background correction, quantile
normalization, and log-2 transformation. To visually inspect the resulting data for irregular-
ities, sample clustering dendrograms and a boxplot of expression values were created [15].
After removing control probes and applying variance filtering, the expression datasets
were subset to include only common probes, focusing on lung tissue tumor expression
samples while eliminating non-biological variation. The datasets were further refined by
retaining only similar rows and removing data entries lacking gene symbols. Probe IDs
were converted to gene symbols using the hgu133plus2.db database and the AnnotationDbi
function. Finally, only probes present in all datasets were used, and samples without values
after log-2 transformation were removed using the ‘goodSamplesGenesMs’ function from
the WGCNA R package (R version 4.4.0).

2.2. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.2.1. Estimating a Scale-Free Network

The ‘pickSoftThreshold’ function from the WGCNA R package was employed to
assess the adherence of network data to a scale-free topology. This function generated
a plot that evaluated the fit of the data to a scale-free topology model across a range of
power levels (1 to 20). In a scale-free network, characterized by a power-law distribution, a
minority of nodes (genes) have a large number of connections, while most have relatively
few connections. The optimal power level (β) was identified as the lowest value at which
the network begins to approximate a scale-free topology. This was determined by locating
the point where further increases in power did not significantly improve the fit of the data
to the scale-free model [16]. To validate the scale-free nature of the network, the relationship
between the logarithm of the number of connections (log connectivity) and the logarithm
of the probability of those connections (log connectivity probability) was analyzed. A linear
trend in this plot would suggest that the network follows a scale-free distribution [17]. The
plot of scale-free topology fit versus soft-thresholding power was examined to identify
the point where the fit plateaus or reaches a high value. Additionally, the values of soft
connectivity (k) were plotted to confirm the appropriateness of the selected power level (β).

2.2.2. Module Identification and Network Construction Using TOM

Pearson’s correlation was used to calculate the strength of the correlation between
genes. Using the network type ‘signed’, this analysis considers the direction of the correla-
tion (positive or negative). The Topological Overlap Measure (TOM) was used to evaluate
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the similarity of connection patterns between gene pairs within the network. Adjacency
matrices were created to represent the strength of correlations between genes, which were
adjusted using the chosen power level to emphasize strong correlations and downweight
weak ones. The flashClust function was used to group genes into clusters based on their
similarity, and the hclust function was employed to cut the dendrograms into distinct
clusters (modules) of highly correlated genes. Hierarchical clustering was performed using
the ‘average’ method, based on the distance matrix of the expression profiles. Different
values (0 to 3) were tested using the cutreeHybrid function to determine the optimal level
for splitting the dendrogram branches [18]. Consistent clusters over a range of deep split
parameter values indicate successful detection of relevant gene modules.

2.2.3. Module Preservation Analysis

Gene modules from NSCLC1, NSCLC2, NSCLC3, and NSCLC4 were analyzed using
the modulePreservation function from the WGCNA R package, configured with a ‘signed’
network type to account for the direction of gene correlations. To evaluate the stability and
significance of module preservation, 100 random permutations were performed, and only
modules containing at least 30 genes were included in the analysis. Module membership
(kME), quantifying the correlation between each gene and its module’s overall expression
profile, was calculated using the moduleEigengenes function, which generates a represen-
tative expression profile (eigengene) for each module. kME values for each gene were then
computed based on their correlation with the module eigengene. This approach evaluates
whether gene connection patterns observed under specific conditions, such as different
disease states, are consistent across other conditions [19]. The stability and relevance of
these gene modules were assessed by identifying key genes with strong correlations to the
overall module expression profile.

2.3. Enrichment Analysis and KEGG Pathway

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was
used for functional annotation clustering to assess the relevance of gene modules. The
analysis incorporated three Gene Ontology (GO) categories: Biological Processes (BP),
describing the roles and processes the genes are involved in; Cellular Components (CC),
indicating the cellular locations of the genes or their products; and Molecular Functions
(MF), detailing the activities of the gene products, such as binding or catalytic activity.
The classification stringency was set to medium, grouping genes based on their functions
with moderate strictness. Only GO terms with enrichment scores higher than 1.3 and
an adjusted p-value of less than 0.05 were considered significant. Additionally, pathway
enrichment analysis was conducted using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database to identify pathways in which the genes are involved. Significant KEGG
terms were pathways that were significantly enriched and clustered with the selected GO
terms. These significant KEGG and GO terms helped to understand the broader biological
functions and roles of the gene modules, providing insights into the activity locations of
the genes, their functions, and the biological processes they participate in.

2.4. Protein–Protein Interaction and Hub Genes Identification

Protein–protein interaction (PPI) networks were generated for each of the highly
preserved modules using Cytoscape v3.10.2. The networks were constructed by importing
data from the public database STRING using the protein query as the data source, with a
minimum cutoff score of 0.7 to ensure high confidence. After generating these networks in
Cytoscape, the CytoHubba tool (v0.1.) was used to identify hub genes by evaluating their
degree of centrality, which indicates the number of interactions a gene has in the network
and its importance relative to other genes [20–22]. Hub genes were defined as the top five
genes in each module with the highest number of interactions.
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2.5. Signature-Based Drug Repurposing

The top 10 hub genes were first categorized as ‘upregulated’ or ‘downregulated’ using
GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/, accessed on 25 July 2024) based on
degree centrality. Following this classification, transcription profiles from the Molecular
Signatures Database (MSigDB) and Connectivity Map (CMap) were used to identify drug
candidates for repurposing via the Drug Repurposing Encyclopedia (DRE) [23,24]. The lists
of upregulated and downregulated genes were submitted for drug repurposing analysis
using molecular signature screening. Only drugs with clearly indicated mechanisms of
action and false discovery rates (FDR) below 0.05 were included in the final analysis, while
experimental drugs without specified mechanisms of action were excluded [15].

2.6. Language Refinement with AI Tools

In this study, AI tools, specifically OpenAI’s ChatGPT (GPT-4o mini) and Grammarly
(v1.2.0.0), were used to assist in the revision of the manuscript for grammar correction and
sentence construction. These tools were employed to improve the clarity and readability of
the text after experimental content had been fully developed. No AI tools were used for
data analysis, interpretation of results, or shaping conclusions. No research data or images
provided here were generated or created with the assistance of any AI tools.

3. Results
3.1. Weighted Gene Co-Expression Network Analysis
3.1.1. Data Pre-Processing and Scale-Free Network Estimation

After preparing the data and filtering the genes, a total of 27,872 genes remained for
further processing. The sample clustering dendrograms for each dataset, shown in Figure 1,
revealed no clear outliers. Figure 2 depicts the variation of the scale-free topology fit index
versus the soft-thresholding power (β) ranging from 1 to 20, illustrating the Scale-Free
Topology Model Fit. The model starts to stabilize and form a linear trend when the power
(β) reaches 10. Powers greater than 10 do not significantly improve the fit, as a power of
10 already provides a good scale-free structure. To construct biologically significant gene co-
expression networks with minimal noise and information loss, it is crucial to approximate
the ideal soft-thresholding power in WGCNA [25,26]. Generally, the soft-thresholding
power decreases rapidly with increasing values, so selecting the lowest power that meets
the scale-free topology standards is beneficial.

Figure 3 shows the log-log plot of the NSCLC2 dataset, illustrating the frequency of
different connectivity values with a power value of 10. Among all datasets, the NSCLC2
dataset demonstrated the best results with an R2 value of 0.93. This high R2 value indicates
strong gene connections and reliable results with clear patterns. Consequently, the NSCLC2
dataset was selected as the reference dataset for further analysis.

3.1.2. Identification of Modules Using TOM-Based Network Construction

In TOM-based network construction and module identification, it is crucial to identify
a reference dataset and project the module eigengenes of other datasets onto it. Module
eigengenes, calculated as the first principal component of the expression data for all genes
within a module, serve as summary statistics capturing the overall expression level of the
module. Standardizing module definitions and improving biological interpretation are
essential for facilitating cross-dataset analysis and meta-analyses [27]. By projecting the
module eigengenes of different datasets onto a reference dataset (in this case, NSCLC2),
cross-dataset comparisons and biological interpretations are enhanced. Consequently,
NSCLC2 was chosen as the reference dataset for meta-analysis, and the identified modules
are depicted in Figure 4.

https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Figure 1. Sample clustering dendrograms for (a) NSCLC1, (b) NSCLC2, (c) NSCLC3, (d) NSCLC4.

Figure 2. The soft-thresholding power estimated from the four datasets was found using the network
index plot and Scale-Free Topology Model Fit. The power at which the index began to plateau is
indicated by the blue box.
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Figure 3. The log-log plot of the approximated linear relationship for the NSCLC2 dataset at β = 10.

Figure 4. Dendrogram demonstrating module split sensitivity and gene clustering on TOM-based
dissimilarity in NSCLC2. The different colored sections show the detected gene co-expression
modules that match the area of the dendrogram.

In the NSCLC2 dataset analyzed using WGCNA, a total of 48 gene co-expression
modules were discovered and categorized by color. The largest module, “grey”, contained
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2500 genes, followed by “turquoise” with 1023 genes and “blue” with 744 genes. The
“yellow” module had 440 genes, while the “brown” module included 575 genes. Other
notable modules were “red” (321 genes), “black” (320 genes), and “green” (393 genes).
Smaller modules, such as “floralwhite” (30 genes), “lightsteelblue1” (35 genes), and “ivory”
(31 genes), were also identified. The diversity in module sizes reflects the impact of sample
size and clustering resolution on network robustness. These modules represent groups of
related genes with coordinated expression patterns across NSCLC stages, providing insights
into the molecular processes and regulatory networks involved. Additionally, associating
module eigengenes with external traits or clinical outcomes helps infer the biological
significance of the modules and enhances the overall interpretation of the findings [28].

3.2. Module Preservation Analysis

The preservation of gene co-expression network modules in non-small cell lung cancer
stage 2 (NSCLC2) was evaluated across different stages of NSCLC (NSCLC1, NSCLC3,
NSCLC4) using the highest Z-summary score for better preservation assessment. Only
modules with a Z-score ≥ 10 across all datasets were considered significant [29]. Figure 5
illustrates the preservation of different modules across stages. Minor variations were
observed between the preserved modules across datasets. Eight modules with high Z-
scores were identified across all datasets: Red, Turquoise, Yellow, Royal Blue, Purple,
Cyan, White, and Dark Turquoise. These modules are preserved across stages, indicating
shared networks among different NSCLC stages. NSCLC3 exhibited the most significantly
preserved modules compared to other stages, likely due to its transitional nature, where
the cancer is more aggressive and may metastasize to nearby organs, potentially leading to
NSCLC4 [24]. Eigengene-based connectivity (kME) was used to assess module membership
and identify hub genes within co-expression modules. Genes with high kME values exhibit
strong correlations with other genes within the same module and are ranked based on their
connectivity. Top genes with the highest kME scores from each module were selected as
promising biomarkers and therapeutic targets due to their high connectivity and association
with disease progression and poor survival in NSCLC [27].

3.3. Gene Ontology (GO) Terms and KEGG Pathway Analysis

Figure 6 presents the GO terms and KEGG pathway analysis for the highly preserved
genes in each module. The enrichment scores indicate significant connections to NSCLC
progression. Specifically, the Cyan, Yellow, and Red modules are involved in cell division
processes. The cellular components analysis shows that the Red, Cyan, and Yellow modules
are all active in the nucleoplasm. Protein binding is prominent across all modules except
Royal Blue. In the KEGG pathway analysis, the cell cycle is notably involved in the
Red, Cyan, and Yellow modules. Additionally, the Purple pathway shows significant
involvement in NSCLC, underscoring its relevance. The Dark Turquoise and White modules
are associated with general ‘Pathways in Cancer’, with NSCLC being a specific type of
lung cancer. Functional annotations were grouped using the DAVID webserver based on
the top module.

3.4. Protein–Protein Interaction Network and Key Hub Genes

Using Cytoscape v3.10.2, the identified modules in gene co-expression networks
were cross-referenced with PPI networks to validate and enhance the understanding of
the underlying biological processes. A cutoff score of 0.7 was applied to ensure a high
confidence level in the interactions [30]. The top five hub genes for each module were
identified based on degree ranking using the Cytoscape CytoHubba plugin. Figure 7
displays these top five hub genes, with their rankings indicated by color intensity, where
the brightest red represents the highest-ranking gene. After identifying the hub genes in
the PPI network, the next step involved integrating these genes into broader signaling
and regulatory networks. This integration helps elucidate their interactions with other
pathways and their roles in the complex biological systems underlying NSCLC.
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Figure 5. Gene co-expression modules from the NSCLC2 network’s (a) NSCLC1, (b) NSCLC3, and
(c) NSCLC4 datasets were subjected to a module preservation analysis. Highly maintained modules
are those with a Z-score greater than or equal to 10.

3.5. Signature-Based Drug Repurposing

Drugs that produce gene expression profiles inversely matched to the NSCLC hub
gene signature were identified using DRE. These drugs hold potential for repurposing
as they may counteract the distinctive expression patterns of hub genes associated with
NSCLC. Table 2 presents a selection of the most promising drug candidates along with their
relevant mechanisms of action. The false discovery rate (FDR) is a statistical metric that
estimates the percentage of false positives among positive results, with lower FDR values
indicating more reliable drug candidates [31]. In gene expression and drug development,
a greater negative tau value often signifies a more pronounced and effective alteration in
gene expression. However, tau values can have varying implications depending on the
context [32]. The top-ranked drug candidates for upregulated expression include L-745870,
pentolinium, GW-5074, pinocembrin, and bisphenol-A. For downregulated hub genes, the
most promising therapeutic candidates are clopidogrel, RX-821002, FR-122047, olomoucine,
and citalopram.
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Figure 6. Top enriched terms for the Cyan, Yellow, Red, Turquoise, Dark Turquoise, White, Purple,
and Royal Blue modules in terms of (a) biological processes, (b) cellular components, (c) molecular
functions, and (d) KEGG pathways.

Table 2. Top five drug candidates for the upregulated and downregulated hub genes for NSCLC.

Expression Genes Drug Mechanism Tau FDR

Upregulated
PLK1, EGFR, ESR1, CD4,
CTNNB1, CREBBP, BRD4,

AKT1

L-745870 Dopamine receptor antagonist −99.8 0.000188
Pentolinium Cholinergic receptor antagonist −99 0.00189

Gw-5074 Leucine-rich repeat kinase inhibitor, RAF
inhibitor −98.5 0.00481

Pinocembrin Cytochrome P450 inhibitor −98 0.00208
Bispherol-A Synthetic estrogen −97.5 0.000159

Downregulated

CDK1, CDC20, RPS11,
CCNA2, STAT1, SRSF1,

BRCA1, CD20, CTNNB1,
TLR4, ITGB2, PTPRC,
RPS27A, HSP90AA1

Clopidogrel Purinergic receptor antagonist −99.8 0.00396
Rx-821002 Adrenergic receptor antagonist −99.8 0.00416
Fr-122047 Cyclooxygenase inhibitor −99.6 0.00295

Olomoucine CDK indicator −99.6 0.00596
Citalopram Selective serotonin reuptake inhibitor (SSRI) −99.5 0.00596
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Figure 7. Top five hub genes based on the PPI network of the modules (a) Red, (b) Turquoise,
(c) Yellow, (d) Royal Blue, (e) Purple, (f) Cyan, (g) White, and (h) Dark Turquoise.

4. Discussion
4.1. Gene Co-Expression Modules across the Datasets

Weighted Gene Co-expression Network Analysis (WGCNA) is a powerful bioinformat-
ics method for analyzing gene expression data, particularly in diseases such as non-small
cell lung cancer (NSCLC). By identifying gene modules correlated with disease symptoms,
WGCNA provides valuable insights into disease progression and potential treatment tar-
gets [33,34]. NSCLC is the most common type of lung cancer, accounting for approximately
85% of all lung cancer diagnoses [35]. The disease’s progression is often influenced by ge-
netic abnormalities and changes in gene expression [36]. WGCNA constructs co-expression
networks that reveal gene interactions and their impact on tumor activity. It also identifies
pathways involved in disease networks by analyzing the interactions of highly preserved
genes. This methodology supports the application of WGCNA to explore the disease net-
work across various NSCLC stages, represented by the NSCLC1, NSCLC2, NSCLC3, and
NSCLC4 datasets. NSCLC3, a transitional stage where the cancer is more aggressive and
may spread to other organs [35], showed a higher number of preserved modules compared
to other stages. This is reflected in Figure A1, which indicates a significant correlation (0.86)
between NSCLC2 and NSCLC3, suggesting that despite representing different stages, their
molecular characteristics overlap significantly. Enrichment analysis using DAVID revealed
that the highly preserved modules Cyan, Yellow, and Red are predominantly involved
in cell division, while the Turquoise module is associated with inflammatory responses
(Figure 6a). The link between the Cyan, Yellow, and Red modules and cell division is partic-
ularly relevant for NSCLC, given the disease’s association with dysregulation of cell cycle
processes. Research has shown that differentially expressed genes (DEGs) in NSCLC are
significantly involved in various aspects of the cell cycle, including mitotic nuclear division
and regulation [37,38]. The cellular component analysis (Figure 6b) highlights that modules
like Dark Turquoise are primarily associated with nucleoplasm and cytoplasm. Alterations
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in nuclear body composition and function can disrupt gene expression regulation. For
example, interactions between nuclear bodies and chromatin are crucial for maintaining
transcriptional states. Highly transcribed genes often associate with proteins of the nuclear
pore complex, facilitating RNA and protein transport between the nucleus and cytoplasm,
which can impact cancer progression [39]. The cellular components of the nucleoplasm,
particularly nuclear bodies, are integral to gene regulation and cellular responses, with sig-
nificant implications for the pathophysiology of NSCLC. In general, proteins exhibit a wide
range of binding capabilities, which are crucial for various biological functions. In terms
of molecular function, all identified modules (Figure 6c) show significant involvement in
protein binding. This interaction is essential for numerous biological processes, including
signal transduction, enzymatic activity, and structural integrity within cells [40]. In NSCLC,
protein binding is critical for tumor progression and metastasis. For example, proteins in-
volved in EGFR signaling pathways are crucial for NSCLC development and maintenance.
Ligand binding to EGFR can activate downstream signaling pathways that promote cell
proliferation and survival, contributing to cancer progression [41]. A key limitation of this
study is the small sample sizes for the NSCLC3 and NSCLC4 stages, which include only 11
and 12 samples, respectively. These limited numbers may affect the general application
of the findings, as smaller samples can reduce statistical power and may not adequately
represent the diversity within these stages. This limitation could impact the reliability of
the identified gene modules and potential therapeutic targets, particularly regarding their
applicability to a wider range of patients. While the results provide important insights into
the molecular mechanisms of NSCLC progression, it is essential to exercise caution when
applying these findings to the broader NSCLC population. To strengthen the conclusions
drawn from this study, future research should focus on larger and more balanced sample
sizes across all NSCLC stages. This approach will help validate and refine the findings,
ultimately contributing to more effective treatment strategies for NSCLC.

KEGG pathway analysis, as shown in Figure 8, highlights the hub genes associated
with each pathway within the modules. The significant enrichment of the “Cell cycle”
pathway underscores the dysregulation of cell cycle control mechanisms in NSCLC, which
can lead to uncontrolled cell division. A study emphasizes the importance of cell cycle
regulators, such as CDK1 and cyclins, in NSCLC, indicating that targeting these regulators
can inhibit tumor growth and induce apoptosis in NSCLC cells [42]. The “Pathways in
cancer” enrichment reflects the involvement of multiple signaling pathways in NSCLC
tumorigenesis. Research by Cui et al. discusses the role of various oncogenes and tumor
suppressor genes in NSCLC, including mutations in EGFR, K-RAS, and p53, which are
critical in cancer pathways. These genetic alterations lead to uncontrolled cell proliferation
and survival, highlighting their significance in NSCLC progression [43]. The “non-small cell
lung cancer” pathway specifically addresses the molecular mechanisms underlying NSCLC,
including key genetic alterations. The KEGG pathway analysis provides a comprehensive
view of signaling pathways involved in NSCLC, emphasizing the roles of K-RAS mutations
and EGFR overexpression in promoting cell proliferation and survival. This reinforces
the relevance of these pathways in understanding NSCLC biology. Additionally, the
“Cell adhesion molecules” pathway highlights the importance of cell–cell and cell–matrix
interactions in NSCLC, which can impact tumor invasion and metastasis [42]. The study
examines how alterations in cell adhesion molecules contribute to NSCLC metastasis,
suggesting that targeting these interactions may help inhibit tumor spread and improve
patient outcomes. This analysis suggests that there may be interactions, cross-talk, or
amplification within these pathways that contribute to NSCLC progression.

Additionally, the increased preservation of modules per stage is demonstrated by
Figure 9, which displays the top KEGG pathways per module that could potentially act as
significant point in the progression of NSCLC. Modules that reached the threshold of z ≥ 10
per stage were all considered in this figure. A study published in April 2024 demonstrated
that targeted inhibition of the PI3K/AKT/mTOR pathway using specific compounds led to
cell cycle arrest, apoptosis, and autophagy in NSCLC cells. This suggests that mTOR is a
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viable target for therapeutic intervention in NSCLC, providing a rationale for developing
mTOR inhibitors as part of treatment strategies [44]. Studies have shown that alterations in
nucleocytoplasmic transport mechanisms can lead to the aberrant localization of oncogenes
and tumor suppressor proteins. For example, mutations in genes like p53 can disrupt
normal transport processes, leading to enhanced cell proliferation and survival, which are
hallmarks of NSCLC [45]. Research has identified specific genes within the focal adhesion
pathway that are upregulated in NSCLC. A study found that genes such as VWF, CAV1,
and ITGA8 were significantly enriched in the focal adhesion pathway and associated with
poor prognosis in NSCLC patients [43]. This is also why it is present in the late stages of
NSCLC, as shown in Figure 9. These findings suggest that focal adhesion signaling may
play a critical role in the aggressiveness of NSCLC tumors. According to research, the
PI3K/Akt/mTOR signaling pathway—which is essential for cell growth and survival—is
one of the oncogenic pathways shared by both HCC and NSCLC. In both cancers, deviations
in these pathways might result in the growth of tumors. According to a study, NSCLC and
HCC pathway-related genes were found to be highly expressed in each other, indicating
a possible molecular connection between the two cancers [43]. Tight junctions are crucial
for maintaining epithelial integrity and regulating paracellular permeability. In NSCLC,
alterations in tight junction proteins can lead to increased invasiveness and metastasis.
A study indicated that the dysregulation of tight junctions contributes to the epithelial–
mesenchymal transition (EMT), a process associated with enhanced migratory and invasive
properties of cancer cells [46]. The pathway details how chemical carcinogens can induce
oxidative stress, leading to DNA damage and mutations, which are critical in the initiation
and progression of lung cancer. A study by Henkler et al. (2010) discusses the role of
oxidative stress in carcinogenesis induced by metals and xenobiotics, emphasizing the
importance of ROS in cancer development, including lung cancer [47]. These findings could
lead to new research studies in NSCLC, including computational modeling, laboratory
experiments, and clinical studies.

Figure 8. KEGG pathways interconnectivity based on the functions of key hub genes.
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Figure 9. Modules in KEGG pathways with increased preservation for each NSCLC stage (NSCLC1,
NSCLC2, NSCLC3, NSCLC4).

4.2. Module Hub Genes and Their Functions

A number of hub genes play crucial roles in the pathophysiology and progression
of non-small cell lung cancer (NSCLC), affecting various cellular processes. These genes
can be categorized based on their functions in ribosomal protein synthesis, transcription,
immune response, signal transduction, cell cycle regulation, and DNA damage repair. The
hub genes associated with each module and their functions are listed in Table A1, derived
from the GeneCards database (www.genecards.org, accessed 29 July 2024) [48].

4.2.1. Cell Cycle Regulation and Proliferation

The analysis of gene co-expression networks and module preservation in NSCLC
datasets unveiled crucial insights into the disease’s pathophysiology. Weighted Gene Co-
expression Network Analysis (WGCNA) identified several significant gene modules across
different stages of NSCLC, with prominent modules related to cell cycle regulation and
mitotic progression. These findings were further validated by KEGG pathway analysis,
which highlighted the “Cell cycle” pathway as significantly enriched in modules such as
Red, Cyan, and Yellow (Figure 8).

Polo-like kinase 1 (PLK1), identified as a hub gene in the context of mitotic regulation,
was found to be a key player in the modules associated with cell cycle processes. Elevated
PLK1 expression has been associated with poor prognosis and enhanced cell proliferation in
NSCLC [49]. This is supported by the results observed in the module preservation analysis,
where modules associated with cell division and mitosis showed high preservation across
different stages of NSCLC (Figures 4 and 5). Elevated PLK1 levels align with the observed
enrichment in the “Cell cycle” pathway, reinforcing its role as a critical factor in NSCLC
progression and a potential therapeutic target [50,51]. Targeting PLK1 with inhibitors,
such as volasertib, has shown potential in improving NSCLC cells’ radiosensitivity [52,53].
Cyclin-dependent kinase 1 (CDK1) and Cell Division Cycle 20 (CDC20) were also identified
as hub genes within modules associated with mitotic progression. Their dysregulation,
particularly in the context of the G2/M transition, aligns with the results from the functional
annotation clustering and pathway enrichment analyses. Modules Cyan, Yellow, and Red,
which were highly preserved and enriched in cell cycle processes, underscore the critical

www.genecards.org
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role of these regulators in uncontrolled proliferation. The significant enrichment of the
“Cell cycle” pathway across these modules highlights the importance of CDK1 and CDC20
in NSCLC, as their dysregulation contributes to tumor aggressiveness and resistance to
treatment [54]. Cyclin A2 (CCNA2), involved in regulating the S phase and G2/M transition,
was similarly identified as a crucial hub gene within the modules associated with cell cycle
processes. The correlation between CCNA2’s role in cell cycle regulation and the observed
enrichment in the “Cell cycle” pathway further supports the relevance of these findings
in understanding NSCLC biology. Overall, the results from the module preservation
analysis, KEGG pathway enrichment, and hub gene identification converge to highlight
the central role of mitotic regulators and cell cycle processes in NSCLC. The significant
preservation of these modules across datasets and their association with key biological
pathways emphasize the potential of targeting these regulators, such as PLK1, CDK1, and
CDC20, for therapeutic intervention in NSCLC.

While the study successfully identifies key pathways and genes associated with non-
small cell lung cancer (NSCLC), a significant limitation is the absence of experimental
functional validation to confirm the biological significance of these findings. Without
such validation, the roles of the identified genes and pathways remain speculative. Func-
tional studies, such as gene knockdown or overexpression experiments, are crucial for
substantiating the biological relevance of these genes in NSCLC. For instance, research
has demonstrated the impact of specific genes on tumor progression through gene knock-
down experiments, revealing their roles in cell proliferation and apoptosis [55]. Similarly,
overexpression studies have shown how certain mutations, such as those in the EGFR
gene, can promote aggressive tumor behavior [56]. These experiments provide direct
evidence of how these genes influence cancer-related processes. Future research should
focus on conducting these functional studies to validate the computational predictions and
deepen the understanding of the molecular mechanisms driving NSCLC. This validation is
essential to move from theoretical insights to practical applications in developing targeted
therapies, as confirmed roles of these genes will guide the development of more effective
treatment strategies.

4.2.2. Signal Transduction

Non-small cell lung cancer (NSCLC) is frequently associated with mutations in EGFR,
which affect up to 50% of East Asian populations and approximately 10% to 15% of cases in
Western nations [57]. These mutations lead to uncontrolled cell growth and proliferation by
activating downstream signaling pathways such as PI3K/AKT and MAPK [58]. The signifi-
cant enrichment of the “Cell cycle” pathway observed in the study is closely linked to these
signaling pathways. The PI3K/AKT/mTOR pathway is commonly altered in EGFR-mutant
NSCLC. Research indicates that 67% of individuals with EGFR mutations exhibit basal
activation of the AKT/mTOR axis [49]. Specific mutations within this pathway include:
(1) PIK3CA mutations, which are present in 5–10% of EGFR-mutant NSCLC cases and
confer resistance to EGFR TKIs, (2) loss of PTEN, which also results in resistance to EGFR
inhibitors, and (3) AKT1 mutations, although less frequent, are notable for their impact on
treatment resistance [59]. The identification of hub genes related to the PI3K/AKT/mTOR
pathway supports these findings. AKT1, an essential effector in the PI3K pathway, was
found to be a critical hub gene within modules associated with cell cycle regulation and
mitotic progression. Its overactivation is linked to poor prognosis in NSCLC, aligning
with the results that show its significant role in the enriched “Cell cycle” pathway [50].
Targeting AKT1 and other components of the PI3K pathway could potentially overcome
EGFR TKI resistance, providing a valuable therapeutic strategy for NSCLC [60]. Moreover,
BET inhibitors, which target BRD4 and disrupt its interaction with acetylated histones, have
shown promising anti-tumor effects in preclinical NSCLC models [61]. The integration of
these findings into the broader context of the study highlights the importance of targeting
key signaling pathways and genetic alterations in NSCLC for effective treatment strategies.
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4.2.3. Immune Response and Inflammation

The results from the gene co-expression network analysis and module preservation
studies provide insights into the role of immune responses in NSCLC. Notably, the module
preservation analysis identified several key modules related to immune function, includ-
ing those associated with cell cycle regulation and mitotic progression. This association
aligns with the preserved modules related to immune response identified in the analysis,
suggesting a potential link between immune cell dynamics and the expression patterns of
hub genes involved in cell cycle regulation.

The ability of CD4+ T cells to recognize neoantigens from mutations in oncogenes like
HER2 and KRAS further supports their role in targeting tumor-specific antigens [62,63].
This capability complements the findings from KEGG pathway analysis, which highlighted
significant enrichment in pathways related to cell cycle and mitotic regulation. The con-
vergence of these results emphasizes the interplay between tumor cell proliferation and
immune responses, underscoring the potential for therapeutic strategies that leverage CD4+
T cells to enhance anti-tumor immunity [64] while targeting key cell cycle regulators such
as PLK1, CDK1, and CDC20. Thus, integrating immune response insights with molecular
findings provides a comprehensive view of NSCLC progression and potential therapeutic
approaches. A further limitation of this study is the absence of an analysis correlating
the identified gene expression patterns with clinical data, such as patient survival rates
or treatment responses. Integrating clinical data could substantially enhance the clinical
relevance of the findings by establishing links between the molecular features identified and
patient outcomes. Such an analysis would provide a more comprehensive understanding
of the clinical implications of the identified genes and pathways, potentially guiding more
personalized treatment strategies. Future studies should aim to incorporate clinical data to
validate and expand upon the current findings, thereby offering deeper insights into the
prognostic and therapeutic potential of the identified molecular targets.

4.2.4. The Influence of Estrogen on NSCLC Progression

It has been studied that estrogen receptors, in particular ESR1, contribute to the de-
velopment of NSCLC. Research suggests that ESR1 could control a number of signaling
pathways, such as those involved in cell division, migration, and invasion, which influence
the behavior of tumors. For example, bioinformatics investigations have demonstrated a
correlation between increased expression of genes implicated in crucial signaling pathways,
like Wnt/β-Catenin and Notch, which are known to play important roles in the development
of NSCLC, and higher ESR1 expression [65]. ESR1 expression levels were shown to classify
patients into groups with different prognoses in a study that analyzed gene expression data
from patients with non-small cell lung cancer. More specifically, compared to patients with
lower expression levels, those with increased ESR1 expression showed superior overall
survival rates [66]. This implies that ESR1 may function as a prognostic marker in non-small
cell lung cancer in addition to influencing tumor biology. The estrogen pathway plays
a major role in lung adenocarcinoma by influencing a number of cancer hallmarks. By
inducing pro-inflammatory cytokines, attracting regulatory T cells, and generating an im-
munosuppressive tumor microenvironment, estrogen regulates immunological responses.
These processes support the migration, metastasis, and survival of cancer cells [67].

Interestingly, NSCLC cells can synthesize 17β-estradiol (E2) locally, similar to mecha-
nisms observed in breast cancer. The two primary types of estrogen receptors via which E2
acts are ERα [68] and ERβ. ERα is expressed at lower levels in NSCLC, whereas ERβ is the
more abundant protein. Research has demonstrated that ERβ mediates the proliferative
effects of E2 in lung cancer cells, influencing the regulation of the cell cycle and promoting
the formation of tumors via pathways such as PI3K/Akt and MAPK/ERK [69–71]. This
receptor interaction increases the expression of genes associated with cell proliferation and
survival, such as c-myc and cyclin D, and improves angiogenesis via vascular endothelial
growth factor (VEGF) production [69,72].
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On the other hand, aromatase, an enzyme that converts testosterone to estrogen,
is substantially expressed in 44–86% of NSCLC tissues [72]. This is also linked to the
biosynthesis of estrogen, particularly E2, which is a significant factor in the development
and progression of breast cancer. Studies have shown that in postmenopausal breast cancer
patients, the concentration of E2 in breast tissue can be significantly higher than in the
plasma, suggesting that local estrogen production within tumors is a key factor in cancer
progression [73,74]. A simple illustration of the process is shown in Figure 10.

Figure 10. Local estrogen synthesis and estrogen receptor interaction in NSCLC and its potential
metastasis to breast cancer.

4.3. Signature-Based Drug Repurposing

In the study of non-small cell lung cancer (NSCLC) progression, signature-based
drug repurposing offers a promising approach by elucidating the complex interactions
between various hub genes and their associated signaling pathways to identify poten-
tial therapeutic targets (Table 2). Preclinical studies have demonstrated that GW-5074
has antitumor benefits, particularly when combined with other RAF inhibitors such as
sorafenib. This combination has shown synergistic effects, significantly increasing cell
death in renal cell carcinoma cell lines compared to each drug alone [75]. GW-5074 inhibits
RAF, disrupting the EGFR–RAS–RAF–MEK–ERK signaling cascade, which is crucial for
cell proliferation and survival [76]. This suggests that GW-5074 could be effective against
tumors with abnormal EGFR signaling due to mutations, such as those found in NSCLC.
Additionally, one study discovered that GW5074 and sorafenib administration as part of a
combination therapy considerably triggered necrotic death in various cancer cells in vivo
and extended the survival of an animal disease model by dramatically suppressing primary
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and metastatic lesions. The study concluded that the co-administration of sorafenib with
GW5074 showed anti-tumor effectiveness across a range of tumor types, in addition to a
favorable safety profile [77]. Olomoucine may limit tumor growth by blocking both CDK1
and its downstream effects on CDC20, particularly in cancers with dysregulated pathways.
In the context of non-small cell lung cancer (NSCLC), combining CDK inhibition with the
resulting impact on CDC20 can be a strategic approach to limit the proliferation of cancer
cells, potentially enhancing treatment effectiveness [78,79]. Pinocembrin treatment (50 µM)
significantly reduced the number of migrating and invasive NSCLC cells by upregulating
the protein level of E-cadherin and downregulating N-cadherin, vimentin and snail. This
study shows that pinocembrin can prevent STAT3 from being activated, which is linked
to EMT, and thereby reduce NSCLC cells’ ability to migrate and invade [80]. Citalopram
is a member of the selective serotonin reuptake inhibitor (SSRI) class of antidepressants,
which is used to treat depression [81]. Interestingly, a systematic review highlighted that
antidepressants, including citalopram, have been associated with anti-carcinogenic effects
through various mechanisms such as inducing apoptosis, inhibiting cell proliferation, and
modifying immune responses. This review emphasizes the need for more clinical studies
to better understand the role of antidepressants in cancer treatment, including NSCLC [82].
Overall, these potential drugs—GW-5074, olomoucine, pinocembrin, and citalopram—offer
promising new avenues for treating NSCLC by targeting upregulated and downregulated
hub genes identified in the study. By addressing the signaling pathways and genetic alter-
ations associated with NSCLC, these repurposed drugs could contribute to more effective
therapeutic strategies. These findings offer valuable insights into potential new targets
for drug discovery and contribute to a deeper understanding of the underlying biology of
NSCLC. While the study successfully identifies key hub genes and potential drug repurpos-
ing candidates for NSCLC, a significant limitation is the absence of experimental validation
for these findings. Without in vitro or in vivo validation, the functional relevance and
therapeutic potential of the identified genes and drugs remain unconfirmed. This limitation
underscores the necessity for future experimental studies to validate the computational
predictions and ensure their applicability in clinical settings. Experimental validation
would provide critical insights into the mechanistic roles of these genes and the efficacy of
the proposed drug candidates, thereby strengthening the overall conclusions of the study.

5. Conclusions

In conclusion, this study underscores the pivotal role of Weighted Gene Co-expression
Network Analysis (WGCNA) in elucidating the progression of non-small cell lung cancer
(NSCLC) and identifying potential therapeutic targets. The analysis reveals a substantial
gene co-expression overlap between NSCLC3 and NSCLC2, the reference dataset, with a
significant correlation suggesting shared molecular characteristics across different disease
stages. This highlights the robustness of the findings and their applicability across NSCLC
stages. Enrichment analysis identifies highly preserved modules—Cyan, Yellow, Red,
and Turquoise—as predominantly involved in cell division and inflammatory responses,
aligning with the dysregulation of cell cycle processes critical to NSCLC pathology. Key
hub genes, such as PLK1, CDK1, and EGFR, emerge as crucial regulators of tumor prolif-
eration, signal transduction, and immune response. The KEGG pathway analysis further
emphasizes the significance of pathways like “Cell cycle”, “Pathways in cancer”, and “Cell
adhesion molecules” in NSCLC progression, reinforcing the importance of these pathways
in tumor development. The study also highlights the influence of estrogen receptors, par-
ticularly ESR1, on NSCLC biology. Elevated ESR1 expression correlates with improved
survival outcomes, suggesting its utility as a prognostic marker. Additionally, the role of
estrogen in regulating tumor biology through pathways such as PI3K/Akt and MAPK/ERK
underscores its impact on cell proliferation and angiogenesis. The predominance of ERβ in
NSCLC cells and its role in mediating estrogen effects further supports the need to consider
hormonal factors in therapeutic strategies.
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In terms of drug repurposing, the analysis identifies promising candidates such as
GW-5074, which inhibits RAF and disrupts the EGFR–RAS–RAF–MEK–ERK signaling
cascade, offering a potential strategy for targeting tumors with abnormal EGFR signaling.
Preclinical studies have demonstrated that GW-5074 has antitumor benefits, particularly
when combined with other RAF inhibitors such as sorafenib. This combination has shown
synergistic effects, significantly increasing cell death in renal cell carcinoma cell lines
compared to each drug alone. This suggests that GW-5074 could be effective against
tumors with abnormal EGFR signaling due to mutations, such as those found in NSCLC.
Additionally, one study discovered that GW-5074 and sorafenib administration as part of
a combination therapy considerably triggered necrotic death in a variety of cancer cells
in vivo and extended the survival of an animal disease model by dramatically suppressing
primary and metastatic lesions. Additionally, olomoucine, by targeting CDK1 and CDC20,
aligns with observed dysregulation in mitotic pathways, suggesting a strategic approach
to limit cancer cell proliferation. In the context of NSCLC, combining CDK inhibition
with the resulting impact on CDC20 can be a strategic approach to limit the proliferation
of cancer cells, potentially enhancing treatment effectiveness. Furthermore, the study
emphasizes the protective role of CD4+ T cells in NSCLC, with higher CD4+/total T cell
ratios associated with improved clinical outcomes. The ability of CD4+ T cells to recognize
tumor-specific antigens and their potential in immunotherapeutic strategies underscore
the importance of integrating immune-based approaches into NSCLC treatment. Other
potential drugs, such as pinocembrin, which reduces the number of migrating and invasive
NSCLC cells by upregulating E-cadherin and downregulating N-cadherin, vimentin, and
snail, show promise. This study shows that pinocembrin can prevent STAT3 from being
activated, which is linked to EMT, and thereby reduce NSCLC cells’ ability to migrate and
invade. Additionally, citalopram, a member of the selective serotonin reuptake inhibitor
(SSRI) class of antidepressants, has been associated with anti-carcinogenic effects through
various mechanisms such as inducing apoptosis, inhibiting cell proliferation, and modifying
immune responses. This review emphasizes the need for more clinical studies to better
understand the role of antidepressants in cancer treatment, including NSCLC.

Overall, this comprehensive analysis enhances the understanding of NSCLC biol-
ogy and provides valuable directions for future research and clinical applications. The
integration of gene co-expression networks, pathway enrichment, hormonal influences,
and drug repurposing offers a robust framework for developing targeted and effective
treatment strategies.
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Appendix A

Figure A1. Ranked expression plots and ranked connectivity plots for dataset comparison
(a,b) NSCLC1 vs. NSCLC2; (c,d) NSCLC1 vs. NSCLC3; (e,f) NSCLC2 vs. NSCLC3; (g,h) NSCLC4 vs.
NSCLC1; (i,j) NSCLC4 vs. NSCLC3; and (k,l) NSCLC4 vs. NSCLC2.
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Table A1. Summary of hub genes and their protein functions from the GeneCards database.

Gene Protein Function Modules

PLK1 Polo Like Kinase 1 Because its depletion in cancer cells significantly reduced cell
growth and caused apoptosis, cancer therapy targets this protein. Red/Yellow/Cyan

EGFR Epidermal Growth Factor
Receptor Lung cancer is linked to mutations in this gene.

Royal
Blue/Purple/White/

Dark Turquoise

ESR1 Estrogen Receptor 1 This gene encodes a receptor that is important in osteoporosis,
endometrial cancer, and breast cancer. Royal Blue

CD4 CD4 Molecule
The protein stimulates or starts the early stage of T-cell activation
and may be a key player in immune-mediated and viral disorders
of the central nervous system that cause indirect neuronal damage.

Turquoise

CTNNB1 Catenin β 1
Colorectal cancer (CRC), pilomatrixoma (PTR), medulloblastoma

(MDB), and ovarian cancer are all brought on by mutations in
this gene.

Royal Blue/Dark
Turquoise

CREBBP CREB Binding Protein

This gene was first identified as a nuclear protein that binds to
cAMP-response element-binding protein (CREB). Through the

connection of chromatin remodeling to transcription factor
recognition, it is now recognized to play important roles in
embryonic development, growth control, and homeostasis.

Royal Blue/Dark
Turquoise

BRD4 Bromodomain Containing 4
The chromosome 19 target of translocation t(15; 19)(q13; p13.1),

which characterizes upper respiratory tract cancer in adolescents,
has been linked to this gene.

Purple

CDK1 Cyclin Dependent Kinase 1 This protein’s phosphorylation and dephosphorylation play
significant regulatory functions in the regulation of the cell cycle. Red/Yellow/Cyan

CDC20 Cell Division Cycle 20
It appears that at various stages of the cell cycle, CDC20 functions

as a regulatory protein through interactions with many
other proteins.

Red/Yellow/Cyan

RPS11 Ribosomal Protein S11
This gene is distributed throughout the genome in several
processed pseudogenes, as is common for genes encoding

ribosomal proteins.
Royal Blue

CCNA2 Cyclin A2

This gene codes for a protein that is a member of the highly
conserved cyclin family, which controls the cell cycle;

adenocarcinoma and retinoblastoma are two diseases linked
to CCNA2.

Yellow/Cyan

STAT1 Signal Transducer and Activator
of Transcription 1

Receptor-associated kinases phosphorylate members of the STAT
family in response to cytokines and growth factors. These members
subsequently form homo- or heterodimers and translocate to the

cell nucleus, where they function as transcription activators.

Dark Turquoise

SRSF1 Serine And Arginine Rich Splicing
Factor 1

Depending on its contact partners and degree of phosphorylation,
the encoded protein can either activate or suppress splicing. White

BRCA1 BRCA1 DNA Repair Associated Hereditary breast and ovarian cancers are now identified by the
presence of germline BRCA1 mutations. Red

TLR4 Toll Like Receptor 4
The Toll-like receptor (TLR) family of proteins, which includes the

protein produced by this gene, is essential for pathogen
identification and the induction of innate immunity.

Turquoise

ITGB2 Integrin Subunit β 2
Integrins are essential proteins found on the cell surface that are

involved in both cell adhesion and signaling mediated by the
cell surface.

Turquoise

PTPRC Protein Tyrosine Phosphatase
Receptor Type C

Cell growth, differentiation, mitosis, and oncogenic transformation
are just a few of the biological processes that PTPs are known to

influence as signaling molecules.
Turquoise

RPS27A Ribosomal Protein S27a It is produced from a precursor protein that is either a single
ubiquitin coupled to an unrelated protein or a polyubiquitin chain. Royal Blue

HSP90AA1 cluHeat Shock Protein 90 α
Family Class A Member 1

This gene codes for an inducible molecular chaperone protein,
which is a homodimer. Purple/White
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Table A2. Top KEGG pathways from highly preserved modules (z > 10).

Module KEGG Term Count p-Value

Yellow

Metabolic pathways 242 2.03 × 10−11

Pathways of neurodegeneration—multiple diseases 78 1.14 × 10−4

Alzheimer disease 72 2.45 × 10−6

Amyotrophic lateral sclerosis 66 2.18 × 10−5

Cell cycle 59 9.41 × 10−19

White

Pathways in cancer 65 0.039962252
Huntington disease 41 0.038434334

Endocytosis 39 0.003801247
Hepatocellular carcinoma 32 3.90 × 10−4

Tight junction 32 3.90 × 10−4

Purple

Metabolic pathways 188 1.91 × 10−5

Herpes simplex virus 1 infection 84 2.43 × 10−7

Chemical carcinogenesis—reactive oxygen species 31 0.0235166
Biosynthesis of cofactors 29 2.67 × 10−4

Peroxisome 25 2.02 × 10−7

Turquoise

Pathways in cancer 85 2.89 × 10−6

PI3K-Akt signaling pathway 63 4.31 × 10−6

MAPK signaling pathway 52 3.76 × 10−5

Rap1 signaling pathway 45 6.60 × 10−7

Regulation of actin cytoskeleton 44 1.50 × 10−5

Royal Blue

Endocytosis 33 0.047955
Cytoskeleton in muscle cells 31 0.044336

Hepatocellular carcinoma 24 0.04709
mTOR signaling pathway 23 0.03917

Nucleocytoplasmic transport 22 1.84 × 10−5

Red

Metabolic pathways 202 2.29 × 10−6

Pathways of neurodegeneration—multiple diseases 62 0.015828
Cell cycle 58 6.81 × 10−20

Alzheimer disease 54 0.006263
Amyotrophic lateral sclerosis 51 0.008789

Cyan

Metabolic pathways 240 4.52 × 10−9

Pathways of neurodegeneration—multiple diseases 84 1.69 × 10−5

Alzheimer disease 77 3.46 × 10−7

Amyotrophic lateral sclerosis 70 6.20 × 10−6

Cell cycle 65 2.89 × 10−22

Dark Turquoise

Pathways in cancer 80 3.49 × 10−4

MAPK signaling pathway 47 0.003029
Shigellosis 40 0.004202

Focal adhesion 39 1.49 × 10−4

Cytoskeleton in muscle cells 39 0.002129
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