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Abstract: What does it mean for a complex system to “compute” or perform “computations”? Intu-
itively, we can understand complex “computation” as occurring when a system’s state is a function
of multiple inputs (potentially including its own past state). Here, we discuss how computational
processes in complex systems can be generally studied using the concept of statistical synergy, which
is information about an output that can only be learned when the joint state of all inputs is known.
Building on prior work, we show that this approach naturally leads to a link between multivariate
information theory and topics in causal inference, specifically, the phenomenon of causal colliders.
We begin by showing how Berkson’s paradox implies a higher-order, synergistic interaction between
multidimensional inputs and outputs. We then discuss how causal structure learning can refine and
orient analyses of synergies in empirical data, and when empirical synergies meaningfully reflect
computation versus when they may be spurious. We end by proposing that this conceptual link
between synergy, causal colliders, and computation can serve as a foundation on which to build a
mathematically rich general theory of computation in complex systems.

Keywords: Berkson’s paradox; synergy; multivariate information theory; higher-order interactions;
partial information decomposition

1. Introduction

What does it mean to say that a complex system, such as the brain, “computes”? The
metaphor of computation is a canonical one throughout the field of complex systems [1,2]
although unlike digital and analog computers designed by engineers, complex systems
are self-organizing, noisy, and often continuous. While early cyberneticians made use
of concepts like Turing machines and Boolean logic gates as analogies [3], as the field
has progressed, it has become increasingly clear that complex systems are not merely
elaborate Turing machines. Formal theories that rely on mathematical notions of well-
defined, computable functions are often too rigid for the noisy, multifaceted, ill-defined,
and non-deterministic world of complex systems. As a result, like many other topics in the
field of complex systems, applying the concept of computation often relies on the intuition
of researchers rather than objective quantification.

Despite this, it is also clear that many systems do seem to do something very much
like the most general theories of computation. Consider a neuron: it is well known that
neurons receive inputs from pre-synaptic parent neurons (in the form of excitatory and
inhibitory neurotransmitters) and account for those inputs when “deciding” (computing)
their behavior in the immediate future (whether to fire an action potential or not). Here,
we suggest a relaxed and pragmatic definition of computation, in the spirit of the simple
mapping account [4,5], that incorporates these basic features. In the context of complex
systems, we operationalize computation as occurring when a system, or subset of a system,
accounts for the state of multiple exogenous or endogenous inputs when deciding its next
state. While this definition is very general, this may ultimately be a virtue; it does not
require that the process of accounting for inputs be mathematically well defined, nor does
it assume a discrete, finite state machine, and it works just as well for continuous systems
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as discrete ones. For instance, an economist might say that a business computes the optimal
price of its products as some nebulous function of inputs (costs of material, competitors’
pricing, etc).

The specific mechanisms and physical implementations of these computations are all
different, but they share a common high-level feature: information about the states of many
elements, possibly including the past state of the computer itself, is integrated to “decide”
on a given next state, out of some space of possibilities. We might call this the “integrated
information” account of computation (note that “integrated information” in this context
is not necessarily the same as integrated information theory, which is a proposed theory
of consciousness).

Here, we show that this definition of computation is particularly useful in the context of
multivariate information theory [6–8], which concerns itself with the interactions between
three or more variables (higher-order interactions). For such an account to be useful,
particularly one as general as this, it would be useful if it pointed to some analytic tools
that scientists could use to try and understand the computational structure of whatever
system they are interested in. Based on the integrated information account of computation,
we would expect that an observer attempting to model a putative computational process
would find that predicting the output requires knowing the joint state of all of the inputs
simultaneously. This notion is formalized by the concept of synergy: information about a
target that is only disclosed by the joint state of all of the inputs and no simpler combination
of sources [9].

Much of this work is inspired by the developments of Lizier et al. [10], who proposed
that “non-trivial” computation could be recognized by multivariate dependencies that
were “greater than the sum of their parts”. This approach was further refined by Lizier,
Flecker, and Williams in 2013 [11], who combined their method with the recently proposed
approach using the partial information decomposition (explained in Section 2.2.1) as a
principled measure of synergy. Subsequently, Timme et al. proposed using synergy as a
measure of computation in neocortical circuits [12], an approach that has led to a series
of studies in the area of computational neuroscience [13–16]. While highly productive,
many instances of this approach have relied on intuitive arguments relating synergy to
computation, and the formal connections have been largely unexplored. In this paper, we
propose to refine the mathematical links between synergy and the integrated information
account of computation, showing that the two can be linked to another set of fundamental
concepts in complex systems science: collider bias and causal inference.

2. Berkson’s Paradox, Colliders, and “Computation”

Berkson’s paradox is one of the most well-known veridical paradoxes in statistics and
is often used to demonstrate the effects of non-random sampling of data [17]. The usual
presentation is as follows:

Alice is a social psychologist who is interested in how desirable traits (intelligence,
attractiveness, etc.) are distributed over the U.S. population. Her data include
information from a large number of Hollywood actors (a convenience sample;
talent scores can be inferred from movie reviews and attractiveness from tabloids).
Using movie reviews and tabloids, every actor is assigned a score for both talent
and attractiveness. When Alice plots acting talent against attractiveness, she finds
a statistically significant negative correlation. With a p-value ≤ 0.05 in hand,
Alice rushes off to publish a paper about how attractiveness and acting talent are
anticorrelated and then writes a grant proposing a research program into how
the genes that code for acting talent and facial attractiveness are antagonistic.

When phrased in this somewhat cartoonish way, Alice’s mistake is fairly obvious: she
has an extremely biased sample (indeed, Berkson’s paradox is sometimes called selection
bias [18]). Hollywood celebrity is fickle; however, it is generally true that to reach the
status of celebrity, one must be either unusually attractive or unusually talented. Ugly and
untalented people do not (typically) make it to the silver screen, and so Alice’s data are
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fatally compromised from the outset. Thinking in terms of computation, we might say that
“the media system” is “computing” whether a person reaches some threshold baseline of
joint talent and attractiveness to be allowed onto the red carpet (and, by extension, onto
Alice’s list). For a geometric visualization of Berkson’s paradox, see Figure 1. In the next
section, we will discuss the usual interpretation of Berkson’s paradox in the context of
collider bias and causal inference, before moving on to an alternative interpretation that
relates collider bias and Berkson’s paradox to higher-order information sharing and synergy.

Figure 1. Left: Two random, normally distributed variables X1 and X2 with zero mean, unit variance,
and X1⊥X2. There is no mutual information between them. In the example of movie stars, X1 and
X2 might be analogous to attractiveness and talent. Center: we can define a third random variable as
a threshold function: Y = (X1 + X2) > 1, analogous to the “selection” criteria that define who will
be a movie star as a function of whether they reach some minimal threshold of attractiveness and/or
talent. Right: If we then compute the mutual information between X1 and X2 conditional on Y = 1,
we see a spurious correlation, suggesting that X1 and X2 are anticorrelated, when they are actually
independent. This is Berkson’s paradox.

2.1. The Usual Interpretation: Collider Bias

Berkson’s paradox appears to be about two variables (such as attractiveness and acting
talent) but is, in fact, actually about a higher-order interaction between three variables (one
of which is “hidden”). This third variable is whether a given member of the population is
selected to be in Alice’s dataset or not. Importantly, the state of this hidden variable, Y, is
itself a function of the two other variables we are interested in. Both talent and attractiveness
causally influence an actor’s success. In the case of Alice’s study, the inclusion criteria could
be a threshold function that computes whether someone is talented enough or attractive
enough to make it to Hollywood stardom.

Written out in the language of causal diagrams (directed, acyclic graphs, or DAGs),
we can represent our system of three variables as a collider:

X1 → Y ← X2 (1)

Colliders are something of a bugbear in modern causal inference and multivariate
statistics [19]. We will discuss the problem of causal structure inference in more detail
below, but briefly, when attempting to understand the structure of a system, the presence
of colliders makes it difficult to understand when there is real dependence between two
variables, or if they are actually (“causally”) independent and the empirical dependence
is illusory. Much has been written on the problem of collider bias, but from an intuitive
perspective, the source of the bias is fairly simple. When we sample data from a system
with a collider, we are unwittingly creating an unbiased sample. If we then try and
learn correlations between features, we are actually computing the conditional mutual
information I(X1; X2|Y) when we might believe that we are computing the bivariate
mutual information I(X1; X2). The subtlety emerges when we realize that conditioning the
mutual information is not a purely subtractive operation (which it is commonly believed
to be). It is entirely possible for the conditional mutual information to be greater than
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the unconditioned mutual information. In the language of causal diagrams, Pearl might
say that conditioning on the collider opens a path between X1 and X2 [20]: an illusion of
dependency has been created, one that may not be there in the original dataset.

2.2. The Synergistic Interpretation

In the example of Alice and the movie stars, the two input variables (talent and
attractiveness) are a priori independent (i.e., I(X1; X2) = 0 bit), but when conditioned
on the third variable (whether they are attractive enough, or talented enough, to make
it in Hollywood), a significant dependency appears (i.e., I(X1; X2|Y) >> 0 bit). A very
natural question to ask might be how different is the true dependency between X1 and
X2 from the conditional dependency? We can compute the simple difference as follows:
I(X1; X2)− I(X1; X2|Y).

For readers already familiar with information theory, this relationship should be recog-
nizable. It defines the co-information [21], one of three proposed multivariate generalizations
of the classic, bivariate, Shannon mutual information:

Co(X1; X2; Y) = I(X1; X2)− I(X1; X2|Y) (2)

= I(X1; Y)− I(X1; Y|X2)

= I(X2; Y)− I(X2; Y|X1)

As a generalized mutual information, co-information is interesting because it does not
obey the non-negativity of either the bivariate mutual information or the two other general-
izations (both the total correlation [22] and the dual total correlation [23] are strictly non-
negative). Let us first imagine the case where Co(X1; X2; Y) > 0 bit. If the co-information
is positive, then I(X1; X2) > I(X1; X2|Y). In this case, learning the state of Y “explains
away” the dependency between X1 and X2. There must be some uncertainty that is “triply
redundant” between all three variables, such that learning the state of any individual
variable accounts for correlations between the other two (consider the symmetry of the
three equations in Equation (2)). The case of the negative co-information is a little bit harder.
Clearly, this occurs when I(X1; X2) < I(X1; X2|Y), which implies that learning Y somehow
“illuminates” (or perhaps “hallucinates”) a dependency between X1 and X2 that is not
visible when the two are considered on their own. Interpreting this phenomenon (which is
widespread in empirical data [24]) has been a standing puzzle in information theory since
co-information was introduced in the 1950s. Various information theorists have proposed a
variety of interpretations and decompositions, including in terms of joint and conditional
mutual information, sums and differences of entropies [25], or lattice structures [26]. How-
ever, it was not until the development of the partial information decomposition (PID) by
Williams and Beer in 2010 that the negativity of the co-information was finally interpreted
in terms of purely higher-order interactions [9].

The PID (explained below) reveals that the co-information is negative (and by exten-
sion, Berkson’s paradox occurs) when there is information about Y that is only learnable
when the state of the rest of the system (i.e., X1 and X2) is known jointly. We will argue
below that, in the context of a collider where Y is causally influenced by both X1 and X2,
this is indicative of a “computational process” happening in Y, where multiple streams of
information are integrated as part of Y’s “choice” of what state to adopt.

2.2.1. Explaining Partial Information Decomposition

The partial information decomposition (PID) is a framework for assessing how the
interaction of many “input” variables reveals information about the state of a target vari-
able [9,27]. As previously mentioned, the PID was not the first attempt to study different
orders of information sharing in the case of multiple sources and a single target (see [25]
for an early example), but the PID is unique in that it revealed the entire structure of
multivariate information and formalized the notion of multiple “kinds” of higher-order
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interaction. For two inputs and the target, it is straightforward to compute the joint mutual
information that both sources provide about the target as follows:

I(X1, X2; Y) = H(Y)− H(Y|X1, X2) (3)

However, this scalar value does not reveal the structure of the information: What
information about Y could only be learned by observing X1? Or only by observing X2?
What information could be learned by observing either X1 alone or X2 alone? What
“synergistic” information can only be learned by observing X1 and X2 jointly (and no
simpler combination of elements)? The PID was proposed in a seminal paper by Williams
and Beer [9] and decomposes the joint mutual information into a set of non-overlapping
“partial information atoms”:

I(X1, X2; Y) =Red(X1, X2; Y) + Syn(X1, X2; Y)+ (4)

Unq(X1; Y/X2) + Unq(X2; Y/X1) (5)

In the two-variable case, these four terms describe every possible dependency between
inputs and the target. The redundant information Red(X1, X2; Y) is the information that is
duplicated over X1 and X2 such that it could be learned by observing either X1 alone or X2
alone. The unique information term Unq(Xi; Y/Xj) is the information about Y that could
only be learned by observing Xi. Finally, the synergistic information Syn(X1, X2; Y) is the
information about Y that can only be learned when the states of X1 and X2 are observed
together and, crucially, cannot be learned by any simpler set of sources.

The marginals’ mutual information can be similarly decomposed as follows:

I(X1; Y) = Red(X1, X2; Y) + Unq(X1; Y/X2) (6)

I(X2; Y) = Red(X1, X2; Y) + Unq(X2; Y/X1) (7)

Note here that context is important: since we are analyzing the bivariate relation-
ship Xi − Y in the context of the collider {X1, X2} → Y, the redundant information
Red(X1, X2; Y) still counts toward I(Xi; Y). For a visualization of the PID using Venn
diagrams, see Figure 2.

Unq(X1; Y/X2) Unq(X2; Y/X1)

Syn(X1, X2; Y)

I(X1, X2; Y)

I(X1; Y) I(X2; Y)

Red(X1, X2; Y)

Figure 2. Visual intuition behind the bivariate PID.
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There remains an active debate about the best way to define redundancy. Unlike
the Shannon entropy, which is uniquely specified by Shannon’s original axioms, many
different possible redundancy functions can be shown to satisfy the initial Williams and Beer
axioms. These functions can return meaningfully different results (for further discussion,
see [28,29]); thus, in any given analysis of empirical data, care should be taken when
choosing one or another. By and large, however, the arguments made in this paper do not
require operationalizing a specific measure. In cases where we want to compute a PID for
didactic purposes (see Section 2.3), we use the minimum mutual information [30]:

Red(X1, X2; Y) := min
i

I(Xi; Y) (8)

Intuitively, we can understand the minimum mutual information and estimate how
much uncertainty, on average, about Y would be resolved regardless of whether we learn
X1 alone or X2 alone. Once again, this is not the only viable measure and has a number of
limitations; however, it is also conceptually the simplest, which suits our purposes here.
One significant benefit of this redundancy function is that it is known to be analytically
correct for multivariate Gaussian variables [31] and has the nice property that it only
depends on the pairwise, marginal relationship between Xi and Y (for more, see [32,33]).

2.2.2. Decomposing Conditional Mutual Information and Co-Information

With the PID established, it is possible to gain new insights into measures like co-
information and conditional mutual information. For example, consider the following identity:

I(X1; X2|Y) = I(X1; X2, Y)− I(X1; Y) (9)

If we substitute in Equations (4) and (6), we find

I(X1; X2|Y) = Unq(X1; X2/Y) + Syn(X1, Y; X2) (10)

= Unq(X1; X2/Y) + Syn(X2, Y; X1) (11)

where Unq(X1; X2/Y) refers to the unique information about X2 disclosed by X1 in the
context of Y.

We can see that the effect of conditioning on the collider is to make visible the higher-
order interaction between all three variables: Syn(X1, Y; X2) is the synergistic information
about X2 that is only learnable when X1 and Y are known together (and likewise for
Syn(X2, Y; X1)). This provides the crux of why conditioning on a collider can cause depen-
dencies to appear: the observer suddenly gains access to higher-order information (in the
form of the synergistic dependency) that they can only “see” when only considering X1,
X2, and Y together.

We can further refine this intuition by considering the following co-information:

Co(X1; X2; Y) = I(X1; X2)− I(X1; X2|Y) (12)

Decomposing the co-information with respect to the target, Y reveals that

Co(X1; X2; Y) = Red(X1, X2; Y)− Syn(X1, X2; Y) (13)

We can see that, whenever Berkson’s paradox occurs and Co(X1; X2; Y) < 0, synergy
outweighs redundancy. Said differently, information about the state of Y is dominated
by an “integrated” interaction between multiple sources. Y is “choosing” its state as a
function of multiple inputs. Accordingly, we say that synergy is reflecting this high-order
computation. This link between Berkson’s paradox and synergy was first noted by Rosas
et al. [34] in an excellent study of higher-order information sharing. Here, we elaborate
on this crucial insight by extending it using the PID, as well as discussing how it may be
applied in empirical contexts.
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2.3. Case Study I: Summing Dice

To demonstrate the proposed link between synergy and computation, it helps to go
through a simple example. Here, we have (arguably) the simplest “computation” possible:
addition. To model it, consider two fair, six-sided dice, D1 and D2, with D1⊥D2. We will
create a third variable S, such that S = D1 + D2. We hope it is not controversial to say that
S implements a computation (in this case, addition). While the distributions of D1 and
D2 are maximally entropic, this is not the case for S: the probability that S = 2 is 1/36
(since there is only one combination of inputs that leads to that outcome). In contrast, the
probability that S = 6 is 1/6 since there are six possible combinations of inputs that sum
to 6.

By construction, we know that I(D1; D2) = 0 bit. However, I(D1; D2|S) ≈ 1.896 bit,
and so Co(X1; X2; Y) ≈ −1.896 bit. The synergistic component of the information domi-
nates and so the co-information is negative and Berkson’s paradox has occurred!

If we compute the actual PID using the minimum mutual information function for
redundancy, we find that Red(D1, D2; S) ≈ 0.689 bit and Syn(D1, D2; Y) ≈ 2.585 bit (and
both unique terms are 0 bit exactly since the dice are identical). Where do these numbers
come from? Intuitively, we can understand the non-zero redundancy by noticing that, even
though D1⊥D2, learning the state of either die alone is enough to “rule out” some possible
states of S. For example, learning that D1 = 1 or D2 = 1 is sufficient to exclude all possible
values of S > 7, since to achieve such a value requires that at least one die be greater than
or equal to two. This is what Harder refers to as “mechanistic redundancy”, in contrast to
“source redundancy”, which is attributable to correlations between the inputs [35].

The remaining information about S is synergistic. This is because completely resolving
all the uncertainty about the state of S requires knowing both inputs. Learning that D1 = 1
is sufficient to rule out any S > 7; however, it is not enough to specify the value of S any
further. Doing so requires knowing both inputs, and this is the nature of computation.
We should note that we are not saying that synergistic information is computation in any
fundamental sense. Whatever physical process that reads the value of the individual dice
and computes the sum is what is performing the computation. The synergistic information
is merely a kind of statistical fingerprint, indicating that information has been integrated in
some higher-order fashion.

2.4. Case Study II: Transfer Entropy

The perspective that synergistic information represents some putative notion of “com-
putation” can help us make sense of difficult-to-interpret phenomena in complex systems
research. As a second case study, let us consider the transfer entropy [36,37]. The transfer
entropy from some variable X to another variable Y is defined as follows:

TE(X → Y) = I(Xpast; Yt|Ypast) (14)

where Xpast refers to the (potentially multivariate) embedded past of X, Ypast refers to the
(potentially multivariate) embedded past of Y, and Yt refers to the state of Y at time t.
The logic behind the transfer entropy is to capture that information about Y’s next state
disclosed by X’s past that is above and beyond the information disclosed by Y’s own past
(hence the conditioning).

As we have already established, conditioning mutual information is not a purely
subtractive manipulation. Generally, the tacit assumption implicit in applications of the
transfer entropy is that conditioning on Ypast will reduce the apparent correlation between
Xpast and Yt. However, this is not always the case: how do we interpret the case of
I(Xpast; Yt) < I(Xpast; Yt|Ypast)?

Williams and Beer [38] showed that the transfer entropy can be decomposed into

TE(X → Y) = Unq(Xpast; Yt/Ypast) + Syn(Xpast, Ypast; Yt) (15)
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The first term, Unq(Xpast; Yt/Ypast), is generally understood to refer to the true bivari-
ate information transfer and was termed the “state-independent transfer entropy” (SITE)
by Williams and Beer, as it does not depend on the past state of the target. The second
term, Syn(Xpast, Ypast; Yt), is less clear: it refers to the information about Yt that can only be
learned when both X’s past and Y’s past are known together. Williams and Beer termed it
the “state-dependent information transfer” (SDTE) since it does depend on the past state of
the target.

This decomposition shows that the putatively bivariate transfer entropy actually con-
flates pairwise and higher-order dependencies (this is also generally true of any conditional
mutual information). This discovery prompted intense criticism of the transfer entropy as
a technique for complex network inference by James and Crutchfield [39], as it obviously
challenges the interpretation that TE(X → Y) measures unidirectional information “flow”.
Consequently, they argue that the transfer entropy cannot be properly localized to a single
source. Since the critique, however, this facet of the bivariate transfer entropy has received
little attention, despite its significance. Recently, Daube et al. [40] showed that the SDTE
contributes to the estimation of transfer entropy from simulated data. Furthermore, contra
Barrett [31], who suggested stripping the SDTE and using only the “true” bivariate SITE
transfer, Daube et al. argued that the SITE actually does worse than the SDTE.

Based on both empirical findings and theoretical arguments presented here, it seems
implausible to continue to treat the transfer entropy as a measure of conveniently bivari-
ate information flow. However, none of the existing treatments meditate on how to best
intuitively understand what kinds of dynamics are represented by the SDTE. Formally, the
synergy is well understood and easy to derive. However, a unifying interpretative frame-
work has largely been lacking. If we take that synergy refers to integrative computation,
then the SDTE starts to become a little bit less mysterious: any process that “decides” its
next state as a function of some combinations of memory and external perturbation can be
modeled as performing a “computation” on two inputs: one is the state of its own past, and
one is the value of the input it receives. State-dependent transfer entropy could be thought
of as reporting that part of the transfer entropy reflects the computation that the target
element performs in deciding its next state as a function of what is stored in its memory
and what input it receives from another part of the system.

3. Computation and Causality in Complex Systems

So far, we have assumed that the causal model of the collider is known, and notions
such as “inputs” and “outputs” are well specified. In the case of summing the values of the
dice, the inputs (Dis) are obviously the individual dice, and the output (or target, S) is the
sum of the input. In this context, it is obvious that the relevant information decomposition
is of I(D1, D2; S), and the notion of synergy makes intuitive sense. Now suppose that we
have three new variables, A1, A2 and B, and that rather than being related by a collider
motif, they are related by a broadcasting motif as follows:

A1 ← B→ A2 (16)

where B broadcasts its state to each Ai. In this case, Berkson’s paradox will not hold:
if A1 and A2 are otherwise independent, when conditioning on B, we would expect
I(A1; A2|B) = 0 bit. Given the definition of the co-information given in Equation (12), it
is easy to see that Co(A1; A2; B) = I(A1; A2). Since Co(A1; A2; B) >> 0 bit, we can infer
that the information structure of the triad is, overall, dominated by redundancy. This is
consistent with the intuition that a broadcaster is duplicating information over both A1 and
A2 (as well as representing it in itself).

There is, however, an apparent problem. From Equation (13), we know that

Co(A1; A2; B) = Red(A1, A2; B)− Syn(A1, A2; B) (17)
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If Co(A1; A2; B) >> 0, then how might we interpret the possibility of non-zero synergy
in this context? From a mathematical perspective, it is straightforward: there is uncertainty
about the state of B that can only be resolved when A1 and A2 are both known. Unfor-
tunately, this seems to complicate our argument that synergy is a statistical fingerprint
of computation; the broadcaster motif does not seem to be performing any meaningful
“computation”. It is merely duplicating information over downstream elements.

To resolve this uncertainty, it is important to remember that the PID is an inherently
directed analysis, dividing the system into inputs and targets. As previously mentioned
in the case of the collider, the inputs and targets map neatly onto the causal model of
the collider itself. In the case of the broadcaster motif, this is not the case. While it is
numerically possible to compute Syn(A1, A2; B), doing so is running “against the causal
flow” and, consequently, appears to be meaningless from a directed perspective. It could
be said that the map and territory are in conflict: the orientation of the PID is misaligned
with the causal structure of the system. This is important to highlight, as it shows that not
all computable synergies are necessarily meaningful: the structure of the underlying causal
model is a key consideration, and researchers interested in applying these analyses should
be mindful of the different contextual factors that might change the interpretation of the
numerical value.

What about in cases where the causal ground truth is not known? It is easy to construct
tractable toy models in theoretical contexts, but in natural sciences, rarely is a blueprint
handed to us by God. Instead, it must be inferred. Suppose we have some triad, {X, Y, Z},
which could be either a collider or a broadcaster and we do not know which. Furthermore,
we lack any domain expertise that can be leveraged to assume a structure. In the material
we have covered so far, disambiguating these two cases is difficult. We could look for
Berkson’s paradox, assuming that if X → Z ← Y then Co(X; Y; Z) < 0, but even if
the structure is a collider, if X and Y are correlated, we may still find that redundancy
outweighs synergy. In systems that have a large synchronous component to their dynamics
(for example, the nervous system), this is a real concern.

If a scientist has a dataset from which synergies can be computed, how could they
disambiguate between those synergies that represent some kind of computational process
(as in the collider) and those that do not (as in the broadcaster)? We argue that, ultimately,
this is a question of causal inference [20] and leveraging both domain expertise, as well
as more refined techniques for structure learning in complex systems [41,42] must be
incorporated into the analysis. If, given some dataset, it is possible to construct a causal (or
merely effective) scaffold of the system, then colliders can be identified as putative sites
of computation. This approach has been leveraged in computational neuroscience: given
finely resolved, temporally ordered spiking data, it is possible to infer effective connectivity
networks using measures like the bivariate or multivariate transfer entropy [15,16], from
which colliders can be sampled.

Alternately, if one has strong priors on the structure of the system under study, then
those may be leveraged. For example, in a quantitative study of intersectionality in social
systems, Varley and Kaminski studied how demographic factors such as race and sex
synergistically disclose information about outcomes such as incomes [43]. In this context,
there is ample prior evidence to assume a collider-like structure, while a broadcaster-like
structure can be ruled out because there is no plausible way that income could causally
impact features like race or sex.

Recently, considerable work has involved the problem of inferring directed models
that account for higher-order interactions. It has long been known that strictly pairwise
approaches to structure learning fail in the presence of higher-order interactions [8], and
finding optimal ways to account for higher-order redundancies and synergies remains an
open problem. One popular approach is the multivariate transfer entropy [44,45], which
takes a serial conditioning approach to account for higher-order information in transfer
entropy, although other approaches include the framework proposed by Mijatovic et al.,
which introduced a balance index (B-index) that quantified whether the interaction between
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two elements was redundancy-dominated or synergy-dominated in the context of the rest of
the system. Beyond the pairwise network approach, representing higher-order information
with hypergraphs has been recently explored [46,47] as well. Similarly, generalizations of
the partial information decomposition to stochastic processes [48] can reveal time-directed
higher-order information in dynamical systems.

Assuming that one is able to construct a plausible causal (or effective) model of the
system under study, there is still the issue that the joint mutual information itself is not
a causal measure. Previous work has established that even time-directed measures of
information flow, such as temporal mutual information or transfer entropy, poorly reflect
causal dependencies [49,50]. The link between information flow, causality, and structure in-
ference is a rich field that we cannot completely survey (for further discussion, see [51–53]),
and the problem of true causal information decomposition remains an outstanding issue.
Ultimately, the question of attributing higher-order, synergistic causation may not have
a unique solution but, like the question of redundancy, may depend on the specific way
one operationalizes the notion of “causality” (interventional, counterfactual, etc). In the
short term, however, we propose that a small modification of the joint mutual information
may be useful here. In 2003, Tononi and Sporns proposed a measure they termed “effective
information”, which is the mutual information from a source to a target when the entropy
of the sources is maximal [54]:

EI(X→ Y) = I(XHmax ; Y) (18)

By forcing a maximum entropy distribution on the inputs, the effective information
attempts to simulate random assignment in interventional approaches to causality. Later,
Hoel et al. [52] argued that the effective information could be understood as an instance
of Pearl’s do-calculus applied to mutual information: EI(X → Y) = I(Y; do(X)). Being
modified mutual information, effective information can be decomposed using the PID,
lending a more causal flavor to the synergy than is usually the case (as well as removing
any possible source redundancy [35]). For an example of this approach to discrete data,
see [43]. We should be very clear, however, that while effective information and do-calculus
approximate a causal inference (and by extension, causal computation), they are still
ultimately based on correlational analyses, which can break down in certain contexts. It
is known that the Shannon entropy can misrepresent structures in complex systems [55].
For researchers interested in applying these methods, considering the appropriateness of
a an information-theoretic model should be seen as a necessary first step in experimental
design. Future work considering other notions of information structure (such as algorithmic
information theory and algorithmic information dynamics [56]) will complement this work.

4. Discussion

Since the notion of synergy was formalized in the context of the PID, it has been widely
applied to a number of different fields. Each of these applications brings with it distinct
interpretations, and there is not much cross-talk between disciplines as to the general
meaning of synergistic information. For example, when considering sociological identities,
synergy is equated with the sociological concept of “intersectionality” [43]. In the context of
biological neural networks, synergy has been associated with information processing in the
nervous system [12,13,15,16,57,58], while in artificial neural networks, synergy has been
associated with the complexity of representations [59] or multi-task learning [60]. Synergy
has been identified in the cardiovascular system as well [48]. When considering econometric
data, synergy has been associated with economic sophistication [61], and synergy has been
found to correlate with the level of consciousness in patients who have been anesthetized
or are comatose [58,62]. In climatological data, synergy has been identified, although
its significance remains unclear [57,63,64], and in theoretical biology, synergy has been
associated with notions of “individuality” or organismic autonomy [65].

This list is non-exhaustive, but it is sufficient to indicate that synergy is ubiquitous
in the natural world; far from being some kind of strange or exotic dependency that only
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occurs in constructed models, synergy has been found in complex systems at almost every
scale. Despite this ubiquity, the variety of different, context-dependent interpretations
shows that science in general lacks a unified framework for understanding the significance
of synergy generally. Here, we propose that synergy can be understood as a kind of
fingerprint of computation in complex systems: when an element of a system “chooses”
its next state based on some multi-argument function that accounts for multiple inputs,
synergistic information will almost certainly exist. By showing that synergistic dynamics
are intimately related to the notion of colliders in causal inference, we hope to ground
future studies of synergistic dynamics in complex systems in a common framework.

Since the groundbreaking work of Williams and Beer first formalized the notion of
synergy in the context of the PID over a decade ago [9], the majority of the focus of the
field has been on solving the problem of how to recognize it in data. This has included
work on a plethora of redundancy functions (for review, see [28,29]), extensions of the
PID (such as the multi-target integrated information decomposition [66,67] and the partial
entropy decomposition [68,69]), and the generalized information decomposition [70], as
well as non-PID-based heuristics such as the O-information [71], the O-information rate O-
information rate [48] (a derivative of the O-information specifically designed for dynamical
system), or the α-synergy decomposition [72].

At this point, the problem of recognizing synergistic dependencies in data is, if not
totally solved, well studied enough that the field has a rich toolkit of measures to apply to
any given dataset. This puts us in the position of being able to move beyond asking merely
“is there synergy?” or “where is the synergy?” Instead, we must begin asking “what is
synergy for?”

Conclusions

In this paper, we explored the idea that modeling “computation” in complex systems
is related to the information-theoretic notion of statistical synergy. Synergy occurs when
there is information about the state of an output variable that can only be learned when
the joint state of all of its input variables is known and proposed that this is a statistical
“fingerprint” reflecting some physical process by which an output element “chooses” its
next state as a function of multiple inputs (rather than merely propagating information
forward). To further formalize this notion, we related this process to the collider motif
studied in the field of causal inference, where a single variable is causally influenced by
multiple inputs simultaneously. We showed that the well-known collider bias (also known
as Berkson’s paradox) occurs because of a synergistic interaction between the inputs and
output, providing a mathematical link between the world of multivariate information
theory and causal inference or structure learning. We further proposed that this link
deepens our understanding of both statistical synergy as a concept and the phenomenon of
computation in complex systems.
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