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Abstract: For a long time, it was presumed that continuum bands could be readily encompassed
by open-boundary spectra, irrespective of the system’s modest dimensions. However, our findings
reveal a nuanced picture: under open-boundary conditions, the proliferation of complex eigenvalues
progresses in a sluggish, oscillating manner as the system expands. Consequently, even in larger
systems, the overlap between continuum bands and open-boundary eigenvalues becomes elusive,
with the surprising twist that the count of these complex eigenvalues may actually diminish with
increasing system size. This counterintuitive trend underscores that the pursuit of an ideal, infinite-
sized system scenario does not necessarily align with enlarging the system size. Notably, despite the
inherent non-Hermiticity of our system, the eigenstates distribute themselves in a manner reminiscent
of Bloch waves. These discoveries hold potential significance for both theoretical explorations and
experimental realizations of non-Hermitian systems.

Keywords: non-Hermitian; continuum bands; skin modes

1. Introduction

Recently, non-Hermitian topological insulators have garnered significant research
attention, with their distinctive characteristics prominently featuring the divergence of
complex open-boundary spectra from those arising under periodic boundary conditions
and the intriguing non-Hermitian skin effect, where a profusion of eigenstates localize
at the boundaries [1–39]. To unravel these enigmatic phenomena, innovative concepts
such as the generalized Brillouin zone, biorthogonal eigenfunction sets, and continuum
bands have emerged [36–40]. In prior investigations, the generalized Brillouin zone has
played a pivotal role due to its links to topological invariants and the non-Hermitian
skin effect. Regarding the continuum bands, initially postulated in the thermodynamic
limit [36–39,41–59], it was commonly assumed that they could be readily encompassed
by open-boundary spectra, even in relatively small systems (on the order of O(101) sites),
as exemplified in Figure 1a. Furthermore, in numerical simulations and experimental
designs, it was often presupposed that enlarging the system size would bring us closer to
the ideal scenario of an infinite system.

In this work, we delve into the intricate interplay between Hermitian subsystems
weakly coupled by a non-Hermitian term, observing a transition in the characteristic
polynomial f (z, E) from reducibility to irreducibility. Our findings reveal an intriguing
oscillation in the slow growth of open-boundary complex eigenvalues with system size
expansion. Notably, as depicted in Figure 1b, even for systems approaching O(103) in
size, the count of complex energies under open-boundary conditions barely surpasses 20,
rendering them virtually insignificant compared to the imaginary component of continuum
bands. Intriguingly, the number of these complex eigenvalues paradoxically diminishes
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as the system expands, highlighting a counterintuitive phenomenon, i.e., as the system
size increases, the results may diverge further from the idealized scenario of infinite size.
Remarkably, despite the inherent non-Hermiticity of our system, no skin effect emerges;
instead, the eigenstate distribution exhibits a Bloch-wave-like pattern, underscoring the
unique physics at play.

Figure 1. (Color online) Distinguishing features of normal versus anomalous open-boundary spec-
trum. (a) The count of complex open-boundary eigenvalues escalates swiftly and substantially with
the expansion of the system size. Remarkably, a seamless integration between the open-boundary
spectra (blue curve) and the continuum bands (red curve) can be readily achieved using no more
than a few hundred cells. Furthermore, the characteristic non-Hermitian skin effect is prominently
displayed. (b) In anomalous non-Hermitian open-boundary spectrum, as the system size grows,
the number of complex energies under open-boundary conditions either climbs slowly or even dimin-
ishes. Notably, even with a system size approaching O(103), the continuum bands struggle to overlap
with the open-boundary energies. Regarding the eigenstate distribution, as exemplified in Figure 1(b3),
a unique pattern emerges where ψn,α = ψn,α′ and ψn,α = ψ2N−n+1,α′ hold true, with {α, α′} = {A, B}.
This signifies that the ratio of probability amplitudes between the two sublattices within each unit
cell remains constant, underscoring the anomalous nature of this spectrum.

This paper is organized as follows. A paradigm and the theoretical framework are
constructed in Section 2. Section 3 focuses on the anomalous non-Hermitian open-boundary
spectrum. In addition, we demonstrate the distribution of the eigenstates. The conclusion
and discussion are found in Section 4.

2. Model and Theory

We consider a non-Hermitian system, as shown in Figure 2. Its Hamiltonian reads as

H =
N

∑
n=1

t1C†
A,nCA,n+1 + t1C†

A,n+1CA,n + VAC†
A,nCA,n

+ γ1C†
A,nCB,n + γ2C†

B,nCA,n

+ t2C†
B,nCB,n+1 + t2C†

B,n+1CB,n + VBC†
B,nCB,n, (1)

where t1 and VA represent the hopping amplitudes and onsite potential, respectively,
for chain A. Similarly, t2 and VB correspond to the hopping amplitudes and onsite potential
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for chain B. Notably,γ1 and γ2 are non-reciprocal parameters that couple the two chains,
introducing asymmetry in the interactions between them.

Due to space translational symmetry, we can rewrite the Hamiltonian in momentum
space as

H(k) =
(

2t1 cos(k) + VA γ1
γ2 2t2 cos(k) + VB

)
. (2)

From this representation, we define the spectral winding number as an integral over
the Brillouin zone, given by [38,60–66]: W(Eb) =

∫ 2π
0

dk
2πi

d
dk ln det[H(k) − Eb. The non-

Hermitian skin effect is a ubiquitous characteristic of non-Hermitian systems, typically
emerging when a non-trivial Eb exists for reference energy Eb. However, for our system,
we observe that W(Eb) ≡ 0 for any Eb on the complex plane. This finding indicates that
despite the inherent non-Hermiticity of our system, the non-Hermitian skin effect is absent,
highlighting the unique physics at play.

The characteristic polynomial of our system is

f (z, E) = a2β2 + a1β + a0 + a−1β−1 + a−2β−2 = 0, (3)

with

a2 = a−2 = t1t2,

a1 = a−1 = t2VA + t1VB − EOBCt1 − EOBCt2,

a0 = E2
OBC + 2t1t2 + VAVB − γ1γ2 − EOBCVA − EOBCVB. (4)

We note that the solutions satisfy

β1 = 1/β4, β2 = 1/β3 (5)

because Equation (3) is a reciprocal equation for β. Further, the generalized Brillouin zone
is determined by |β2| = |β3| [36–39], which means the generalized Brillouin zone is a unit
circle. This result also implies that there does not exist a non-Hermitian skin effect. Further,
with the generalized Brillouin zone being determined, the continuum bands E∞ can be
obtained by Equation (3).

Figure 2. (Color online) Schematic representation of the non-Hermitian coupled chains. The dotted
ellipse indicates the unit cell, in which the blue and red circles stand for A and B sublattice sites,
respectively. For A (B) chain, the hopping amplitude is t1 (t2) and the onsite potential is VA (VB).
Two Hermitian chains are coupled by γ1 and γ2.

3. Anomalous Non-Hermitian Open-Boundary Spectrum

To elucidate the anomalous non-Hermitian open-boundary spectrum, we commence
by showcasing the conventional scenario in Figure 3. Figure 3a vividly demonstrates that
the continuum bands E∞ (the red curve) are accurately reproduced by the open eigenvalues
(the black dots) for a system size of merely N = 80. This underscores the remarkable
efficiency of simulating infinite systems using a finite number of unit cells. Furthermore,
Figure 3b reveals a striking trend: the count of complex energies under open-boundary
conditions escalates rapidly with increasing system size. This observation underscores
the fact that larger system sizes yield more precise simulations, aligning with previous



Entropy 2024, 26, 845 4 of 11

research [36–39,41,50–58,67–72]. The results reinforce the notion that expanding the system
size enhances the fidelity of simulating the infinite system behavior.

Figure 3. (Color online) (a) Open-boundary eigenvalues (black dots) with N = 80, and the cor-
responding continuum bands E∞ (red curve). (b) The number of the non-zero imaginary part of
eigenvalues under open-boundary condition versus the system size, which grows very rapidly and
increasingly. Common parameters are t1 = 1

2 , t1 = 1
2 , t2 = 1, VA = 6

5 , VB = 13
10 , and γ1 = −γ2 = 3

5 .

We now delve into the anomalous scenario. As depicted in Figure 4a, we contrast
the continuum bands E∞ for two distinct cases: γ1 = −γ2 = 0 (the blue line, coinciding
with the real axis) and γ1 = −γ2 = − 1

50 (the red curve, spanning the complex plane).
Additionally, we present the open-boundary energy spectra at γ1 = −γ2 = − 1

50 for
varying system sizes (N = 10, 20, and 30). Intriguingly, for a small system size (N = 10),
the energy spectrum aligns closely with the continuum bands of the decoupled case
(γ1 = −γ2 = 0). As the system size increases to N = 20, a few open-boundary energies
transition to complex values and intersect the continuum bands E∞ of the coupled case.
Surprisingly, further enlargement to N = 30 reverses this trend, with the eigenenergies
retracting to the real axis. This unexpected behavior underscores that increasing the system
size paradoxically exacerbates the discrepancy between the open-boundary eigenvalues
and the continuum bands.

Figure 4. (Color online) (a) Continuum bands E∞ with decoupled (blue line) and tiny coupled
(red curve) case. The open-boundary energy spectra with different system sizes are also exhibited.
(b,c) The number of the non-zero imaginary part of eigenvalues under open-boundary condition
versus the system size, which displays the oscillation behavior. (d) Continuum bands (red curve) and
open-boundary eigenvalues (black dots). Common parameters are t1 = 1

2 , t2 = 1, VA = 6
5 , VB = 13

10 ,
and γ1 = −γ2 = − 1

50 .
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To visually emphasize the reentrant presence of real energies, Figure 4b plots the count
of open-boundary energies with non-zero imaginary parts against the system size. It reveals
that for small systems (N < 40), the complex eigenvalues oscillate in and out of the complex
plane. As the system expands within 40 < N < 100, the number of complex energies
continues to oscillate, albeit with an increasing trend. To underscore the universality of
this oscillation, Figure 4c extends the system size range, showcasing a gradual decrease in
the number of complex eigenvalues under open-boundary conditions as the system grows
larger. Figure 4a–c collectively convey that the increase in complex energies with system size
is quite gradual. For a more intuitive grasp of the sparsity of open-boundary spectra on the
continuum bands E∞, consider Figure 4d with N = 500 (corresponding to L = 1000). Even
at this significant size, the number of complex eigenvalues barely exceeds 20, indicating
their negligibility compared to the continuum bands. Fundamentally, we discover that near
the transition point where f (z, E) shifts from reducible to irreducible, the open-boundary
spectrum exhibits anomalous behavior, characterized by a slowly growing number of
complex energies in an oscillatory manner. This suggests that an increase in the system size
does not necessarily lead to a closer approximation of infinite system results, underscoring
the intricate interplay between system dimensions and spectral properties.

Another illustrative perspective on the anomalous open-boundary spectrum emerges
when examining the effect of varying γ1. As evident in Figure 5a, for fixed values of γ1 such
as 1

200 or 1
100 , the count of complex boundary eigenvalues decreases when N transitions

from 500 to 520, demonstrating the oscillatory pattern in the number of such eigenvalues.
Furthermore, Figure 5b highlights a critical threshold in γ1: beyond a certain value, all
eigenvalues disperse across the complex plane. In the decoupled state where γ1 = 0
(Figure 5c), the harmonious interplay between open-boundary eigenvalues and continuum
bands is evident. However, even a minute deviation from γ1 = 0 in Figure 5d results in a
negligible number of complex open energies compared to the continuum bands. Further,
as γ1 increases (Figure 5e), the continuum bands become effectively overshadowed by the
proliferation of open eigenvalues.

Figure 5. (Color online) (a,b) The number of the complex open energies under different system sizes
versus non-Hermitian parameter γ1. (a) The subsystems are coupled by small couplings, which
reflects the oscillatory behavior. (b) Subsystems are coupled by large couplings. (c–e) The overlap
between open-boundary spectra and continuum bands. (c) γ1 = 0. (d) γ1 = 1

100 . (e) γ1 = 6
5 .

Common parameters are t1 = 1
2 , t2 = 7

5 , VA = 6
5 , VB = 1, and γ2 = −γ1.

In anomalous circumstances, delving into the distribution of the wave function offers
valuable insights. For clarity, Figure 6a depicts the system under investigation with a
size of N = 40. Notably, Figure 6b reveals that for eigenstates with real open-boundary
energies, their density distribution converges toward the system’s center, deviating from the
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boundaries. Additionally, Figure 6c underscores a fascinating constancy: ψn,A
ψn,B

remains a real,
constant value throughout the system, implying that for real eigenvalues, the probability
amplitudes and their ratios across sublattice sites within each unit cell are purely real.
Shifting focus to Figure 6d, which illustrates the eigenstate distribution corresponding
to complex eigenvalues, we observe an equilibrium in the particle’s probability between

the two sublattices within the same unit cell, indicated by |ψn,A |
|ψn,B |

= 1. Further analysis in

Figure 6e separates the real and imaginary parts of ψn,A
ψn,B

, revealing that this ratio forms a
complex constant. This probability distribution mimics a Bloch-wave-like behavior [73],
adding to the richness of the observed phenomena. Intriguingly, when the eigenvalue is
complex, we discover a unique symmetry: ψn,α = ψ2N−n+1,α′ with {α, α′} = {A, B}. This
feature is distinct in systems where Hermitian subsystems are interconnected via non-
Hermitian terms, highlighting the unconventional behavior induced by such couplings.

Figure 6. (Color online) (a) Continuum bands E∞ with decoupled (blue line) and coupled (red curve)
case. The open-boundary energy spectrum with N = 40 is also displayed. (b) Distribution of the
eigenstate corresponding to the real open eigenvalue. (c) Ratio of the probability density in every unit
cell. Clearly, it is a real constant for the system. (d) Distribution of the eigenstate corresponding to the
complex open eigenvalue. (e) Ratio of the probability density per unit cell, being a complex constant
for the system. Common parameters are t1 = 1

2 , t2 = 1, VA = 6
5 , VB = 13

10 , and γ1 = −γ2 = − 1
50 .

As shown above, the anomalous non-Hermitian open-boundary spectrum was ex-
plored analytically and numerically in terms of the two-band model. The anomalous
behavior can be elucidated by other systems as well. We further consider a three-band
system, the Hamiltonian of which is
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H =∑
n

[
(t1C†

A,nCA,n+1 + t2C†
B,nCB,n+1

+ t3C†
C,nCC,n+1 + H.C.) + γ1C†

A,nCB,n

+ γ2C†
B,nCA,n + γ3C†

B,nCC,n + γ4C†
C,nCB,n

]
, (6)

where t1, t2, and t3 are the hopping parameters of the three chains, respectively. γ1 and γ2
stand for the non-Hermitian hopping between chain A and chain B, while γ3 and γ4 are
the hopping between chain B and C.

In Figure 7a,b, we present the behavior of the imaginary part of the open-boundary
eigenvalues as a function of system size when three subsystems are weakly coupled
via small non-Hermitian terms (γ1 = −γ2 = γ3 = −γ4 = 1

100 ). Notably, the number
of complex eigenvalues exhibits a slow growth pattern accompanied by oscillatory be-
havior, regardless of the system’s size. This is vividly illustrated in Figure 7c, where
the sparse distribution of open-boundary eigenvalues (the black dots) on the continuum
bands (the red curve) is shown for a large system size of N = 500. For comparison,
Figure 7d depicts the scenario where the non-Hermitian coupling strengths are increased
to γ1 = −γ2 = γ3 = −γ4 = 1. In this case, a marked increase in the number of complex
eigenvalues is observed, accompanied by the disappearance of the oscillatory behavior.

Figure 7. (Color online) Schematic representation of anomalous open-boundary spectrum.
(a,b) The number of the non-zero imaginary part of the open-boundary eigenvalues versus the
system size, which displays the oscillation behavior. (c) The open-boundary eigenvalues and the
corresponding continuum bands. From (a–c) γ1 = −γ2 = γ3 = −γ4 = 1

100 . (d) The number of the
non-zero imaginary part of the open-boundary eigenvalues versus the system size, which increases
fleetly and increasingly with γ1 = −γ2 = γ3 = −γ4 = 1. (e,f) The number of the non-zero imagi-
nary part of the open-boundary eigenvalues versus the system size, which exhibits the oscillation
behavior as well. (g) The open-boundary eigenvalues and the corresponding continuum bands.
From (e–g) γ1 = −γ2 = γ3 = γ4 = 1

100 . (h) The number of the non-zero imaginary part of the
open-boundary eigenvalues versus the system size, which also increases fleetly and increasingly with
γ1 = −γ2 = γ3 = γ4 = 1. The common parameters are t1 = 1, t2 = 6

5 , and t3 = 7
5 .

Furthermore, as depicted in Figure 7e–h, we consider a scenario where two subsys-
tems (chain A and B) are coupled via non-Hermitian terms (γ1 = −γ2) while the coupling
between chain B and C remains Hermitian (γ3 = γ4). For the same system size, the num-
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ber of complex eigenvalues observed in Figure 7e,f (γ1 = −γ2 = γ3 = γ4 = 1
100 ) is

slightly elevated compared to those in Figure 7a,b, but these complex eigenvalues remain
virtually inconsequential against the continuum bands. Similarly, Figure 7g showcases
a sparse distribution of open-boundary eigenvalues on the continuum bands. Conse-
quently, it remains challenging for the continuum bands to be significantly impacted by the
open-boundary energies in this three-band system. Lastly, as evident in Figure 7h, when
γ1 = −γ2 = γ3 = γ4 = 1, the number of complex eigenvalues increases rapidly, and the
oscillatory behavior disappears.

Experimental realization. As we all know, artificial settings [74–88], such as cold
atoms [74–79] and electric circuits [89–92], possess a high degree of controllability and thus
can be engineered to possess dissipation, being the prerequisite to exhibit non-Hermitian
behaviors. Therefore, our model can be realized using different types of artificial systems.

4. Conclusions and Discussion

In this paper, we delve into an intriguing phenomenon where the number of complex
eigenvalues under open-boundary conditions exhibits a slow, oscillating growth pattern as
the system size expands. Notably, even when the system size reaches O(103), the count of
these complex eigenvalues remains below 20, rendering them virtually negligible compared
to the continuum bands. Moreover, we provide analytical insights demonstrating the
absence of the non-Hermitian skin effect despite the presence of non-zero non-Hermitian
terms. Additionally, we observe that the probability distribution of the open-boundary
eigenstates exhibits Bloch-wave-like behavior.

Conventionally, it is often assumed that a modest number of unit cells suffice to
capture the essential physical properties of an infinite system in numerical simulations and
experimental setups. However, our findings challenge this notion, suggesting that larger
system sizes may introduce deviations from the ideal infinite-size scenario. Specifically,
the diminishing number of complex eigenvalues with increasing system size indicates the
emergence of unforeseen behaviors. Consequently, our results hold significant implications
for both theoretical analyses and experimental constructions of non-Hermitian systems.

Author Contributions: Conceptualization, X.-X.B. and G.-F.G.; methodology, X.-X.B.; software, X.-
X.B.; validation, X.-X.B.; formal analysis, G.-F.G.; resources, X.-X.B.; data curation, L.T. and W.-M.L.;
writing—original draft preparation, L.T. and W.-M.L.; writing—review and editing, L.T. and W.-M.L.;
visualization, L.T. and W.-M.L.; supervision, L.T. and W.-M.L.; project administration, X.-X.B., L.T.
and W.-M.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Suqian Sci & Tech Program (Grant No.K202330) and the
Startup Foundation for Newly Recruited Employees of Suqian University (Grant No. 2024XRC006).
Project supported by the National Natural Science Foundation of China (Grant No . 11874190,
No . 12174461).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Xiong, Y. Why does bulk boundary correspondence fail in some non-hermitian topological models. J. Phys. Commun. 2018,

2, 035043. [CrossRef]
2. Martinez Alvarez, V.M.; Barrios Vargas, J.E.; Foa Torres, L.E.F. Non-Hermitian robust edge states in one dimension: Anomalous

localization and eigenspace condensation at exceptional points. Phys. Rev. B 2018, 97, 121401. [CrossRef]
3. Guo, C.X.; Liu, C.H.; Zhao, X.M.; Liu, Y.; Chen, S. Exact Solution of Non-Hermitian Systems with Generalized Boundary

Conditions: Size-Dependent Boundary Effect and Fragility of the Skin Effect. Phys. Rev. Lett. 2021, 127, 116801. [CrossRef]
4. Longhi, S. Non-Hermitian skin effect beyond the tight-binding models. Phys. Rev. B 2021, 104, 125109. [CrossRef]
5. Liu, Y.; Han, Y.; Liu, C. Topological phases of non-Hermitian SSH model with spin-orbit coupling. Optik 2022, 255, 168727.

[CrossRef]
6. Li, S.; Li, M.; Gao, Y.; Tong, P. Topological properties and localization transition in a one-dimensional non-Hermitian lattice with

a slowly varying potential. Phys. Rev. B 2022, 105, 104201. [CrossRef]

http://doi.org/10.1088/2399-6528/aab64a
http://dx.doi.org/10.1103/PhysRevB.97.121401
http://dx.doi.org/10.1103/PhysRevLett.127.116801
http://dx.doi.org/10.1103/PhysRevB.104.125109
http://dx.doi.org/10.1016/j.ijleo.2022.168727
http://dx.doi.org/10.1103/PhysRevB.105.104201


Entropy 2024, 26, 845 9 of 11

7. Wanjura, C.C.; Brunelli, M.; Nunnenkamp, A. Correspondence between Non-Hermitian Topology and Directional Amplification
in the Presence of Disorder. Phys. Rev. Lett. 2021, 127, 213601. [CrossRef]

8. Zhai, L.J.; Huang, G.Y.; Yin, S. Cascade of the delocalization transition in a non-Hermitian interpolating Aubry-André-Fibonacci
chain. Phys. Rev. B 2021, 104, 014202. [CrossRef]

9. Xiao, L.; Deng, T.; Wang, K.; Wang, Z.; Yi, W.; Xue, P. Observation of Non-Bloch Parity-Time Symmetry and Exceptional Points.
Phys. Rev. Lett. 2021, 126, 230402. [CrossRef]

10. Li, T.; Sun, J.Z.; Zhang, Y.S.; Yi, W. Non-Bloch quench dynamics. Phys. Rev. Res. 2021, 3, 023022. [CrossRef]
11. Kawabata, K.; Shiozaki, K.; Ryu, S. Topological Field Theory of Non-Hermitian Systems. Phys. Rev. Lett. 2021, 126, 216405.

[CrossRef] [PubMed]
12. Kim, K.M.; Park, M.J. Disorder-driven phase transition in the second-order non-Hermitian skin effect. Phys. Rev. B 2021,

104, L121101. [CrossRef]
13. Xue, W.T.; Hu, Y.M.; Song, F.; Wang, Z. Non-Hermitian Edge Burst. Phys. Rev. Lett. 2022, 128, 120401. [CrossRef]
14. Ezawa, M. Non-Hermitian non-Abelian topological insulators with PT symmetry. Phys. Rev. Res. 2021, 3, 043006. [CrossRef]
15. Guo, G.F.; Bao, X.X.; Tan, L. Non-Hermitian bulk-boundary correspondence and singular behaviors of generalized Brillouin zone.

New J. Phys. 2021, 23, 123007. [CrossRef]
16. Michen, B.; Micallo, T.; Budich, J.C. Exceptional non-Hermitian phases in disordered quantum wires. Phys. Rev. B 2021,

104, 035413. [CrossRef]
17. Shen, Y.X.; Peng, Y.G.; Cao, P.C.; Li, J.; Zhu, X.F. Observing localization and delocalization of the flat-band states in an acoustic

cubic lattice. Phys. Rev. B 2022, 105, 104102. [CrossRef]
18. Li, T.; Zhang, Y.S.; Yi, W. Engineering dissipative quasicrystals. Phys. Rev. B 2022, 105, 125111. [CrossRef]
19. Lee, C.H. Many-body topological and skin states without open boundaries. Phys. Rev. B 2021, 104, 195102. [CrossRef]
20. Okuma, N.; Sato, M. Non-Hermitian Skin Effects in Hermitian Correlated or Disordered Systems: Quantities Sensitive or

Insensitive to Boundary Effects and Pseudo-Quantum-Number. Phys. Rev. Lett. 2021, 126, 176601. [CrossRef]
21. Pires, D.P.; Macrì, T. Probing phase transitions in non-Hermitian systems with multiple quantum coherences. Phys. Rev. B 2021,

104, 155141. [CrossRef]
22. Schindler, F.; Prem, A. Dislocation non-Hermitian skin effect. Phys. Rev. B 2021, 104, L161106. [CrossRef]
23. Cai, X. Boundary-dependent self-dualities, winding numbers, and asymmetrical localization in non-Hermitian aperiodic

one-dimensional models. Phys. Rev. B 2021, 103, 014201. [CrossRef]
24. Shiozaki, K.; Ono, S. Symmetry indicator in non-Hermitian systems. Phys. Rev. B 2021, 104, 035424. [CrossRef]
25. Kawabata, K.; Ryu, S. Nonunitary Scaling Theory of Non-Hermitian Localization. Phys. Rev. Lett. 2021, 126, 166801. [CrossRef]
26. Yu, L.W.; Deng, D.L. Unsupervised Learning of Non-Hermitian Topological Phases. Phys. Rev. Lett. 2021, 126, 240402. [CrossRef]
27. Yang, Z.; Schnyder, A.P.; Hu, J.; Chiu, C.K. Fermion Doubling Theorems in Two-Dimensional Non-Hermitian Systems for Fermi

Points and Exceptional Points. Phys. Rev. Lett. 2021, 126, 086401. [CrossRef]
28. Zirnstein, H.G.; Refael, G.; Rosenow, B. Bulk-Boundary Correspondence for Non-Hermitian Hamiltonians via Green Functions.

Phys. Rev. Lett. 2021, 126, 216407. [CrossRef] [PubMed]
29. Mao, L.; Deng, T.; Zhang, P. Boundary condition independence of non-Hermitian Hamiltonian dynamics. Phys. Rev. B 2021,

104, 125435. [CrossRef]
30. Yoshida, T.; Hatsugai, Y. Correlation effects on non-Hermitian point-gap topology in zero dimension: Reduction of topological

classification. Phys. Rev. B 2021, 104, 075106. [CrossRef]
31. Wang, C.; Wang, X.R. Hermitian chiral boundary states in non-Hermitian topological insulators. Phys. Rev. B 2022, 105, 125103.

[CrossRef]
32. Xi, W.; Zhang, Z.H.; Gu, Z.C.; Chen, W.Q. Classification of topological phases in one dimensional interacting non-Hermitian

systems and emergent unitarity. Sci. Bull. 2021, 66, 1731–1739. [CrossRef] [PubMed]
33. Zhong, J.; Wang, K.; Park, Y.; Asadchy, V.; Wojcik, C.C.; Dutt, A.; Fan, S. Nontrivial point-gap topology and non-Hermitian skin

effect in photonic crystals. Phys. Rev. B 2021, 104, 125416. [CrossRef]
34. Liu, S.; Shao, R.; Ma, S.; Zhang, L.; You, O.; Wu, H.; Xiang, Y.J.; Cui, T.J.; Zhang, S. Non-Hermitian Skin Effect in a Non-Hermitian

Electrical Circuit. Research 2021, 2021, 5608038. [CrossRef] [PubMed]
35. Lee, T.E. Anomalous Edge State in a Non-Hermitian Lattice. Phys. Rev. Lett. 2016, 116, 133903. [CrossRef]
36. Yao, S.; Wang, Z. Edge States and Topological Invariants of Non-Hermitian Systems. Phys. Rev. Lett. 2018, 121, 086803. [CrossRef]
37. Yokomizo, K.; Murakami, S. Non-Bloch Band Theory of Non-Hermitian Systems. Phys. Rev. Lett. 2019, 123, 066404. [CrossRef]
38. Zhang, K.; Yang, Z.; Fang, C. Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems. Phys. Rev.

Lett. 2020, 125, 126402. [CrossRef]
39. Yang, Z.; Zhang, K.; Fang, C.; Hu, J. Non-Hermitian Bulk-Boundary Correspondence and Auxiliary Generalized Brillouin Zone

Theory. Phys. Rev. Lett. 2020, 125, 226402. [CrossRef]
40. Kunst, F.K.; Edvardsson, E.; Budich, J.C.; Bergholtz, E.J. Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems.

Phys. Rev. Lett. 2018, 121, 026808. [CrossRef]
41. Li, L.; Lee, C.H.; Mu, S.; Gong, J. Critical non-Hermitian skin effect. Nat. Commun. 2020, 11, 5491. [CrossRef] [PubMed]
42. Li, L.; Oshikawa, M.; Zheng, Y. Symmetry Protected Topological Criticality: Decorated Defect Construction, Signatures and

Stability. arXiv 2022. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.127.213601
http://dx.doi.org/10.1103/PhysRevB.104.014202
http://dx.doi.org/10.1103/PhysRevLett.126.230402
http://dx.doi.org/10.1103/PhysRevResearch.3.023022
http://dx.doi.org/10.1103/PhysRevLett.126.216405
http://www.ncbi.nlm.nih.gov/pubmed/34114834
http://dx.doi.org/10.1103/PhysRevB.104.L121101
http://dx.doi.org/10.1103/PhysRevLett.128.120401
http://dx.doi.org/10.1103/PhysRevResearch.3.043006
http://dx.doi.org/10.1088/1367-2630/ac38ce
http://dx.doi.org/10.1103/PhysRevB.104.035413
http://dx.doi.org/10.1103/PhysRevB.105.104102
http://dx.doi.org/10.1103/PhysRevB.105.125111
http://dx.doi.org/10.1103/PhysRevB.104.195102
http://dx.doi.org/10.1103/PhysRevLett.126.176601
http://dx.doi.org/10.1103/PhysRevB.104.155141
http://dx.doi.org/10.1103/PhysRevB.104.L161106
http://dx.doi.org/10.1103/PhysRevB.103.014201
http://dx.doi.org/10.1103/PhysRevB.104.035424
http://dx.doi.org/10.1103/PhysRevLett.126.166801
http://dx.doi.org/10.1103/PhysRevLett.126.240402
http://dx.doi.org/10.1103/PhysRevLett.126.086401
http://dx.doi.org/10.1103/PhysRevLett.126.216407
http://www.ncbi.nlm.nih.gov/pubmed/34114865
http://dx.doi.org/10.1103/PhysRevB.104.125435
http://dx.doi.org/10.1103/PhysRevB.104.075106
http://dx.doi.org/10.1103/PhysRevB.105.125103
http://dx.doi.org/10.1016/j.scib.2021.04.027
http://www.ncbi.nlm.nih.gov/pubmed/36654380
http://dx.doi.org/10.1103/PhysRevB.104.125416
http://dx.doi.org/10.34133/2021/5608038
http://www.ncbi.nlm.nih.gov/pubmed/33824952
http://dx.doi.org/10.1103/PhysRevLett.116.133903
http://dx.doi.org/10.1103/PhysRevLett.121.086803
http://dx.doi.org/10.1103/PhysRevLett.123.066404
http://dx.doi.org/10.1103/PhysRevLett.125.126402
http://dx.doi.org/10.1103/PhysRevLett.125.226402
http://dx.doi.org/10.1103/PhysRevLett.121.026808
http://dx.doi.org/10.1038/s41467-020-18917-4
http://www.ncbi.nlm.nih.gov/pubmed/33127908
http://dx.doi.org/10.48550/ARXIV.2204.03131


Entropy 2024, 26, 845 10 of 11

43. Yang, H.; Li, L.; Okunishi, K.; Katsura, H. Duality, Criticality, Anomaly, and Topology in Quantum Spin-1 Chains. Phys. Rev. B
2023, 107, 125158. https://link.aps.org/doi/10.1103/PhysRevB.107.125158. [CrossRef]

44. Balabanov, O.; Ortega-Taberner, C.; Hermanns, M. Quantization of topological indices in critical chains at low temperatures.
Phys. Rev. B 2022, 106, 045116. https://link.aps.org/doi/10.1103/PhysRevB.106.045116. [CrossRef]

45. Huang, W.; Yao, Y. Critical region of topological trivial and nontrivial phases in interacting Kitaev chain with spatially varying
potentials. arXiv 2021. [CrossRef]

46. Rahul, S.; Sarkar, S. Topological Quantum Criticality in non-Hermitian Kitaev chain with Longer Range Interaction. arXiv 2021.
[CrossRef]

47. Fraxanet, J.; González-Cuadra, D.; Pfau, T.; Lewenstein, M.; Langen, T.; Barbiero, L. Topological Quantum Critical Points in the
Extended Bose-Hubbard Model. Phys. Rev. Lett. 2022, 128, 043402. [CrossRef]

48. Balabanov, O.; Erkensten, D.; Johannesson, H. Topology of critical chiral phases: Multiband insulators and superconductors.
Phys. Rev. Res. 2021, 3, 043048. [CrossRef]

49. Kurilovich, V.D.; Murthy, C.; Kurilovich, P.D.; van Heck, B.; Glazman, L.I.; Nayak, C. Quantum critical dynamics of a Josephson
junction at the topological transition. Phys. Rev. B 2021, 104, 014509. [CrossRef]

50. Rufo, S.; Lopes, N.; Continentino, M.A.; Griffith, M.A.R. Multicritical behavior in topological phase transitions. Phys. Rev. B 2019,
100, 195432. [CrossRef]

51. Sbierski, B.; Karcher, J.F.; Foster, M.S. Spectrum-Wide Quantum Criticality at the Surface of Class AIII Topological Phases: An
“Energy Stack” of Integer Quantum Hall Plateau Transitions. Phys. Rev. X 2020, 10, 021025. [CrossRef]

52. Wiedmann, R.; Lenke, L.; Walther, M.R.; Mühlhauser, M.; Schmidt, K.P. Quantum critical phase transition between two
topologically ordered phases in the Ising toric code bilayer. Phys. Rev. B 2020, 102, 214422. [CrossRef]

53. Wu, X.C.; Xu, Y.; Geng, H.; Jian, C.M.; Xu, C. Boundary criticality of topological quantum phase transitions in two-dimensional
systems. Phys. Rev. B 2020, 101, 174406. [CrossRef]

54. You, Y.; Bibo, J.; Pollmann, F.; Hughes, T.L. Fracton Critical Point in Higher-Order Topological Phase Transition. Phys. Rev. B
2020, 106, 235130. https://link.aps.org/doi/10.1103/PhysRevB.106.235130. [CrossRef]

55. Kartik, Y.R.; Kumar, R.R.; Rahul, S.; Roy, N.; Sarkar, S. Topological quantum phase transitions and criticality in a longer-range
Kitaev chain. Phys. Rev. B 2021, 104, 075113. [CrossRef]

56. Iqbal, M.; Schuch, N. Entanglement Order Parameters and Critical Behavior for Topological Phase Transitions and Beyond. Phys.
Rev. X 2021, 11, 041014. [CrossRef]

57. Sadrzadeh, M.; Jafari, R.; Langari, A. Dynamical topological quantum phase transitions at criticality. Phys. Rev. B 2021, 103, 144305.
[CrossRef]

58. Xiao, T.; Xie, D.; Dong, Z.; Chen, T.; Yi, W.; Yan, B. Observation of topological phase with critical localization in a quasi-periodic
lattice. Sci. Bull. 2021, 66, 2175–2180. [CrossRef]

59. Song, A.Y.; Sun, X.Q.; Dutt, A.; Minkov, M.; Wojcik, C.; Wang, H.; Williamson, I.A.D.; Orenstein, M.; Fan, S. PT -Symmetric
Topological Edge-Gain Effect. Phys. Rev. Lett. 2020, 125, 033603. [CrossRef]

60. Denner, M.M.; Skurativska, A.; Fischer, M.H.; Thomale, R.; Bzdušek, T.; Neupert, T. Exceptional topological insulators. Nat.
Commun. 2021, 12, 5681. [CrossRef]

61. Lee, C.H.; Thomale, R. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 2019, 99, 201103. [CrossRef]
62. Okugawa, R.; Takahashi, R.; Yokomizo, K. Non-Hermitian band topology with generalized inversion symmetry. Phys. Rev. B

2021, 103, 205205. [CrossRef]
63. He, Y.; Chien, C.C. Non-Hermitian generalizations of extended Su–Schrieffer–Heeger models. J. Phys. Condens. Matter 2020,

33, 085501. [CrossRef] [PubMed]
64. Vecsei, P.M.; Denner, M.M.; Neupert, T.; Schindler, F. Symmetry indicators for inversion-symmetric non-Hermitian topological

band structures. Phys. Rev. B 2021, 103, L201114. [CrossRef]
65. Okuma, N.; Kawabata, K.; Shiozaki, K.; Sato, M. Topological Origin of Non-Hermitian Skin Effects. Phys. Rev. Lett. 2020,

124, 086801. [CrossRef]
66. Gong, Z.; Ashida, Y.; Kawabata, K.; Takasan, K.; Higashikawa, S.; Ueda, M. Topological Phases of Non-Hermitian Systems. Phys.

Rev. X 2018, 8, 031079. [CrossRef]
67. Kumar, R.R.; Roy, N.; Kartik, Y.R.; Rahul, S.; Sarkar, S. Topological phase transition at quantum criticality. arXiv 2021. [CrossRef]
68. Mondragon-Shem, I.; Hughes, T.L.; Song, J.; Prodan, E. Topological Criticality in the Chiral-Symmetric AIII Class at Strong

Disorder. Phys. Rev. Lett. 2014, 113, 046802. [CrossRef]
69. Zhang, D.W.; Tang, L.Z.; Lang, L.J.; Yan, H.; Zhu, S.L. Non-Hermitian topological Anderson insulators. Sci. China Phys. Mech.

Astron. 2020, 63, 267062. [CrossRef]
70. Bao, X.X.; Guo, G.F.; Du, X.P.; Gu, H.Q.; Tan, L. The topological criticality in disordered non-Hermitian system. J. Phys. Condens.

Matter 2021, 33, 185401. [CrossRef]
71. Yokomizo, K.; Murakami, S. Scaling rule for the critical non-Hermitian skin effect. Phys. Rev. B 2021, 104, 165117. [CrossRef]
72. Okuma, N.; Sato, M. Topological Phase Transition Driven by Infinitesimal Instability: Majorana Fermions in Non-Hermitian

Spintronics. Phys. Rev. Lett. 2019, 123, 097701. [CrossRef] [PubMed]
73. Hasan , M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [CrossRef]

https://link.aps.org/doi/10.1103/PhysRevB.107.125158
http://dx.doi.org/10.1103/PhysRevB.107.125158
https://link.aps.org/doi/10.1103/PhysRevB.106.045116
http://dx.doi.org/10.1103/PhysRevB.106.045116
http://dx.doi.org/10.48550/ARXIV.2112.06391
http://dx.doi.org/10.48550/ARXIV.2109.10519
http://dx.doi.org/10.1103/PhysRevLett.128.043402
http://dx.doi.org/10.1103/PhysRevResearch.3.043048
http://dx.doi.org/10.1103/PhysRevB.104.014509
http://dx.doi.org/10.1103/PhysRevB.100.195432
http://dx.doi.org/10.1103/PhysRevX.10.021025
http://dx.doi.org/10.1103/PhysRevB.102.214422
http://dx.doi.org/10.1103/PhysRevB.101.174406
https://link.aps.org/doi/10.1103/PhysRevB.106.235130
http://dx.doi.org/10.1103/PhysRevB.106.235130
http://dx.doi.org/10.1103/PhysRevB.104.075113
http://dx.doi.org/10.1103/PhysRevX.11.041014
http://dx.doi.org/10.1103/PhysRevB.103.144305
http://dx.doi.org/10.1016/j.scib.2021.07.025
http://dx.doi.org/10.1103/PhysRevLett.125.033603
http://dx.doi.org/10.1038/s41467-021-25947-z
http://dx.doi.org/10.1103/PhysRevB.99.201103
http://dx.doi.org/10.1103/PhysRevB.103.205205
http://dx.doi.org/10.1088/1361-648X/abc974
http://www.ncbi.nlm.nih.gov/pubmed/33176287
http://dx.doi.org/10.1103/PhysRevB.103.L201114
http://dx.doi.org/10.1103/PhysRevLett.124.086801
http://dx.doi.org/10.1103/PhysRevX.8.031079
http://dx.doi.org/10.48550/ARXIV.2112.02485
http://dx.doi.org/10.1103/PhysRevLett.113.046802
http://dx.doi.org/10.1007/s11433-020-1521-9
http://dx.doi.org/10.1088/1361-648X/abee3d
http://dx.doi.org/10.1103/PhysRevB.104.165117
http://dx.doi.org/10.1103/PhysRevLett.123.097701
http://www.ncbi.nlm.nih.gov/pubmed/31524453
https://doi.org/10.1103/RevModPhys.82.3045


Entropy 2024, 26, 845 11 of 11

74. Zhu, S.L.; Wang, B.; Duan, L.M. Simulation and Detection of Dirac Fermions with Cold Atoms in an Optical Lattice. Phys. Rev.
Lett. 2007, 98, 260402. [CrossRef] [PubMed]

75. Lewenstein, M.; Sanpera, A.; Ahufinger, V.; Damski, B.; Sen(De), A.; Sen, U. Ultracold atomic gases in optical lattices: Mimicking
condensed matter physics and beyond. Adv. Phys. 2007, 56, 243–379. [CrossRef]

76. Jiang, J.H. Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes. Phys. Rev. A 2012, 85, 033640.
[CrossRef]

77. Wang, P.; Yu, Z.Q.; Fu, Z.; Miao, J.; Huang, L.; Chai, S.; Zhai, H.; Zhang, J. Spin-Orbit Coupled Degenerate Fermi Gases. Phys. Rev.
Lett. 2012, 109, 095301. [CrossRef]

78. Deng, D.L.; Wang, S.T.; Duan, L.M. Direct probe of topological order for cold atoms. Phys. Rev. A 2014, 90, 041601. [CrossRef]
79. Liu, X.J.; Liu, Z.X.; Cheng, M. Manipulating Topological Edge Spins in a One-Dimensional Optical Lattice. Phys. Rev. Lett. 2013,

110, 076401. [CrossRef]
80. Brandenbourger, M.; Locsin, X.; Lerner, E.; Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 2019, 10. [CrossRef]
81. Zou, D.; Chen, T.; He, W.; Bao, J.; Lee, C.H.; Sun, H.; Zhang, X. Observation of hybrid higher-order skin-topological effect in

non-Hermitian topolectrical circuits. Nat. Commun. 2021, 12, 7201. [CrossRef]
82. Gou, W.; Chen, T.; Xie, D.; Xiao, T.; Deng, T.S.; Gadway, B.; Yi, W.; Yan, B. Tunable Nonreciprocal Quantum Transport through a

Dissipative Aharonov-Bohm Ring in Ultracold Atoms. Phys. Rev. Lett. 2020, 124, 070402. [CrossRef] [PubMed]
83. Xu, Y.; Wang, S.T.; Duan, L.M. Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas. Phys. Rev. Lett.

2017, 118, 045701. [CrossRef] [PubMed]
84. Yoshida, T.; Peters, R.; Kawakami, N. Non-Hermitian perspective of the band structure in heavy-fermion systems. Phys. Rev. B

2018, 98, 035141. [CrossRef]
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