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Abstract: DNA damage tolerance pathways that allow for the completion of replication following
fork arrest are critical in maintaining genome stability during cell division. The main DNA damage
tolerance pathways include strand switching, replication fork reversal and translesion synthesis
(TLS). The TLS pathway is mediated by specialised DNA polymerases that can accommodate altered
DNA structures during DNA synthesis, and are important in allowing replication to proceed after
fork arrest, preventing fork collapse that can generate more deleterious double-strand breaks in the
genome. TLS may occur directly at the fork, or at gaps remaining behind the fork, in the process of
post-replication repair. Inactivating mutations in the human POLH gene encoding the Y-family DNA
polymerase Pol η causes the skin cancer-prone genetic disease xeroderma pigmentosum variant (XPV).
Pol η also contributes to chemoresistance during cancer treatment by bypassing DNA lesions induced
by anti-cancer drugs including cisplatin. We review the current understanding of the canonical
role of Pol η in translesion synthesis following replication arrest, as well as a number of emerging
non-canonical roles of the protein in other aspects of DNA metabolism.

Keywords: DNA polymerase η; DNA damage tolerance; translesion synthesis; DNA replication;
DNA repair

1. Introduction

DNA damage tolerance plays a key role in maintaining genome stability, by allowing
complete replication of damaged DNA without replication fork collapse, thus preventing
the formation of double-strand breaks at the sites of fork arrest. DNA damage tolerance
pathways include fork reversal and strand switching, error-free homology-based processes
that utilise the undamaged complementary nascent strand as a transient template to bypass
the damage site [1,2]. The process of translesion synthesis (TLS) is mediated by specialised
DNA polymerases that can directly bypass the lesion, based on the capacity of the en-
zyme active site to accommodate damaged bases, and on the absence of 3′-5′ proofreading
exonuclease activity [3–5]. However, TLS may be either error-free or error-prone, depend-
ing on the combination of lesion type and bypass polymerase involved in a specific TLS
event [6,7]. TLS can occur directly at the arrested fork, or at gaps left in the nascent strand
following downstream repriming carried out in mammalian cells by the primase activity of
PrimPol [8]. The elucidation of the contributions of specific TLS polymerases to each of
these scenarios is still a subject of investigation.

The human genome encodes 17 DNA polymerases [9], including the replicative poly-
merases α, δ, and ε, and a number of specialised polymerases with roles in the replication
and repair of damaged DNA [3,6,10]. The key players in TLS include the Y-family poly-
merases Pol η, ι, and κ, and Rev1, as well as the B-family polymerase Pol ζ [4,6,7,10,11].
PrimPol, which has both TLS and RNA primase activities, contributes to DNA damage
tolerance by repriming downstream of sites of replication arrest, leaving a single-strand
gap in the nascent strand that is filled post-replication [9–16].
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This review focuses on the Y-family polymerase, Pol η, a 78 kDa ubiquitously expressed
protein encoded by the POLH gene located on human chromosome 6p21. Patients with the
skin cancer-prone genetic condition xeroderma pigmentosum variant [17] lack functional
Pol η due to mutations in POLH (originally called hRAD30) [18,19]. In this context, Pol η
protects against UV-induced skin cancer by carrying out an error-free bypass of the major
UV-induced lesion, the thymine–thymine cyclobutane pyrimidine dimer (TT-CPD). In the
absence of Pol η in XPV cells, DNA synthesis is arrested at sites of UV-induced CPDs,
and bypasses are eventually carried out by other more-error prone TLS polymerases and
mutations accumulate, contributing to skin cancer development [18,19]. While accurately
bypassing TT-CPDs is the main role of Pol η in the context of skin cancer protection, Pol
η also bypasses a number of other lesions, including, for example, the oxidative lesion
8-oxo-guanine [20]; temozolomide-induced lesions [21]; and cisplatin-induced intrastrand
adducts [22–25]. The capacity of Pol η to bypass platinum-induced lesions is significant
for cancer treatment, as the level of Pol η expression can affect the response to widely
used platinum-based cancer chemotherapeutics [26–30]. This offers the possibility that
modulating Pol η activity using small molecule inhibitors could synergistically enhance
the effectiveness of platinum-based cancer chemotherapeutics [1,31,32].

In addition to the canonical role of Pol η in bypassing DNA lesions in the template
from exogenous and endogenous sources, there is increasing evidence that Pol η [33], as
well as other TLS polymerases [34], plays other non-canonical roles in DNA and RNA
metabolism (Figure 1). These non-canonical roles include DNA synthesis at difficult-to-
replicate regions of the genome such as common fragile sites [35–38]; the generation of
immunoglobulin diversity during somatic hypermutation (SHM) in memory B cells [39–41];
ribonucleotide incorporation and processing of R-loops [42–45]; reverse transcriptase
activity in double-strand break repair by transcription-coupled non-homologous end-
joining (TC-NHEJ) [46–48]; D-loop extension during homologous recombination [49–51],
and maintenance of telomere length through the alternate lengthening of telomeres (ALT)
pathway [52,53]. Overall, the non-canonical activities of Pol η derive from the capacity
of the enzyme active site to accommodate a variety of altered DNA structures; to utilise
ribonucleotides in addition to deoxyribonucleotides; and to carry out synthesis using either
RNA or DNA as a primer or template. Thus, Pol η mitigates replication stress and promotes
genome stability in S-phase cells not only by facilitating bypass of DNA damage-induced le-
sions in the template strand, but also by carrying out DNA synthesis at difficult-to-replicate
regions of the genome that result from altered structures specified by particular DNA
sequences. Examples include sequences that form hairpins or G-quadruplexes at common
fragile sites [36,38] or telomeric DNA structures [53]. Further, the recent demonstration
that human Pol η has reverse transcriptase as well as DNA polymerase activity has ex-
panded its potential cellular roles to include the use of an RNA transcript as a template to
facilitate error-free repair of double-strand breaks in transcribed genes in the process of
TC-NHEJ [46,48]. Based on the published literature reflecting twenty-five years of research
since the first description of human Pol η in 1999 [18,19], this review will consider the
canonical role of human Pol η in TLS, and the non-canonical roles of the protein in other
areas of DNA and RNA metabolism (Figure 1).
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Figure 1. Canonical and non-canonical roles of human DNA polymerase η. The canonical role of Pol 
η in translesion synthesis (TLS) is shown (left), and non-canonical roles are shown on the right: CFS, 
replication at common fragile sites; TC-NHEJ, transcription-coupled non-homologous end-joining; 
Ig diversity, generation of antibody diversity; R-loop, processing of replication at R-loops; D-loop, 
processing of D-loops; ALT, alternative lengthening of telomeres. 

2. Structure of Human Pol η 
Human Pol η is a ubiquitously expressed 78 kDa protein, comprising an N-terminal 

catalytic domain and a C-terminal protein–protein interaction domain (Figure 2). The cat-
alytic domain includes thumb, finger, and palm domains that are characteristic of other 
DNA polymerases, as well as the little finger domain (or polymerase-associated domain, 
PAD) which is unique to Y-family polymerases [4,7]. The co-crystallisation of amino acids 
1–432 in the catalytic domain with DNA containing a thymine–thymine CPD [54] or with 
a guanine–guanine platinum intrastrand adduct [24,55] has provided detailed insight into 
the structural features of Pol η that allow for efficient bypasses. The protein does not un-
dergo major conformational change during lesion bypass as the more open enzyme active 
site can accommodate a dinucleotide lesion [55]. Amino acids R61 and S62, which are 
unique to Pol η, and Q38 facilitate lesion bypass through interactions with the bases of the 
lesion and with the incoming dNTP [55]. The LF domain, which is not present in other Y-
polymerases, provides a local positively charged surface that acts as a molecular splint to 
maintain the B-DNA structure, counteracting lesion-induced bending of the template 
which would impede synthesis [7,54]. In addition, the phosphodiester bond formed by 

Figure 1. Canonical and non-canonical roles of human DNA polymerase η. The canonical role
of Pol η in translesion synthesis (TLS) is shown (left), and non-canonical roles are shown on the
right: CFS, replication at common fragile sites; TC-NHEJ, transcription-coupled non-homologous
end-joining; Ig diversity, generation of antibody diversity; R-loop, processing of replication at R-loops;
D-loop, processing of D-loops; ALT, alternative lengthening of telomeres.

2. Structure of Human Pol η

Human Pol η is a ubiquitously expressed 78 kDa protein, comprising an N-terminal
catalytic domain and a C-terminal protein–protein interaction domain (Figure 2). The
catalytic domain includes thumb, finger, and palm domains that are characteristic of other
DNA polymerases, as well as the little finger domain (or polymerase-associated domain,
PAD) which is unique to Y-family polymerases [4,7]. The co-crystallisation of amino acids
1–432 in the catalytic domain with DNA containing a thymine–thymine CPD [54] or with a
guanine–guanine platinum intrastrand adduct [24,55] has provided detailed insight into
the structural features of Pol η that allow for efficient bypasses. The protein does not
undergo major conformational change during lesion bypass as the more open enzyme
active site can accommodate a dinucleotide lesion [55]. Amino acids R61 and S62, which
are unique to Pol η, and Q38 facilitate lesion bypass through interactions with the bases of
the lesion and with the incoming dNTP [55]. The LF domain, which is not present in other
Y-polymerases, provides a local positively charged surface that acts as a molecular splint
to maintain the B-DNA structure, counteracting lesion-induced bending of the template
which would impede synthesis [7,54]. In addition, the phosphodiester bond formed by Pol
η requires three divalent metal ions (Mg2+ or Mn2+) to bind at the active site, as has been
shown using time-resolved X-ray crystallography [56–59].
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Figure 2. Structure and key domains of human Pol η protein. (A). Structural model of human Pol η 
(UniProt ID Q9Y253) generated using AlphaFold. The positions of the palm (P), fingers (F), thumb 
(T), and little finger (LF) within the catalytic domain are indicated. PIP, PCNA–interacting peptide; 
RIR, Rev1–interacting region; UBZ, ubiquitin–binding zinc finger; NLS, nuclear localisation signal. 
Key phosphorylation sites are shown as dots. (B). Schematic diagram of Pol η, showing the positions 
of the palm, fingers, thumb and little finger within the catalytic domain, and key protein–protein 
interaction regions in the C–terminus. The location of sites of phosphorylation by PKC, ATR, and 
CDK2 are indicated; ubiquitination sites are indicated by an asterisk. 

Pol η is post-translationally modified by phosphorylation, ubiquitination, and 
SUMOylation. Pol η is phosphorylated at a number of sites, including at S587 and T617 
by PKC [79], at S687 by CDK2 [80], and at S601 by ATR after DNA damage [80–82]. CDK2-
mediated phosphorylation at S687 stabilises the protein in the late S and G2 phases of the 
cell cycle, when Pol η function is required, and facilitates the recruitment of the protein to 
chromatin [80]. In undamaged cells, Pol η is sequestered by binding to PDIP38, preventing 
recruitment to the replication fork [82]. Following DNA damage, the Pol η-PDIP38 inter-
action is disrupted by ATR-mediated phosphorylation of both protein partners. ATR phos-
phorylates Pol η at S601, promoting interaction between the UBZ domain of Pol η and 
monoubiquitinated PCNA, facilitating the polymerase switch that replaces Pol δ or ε with 
Pol η to effect lesion bypass. Following lesion bypass, Pol η S687 is dephosphorylated [80] 
and the protein is ubiquitinated at a number of lysines in the C-terminal domain by the 
Pirh2 E3 ligase [69,83]. Pol η now adopts a closed conformation, in which the ubiqui-
tinated domain binds in cis to the C-terminal UBZ domain, competing with ubiquitinated 
PCNA for UBZ binding, thereby releasing Pol η from the site of completed lesion bypass 
[69]. Pol η is also mono-SUMOylated at K163 by PIAS1 SUMO ligase after TLS, in a Rad18-
dependent process that reduces the interaction between Pol η and monoubiquitinated 
PCNA, leading to STUbL-mediated displacement of Pol η from sites of lesion bypass. Pol 
η is further poly-SUMOylated at up to 19 other lysine residues that are located within both 
the catalytic and the C-terminal domains [84]. After being released from the lesion site, 
Pol η is polyubiquitinated by MDM2, and ultimately targeted for proteasomal degrada-
tion [85,86]. In unperturbed cells, K163 mono-SUMOylation is important for the recruit-
ment of Pol η to difficult-to-replicate chromatin regions [87]. Overall, while the regulation 
of Pol η function during TLS is quite well understood, elucidating the PPIs and PTMs that 
regulate specific non-canonical functions of Pol η is an important area for future investi-
gation. 

Figure 2. Structure and key domains of human Pol η protein. (A). Structural model of human
Pol η (UniProt ID Q9Y253) generated using AlphaFold. The positions of the palm (P), fingers (F),
thumb (T), and little finger (LF) within the catalytic domain are indicated. PIP, PCNA–interacting
peptide; RIR, Rev1–interacting region; UBZ, ubiquitin–binding zinc finger; NLS, nuclear localisation
signal. Key phosphorylation sites are shown as dots. (B). Schematic diagram of Pol η, showing
the positions of the palm, fingers, thumb and little finger within the catalytic domain, and key
protein–protein interaction regions in the C–terminus. The location of sites of phosphorylation by
PKC, ATR, and CDK2 are indicated; ubiquitination sites are indicated by an asterisk.

The C-terminal domain is largely unstructured but includes several key structural
motifs for protein–protein interaction, as well as the NLS (Figure 2). The motifs include
the ubiquitin-binding zinc finger (UBZ) motif that mediates interactions with monoubiq-
uitinated PCNA [60], and the Rev1-interacting region (RIR) motif [61] for interactions
with Rev1 (Figure 2). The structure prediction programme AlphaFold [62] generates a
model of full-length Pol η in which the C-terminal is unstructured, with local α-helical
regions consistent with the location of the UBZ and RIR motifs (Figure 2A). Based on
the crystallisation of this region, the UBZ consists of two short anti-parallel β-strands
comprising amino acids 632–634 and 641–643, and an α-helical region from amino acids
647–662 [60,63]. The UBZ, along with the PCNA-interacting peptide (PIP) motifs [64–66],
mediate the interaction of Pol η with PCNA, a key step in the recruitment of Pol η to sites
of replication arrest. Following replication arrest, PCNA is monoubiquitinated by the
Rad6–Rad18 ubiquitin ligase complex [67]. The UBZ binds to K164-monoubiquitinated
PCNA, facilitating the polymerase switch that replaces the processive replicative poly-
merases δ or ε with Pol η [68]. Following lesion bypass, the UBZ binds in cis to a number
of C-terminal monoubiquitinated sites in Pol η (Figure 2B), competing for binding to ubiq-
uitinated PCNA, leading to release of Pol η from the site of lesion bypass [69]. Pol η also
directly interacts with Rad18 via the C-terminal amino acids 556–702, which play a role
in targeting the Rad18-Rad6 complex to PCNA at the site of replication arrest, as Rad18
does not directly interact with PCNA [67,70,71]. This is a unique function of Pol η, not
shared by other Y-family polymerases. Other interactions, including between Pol η and
the pre-mRNA splicing factor SART3, which binds to both Pol η and Rad18, modulate the
formation of a complex between Rad18 and Pol η [72]. Interactions with BRCA1 [73] and
FANCD2 [74] also promote the recruitment of Pol η to arrested replication forks.

The structure of the RIR2 motif of Pol η which interacts with the C-terminal do-
main of Rev1, was determined by Pozhidaeva et al. using solution NMR [61]. The
F531–F532 diphenylalanine motif in RIR2, conserved in Y-family polymerases, is critical
for Rev1 interaction [61]. Pol η-mediated TLS can also occur independently of PCNA
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ubiquitination, through this interaction with Rev1, which acts as a scaffold to form a ternary
Rev1-PCNA-Pol η complex at sites of replication arrest [8,66,75,76]. The Rev1-dependent
recruitment of Pol η to stalled forks is particularly important for ‘on-the-fly’ TLS [8,66,75].
While Rev1 can have a catalytic role in TLS, its major role is to recruit TLS polymerases
to the site of DNA damage [76], and to facilitate switching between the inserter DNA
polymerase and the extender DNA polymerase pol ζ during lesion bypass [61].

While the majority of protein–protein interactions occur via the C-terminal domain of
Pol η, there is evidence that other protein partners, including nucleophosmin [77] and the
Werners syndrome (WRN) helicase [78], interact with the N-terminal catalytic core of the
protein. Of note, a deficiency in nucleophosmin, which is commonly mutated in AML cells,
leads to proteasome-mediated degradation of Pol η [77]. Overall, the evidence indicates
that Pol η may exist in sub-complexes with different protein partners that modulate the
canonical and non-canonical roles of the protein in TLS or other DNA processing events, as
discussed below.

Pol η is post-translationally modified by phosphorylation, ubiquitination, and SUMOy-
lation. Pol η is phosphorylated at a number of sites, including at S587 and T617 by PKC [79],
at S687 by CDK2 [80], and at S601 by ATR after DNA damage [80–82]. CDK2-mediated
phosphorylation at S687 stabilises the protein in the late S and G2 phases of the cell cycle,
when Pol η function is required, and facilitates the recruitment of the protein to chro-
matin [80]. In undamaged cells, Pol η is sequestered by binding to PDIP38, preventing
recruitment to the replication fork [82]. Following DNA damage, the Pol η-PDIP38 in-
teraction is disrupted by ATR-mediated phosphorylation of both protein partners. ATR
phosphorylates Pol η at S601, promoting interaction between the UBZ domain of Pol η and
monoubiquitinated PCNA, facilitating the polymerase switch that replaces Pol δ or ε with
Pol η to effect lesion bypass. Following lesion bypass, Pol η S687 is dephosphorylated [80]
and the protein is ubiquitinated at a number of lysines in the C-terminal domain by the
Pirh2 E3 ligase [69,83]. Pol η now adopts a closed conformation, in which the ubiquitinated
domain binds in cis to the C-terminal UBZ domain, competing with ubiquitinated PCNA
for UBZ binding, thereby releasing Pol η from the site of completed lesion bypass [69]. Pol η
is also mono-SUMOylated at K163 by PIAS1 SUMO ligase after TLS, in a Rad18-dependent
process that reduces the interaction between Pol η and monoubiquitinated PCNA, leading
to STUbL-mediated displacement of Pol η from sites of lesion bypass. Pol η is further
poly-SUMOylated at up to 19 other lysine residues that are located within both the catalytic
and the C-terminal domains [84]. After being released from the lesion site, Pol η is polyu-
biquitinated by MDM2, and ultimately targeted for proteasomal degradation [85,86]. In
unperturbed cells, K163 mono-SUMOylation is important for the recruitment of Pol η to
difficult-to-replicate chromatin regions [87]. Overall, while the regulation of Pol η function
during TLS is quite well understood, elucidating the PPIs and PTMs that regulate specific
non-canonical functions of Pol η is an important area for future investigation.

While the Pol η protein is ubiquitously expressed, POLH mRNA expression is induced
following DNA damage in a TP53-dependent manner, mediated by a TP53 response ele-
ment present in the POLH promoter [88,89]. A human papilloma virus 16 (HPV16) infection
blocks damage-induced Pol η expression, by HPV E6 protein-mediated TP53 degradation,
leading to replication stress and increased sensitivity to chemotherapeutic DNA-damaging
agents [90]. POLH mRNA is alternatively spliced [91] and polyadenylated [92]. POLH
mRNA expression is also regulated by the miRNAs miR-93 and miR619, which mod-
ulate the sensitivity of ovarian cancer stem cells to platinum-based chemotherapeutic
agents [30]. It has recently been reported that the long non-coding RNA taurine upreg-
ulated gene 1 (TUG1) up-regulates Pol η levels in ovarian cancer cell lines by binding to
miR487-3p and miR-6088, preventing these miRNAs from targeting POLH mRNA [93].
TUG1 expression is increased in cisplatin-resistant ovarian cancer, consistent with a role
for Pol η in modulating the response to cisplatin treatment [93]. The regulation of Pol η
expression by alternative mRNA splicing and by miRNAs in response to different cellular
stresses requires further investigation.
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3. Canonical Role of Pol η
3.1. The Canonical Role of Pol η in Translesion Synthesis

While TLS polymerases are considered to be error-prone, TLS protects against the
formation of DSBs at sites of prolonged replication fork arrest, and therefore contributes to
genome stability. The canonical role of Pol η is in bypassing lesions that block genomic DNA
replication by DNA polymerases δ and ε [5]. Structural studies [7,54,55], lesion bypass
assays using purified Pol η protein in vitro, and analysis of bypass following transfection
of cells with individual lesions in plasmid constructs [94], demonstrate that Pol η can
bypass a variety of lesions, including UV-induced CPDs [95], 8-oxoG adducts [96,97], O6-
methylguanine [98], cisplatin-induced intrastrand adducts [24,99], temozolomide-induced
alkylation damage [21], misincorporated 5′-fluorouracil (5′FU) residues [100], and bulky
adducts such as dG-N2-(+)-trans-anti-benzo[a]pyrene [101] and dG-N2-IQ [2-amino-3-
methylimidazo[4,5-f]quinolone] [102]. Pol η also bypasses a non-templating abasic (AP)
site, with the addition of a purine nucleotide [103–105]. Depending on the type of lesion,
bypass may be error-free or error-prone [63]. In the case of UV-induced DNA damage, while
Pol η can bypass thymine–thymine CPDs accurately [95], it cannot bypass a (6-4)PP [106].
Complete bypass requires the combined action of a second TLS polymerase such as Pol
ζ, Pol ι, or Pol θ, in a two-polymerase mechanism of lesion bypass [95,106,107]. In this
process, Pol η is limited to inserting a single nucleotide opposite the 3′T of a (6-4)PP,
with the completion of the bypass requiring the activity of the second TLS polymerase.
Although UV-induced (6-4)PPs are less frequent in the genome than CPDs, this lesion is
highly mutagenic. Compared to cis-syn thymine-thymine CPDs, (6-4) PPs cause a more
marked structural distortion, placing the 3′T perpendicular to the 5′T in the lesion [106].
Pol η inserts a guanine rather than an adenine opposite the 3′T of a thymine–thymine
(6-4)PP, as a hydrogen bond cannot be formed between the carbonyl oxygen of the 3′T
and the amino group of an incoming adenine residue, while hydrogen bond formation is
possible with a guanine residue [106]. Pol ζ then adds an adenine opposite the 5′T and
extends from the primer terminus to complete bypass of the (6-4)PP, generating a mutation
at the 3′T of the lesion [106].

XPV cells which lack functional Pol η are hypermutable after UV-irradiation [108] as a
result of error-prone bypass of CPDs by other TLS polymerases including Pol ι and Pol ζ [5].
The consequences of Pol η-deficiency for UV-induced mutagenesis were recently reported
based on whole-genome sequencing of 14 skin tumour samples from XPV patients [109].
The frequency of mutations in the genome was increased three-fold in XPV-derived skin
tumours compared to sporadic skin tumours, indicating that Pol η normally suppresses
mutagenesis [109]. The frequency of mutations at thymine–thymine sites was higher
in XPV-derived tumours, and the majority of mutations at dipyrimidine sites were at
the 3′ nucleotide, supporting the two-polymerase model of UV-induced lesion bypass
in the absence of Pol η [109]. Of interest, the mutation spectrum in the genome of skin
tumours from XPV patients also includes mutations of the purine in a T-A/G [109] or C-A
sequence context [110]. This may reflect a role for Pol η in bypass of an as-yet unidentified
UV-induced purine lesion [109,110]. As cytosine-containing dimers, rather than thymine-
thymine dimers, are the major source of UV-induced mutations in skin cancers in the non-
XPV population [109,111], it has been proposed that Pol η activity may lead to mutations
by accurately bypassing deaminated cytosine bases within C-containing CPDs [111]. The
deamination of cytosine and 5-methyl-cytosine generates uracil and thymine, respectively.
Since the rate of cytosine deamination is also increased in the context of a CPD [111],
accurate bypass of the deaminated bases by Pol η could account in part for the high
frequency of C->T transition mutations characteristic of UV-induced mutagenesis [111].

The capacity of Pol η to bypass cisplatin-induced intrastrand crosslinks is of significant
interest given the importance of platinum-based drugs as mainstays of cancer chemother-
apy. Lesion bypass is a potential target for the development of inhibitors that could
enhance the effectiveness of platinum-based drugs [1]. Cisplatin induces DNA intrastrand
purine–purine adducts, as well as interstrand crosslinks (ICLs). Considerable evidence



Genes 2024, 15, 1271 7 of 22

supports a role for Pol η in bypassing cisplatin-induced intrastrand adducts, consistent
with the fact that Pol η has a sufficiently large active site to accommodate and bypass these
lesions [24,55,112]. Purified Pol η can bypass cisplatin adducts in oligonucleotide templates
in vitro [99]. X-ray crystallographic studies have provided detailed insight into how the
active site of human Pol η accommodates a guanine–guanine intrastrand adduct, and
how structural changes in the protein upon lesion binding facilitate lesion bypass [24,55].
Gln 38, Arg 61, and Ser 62 play key roles in the incorporation of nucleotides opposite the
guanine–guanine adduct [55], while the LF domain loop Q373-379 makes contact with
the major groove and shifts following nucleotide incorporation to allow extension to be
completed [24]. In vivo, Pol η-deficient XPV cells are more sensitive to cisplatin compared
to wild-type cells [26,27], and Pol η expression modulates nascent strand length in cisplatin-
treated XPV cells [25]. Consistent with a functional role for Pol η in the response of cancer
cells to cisplatin, miRNA-mediated down-regulation of Pol η increases the sensitivity of
ovarian cancer stem cells to cisplatin [30]. Recent evidence that Pol η plays a role in bypass
of adducts induced by other chemotherapeutic drugs including temozolomide [21] and
5′fluorouracil [100] widens the repertoire of lesions induced by cancer chemotherapeu-
tics that can be bypassed by Pol η. In the case of 5-FU, it is notable that Pol η can both
incorporate 5-FU into DNA as well as bypass the resulting 5-FU lesions, implicating Pol η
activity in the response to 5-FU-based drug regimens used in the treatment of colorectal
cancer [100]. Interestingly, Pol η also plays a role in the response to the topoisomerase
inhibitor etoposide, through a non-canonical function in the repair of double-strand breaks
by non-homologous end-joining (see below) [113].

3.2. Cellular DNA Damage Tolerance Pathways

TLS by Pol η or other TLS polymerases takes place in the context of cellular DNA dam-
age tolerance pathways that stabilise the replication fork and allow replication to continue
on the damaged strand, preventing fork collapse to maintain genome stability [114,115], as
shown in Figure 3. These pathways include fork reversal and template switching; TLS in
order to directly bypass the lesion at the fork; and repriming downstream of the lesion with
the generation of single-stranded gaps that are subsequently filled by the action of TLS
polymerases working behind the fork, or by a template switching mechanism (Figure 2).
The selection of a particular pathway is dictated by the activity of pathway-associated
proteins, as well as by the type and level of the DNA damage [116]. The replicative poly-
merases, Pol ε on the leading strand and Pol δ on the lagging strand, generally cannot
bypass lesions in the template, resulting in the replication fork slowing or stalling [114].
However, blocking replication on one strand does not necessarily affect DNA synthesis
on the other strand but instead can lead to fork uncoupling [114]. Further, a lesion on the
lagging strand does not interfere with replication fork progression to the same extent as a
lesion on the leading strand, as another Okazaki fragment can be initiated by Pol α-primase
upstream of the damage, allowing continued replication fork progression [114,117].

Post-translational modification of PCNA plays a role in the choice of the damage
tolerance pathways shown in Figure 2. As outlined above, the RAD6/RAD18 complex,
consisting of the E2 ubiquitin-conjugating enzyme RAD6 and the E3 RING-finger ubiq-
uitin ligase RAD18, is recruited to sites of replication arrest by interacting with RPA
molecules that coat regions of single-stranded DNA generated on the parental strand.
RAD6/RAD18 monoubiquitinates PCNA on K164, which promotes the recruitment of
Pol η to the site of replication arrest through interaction of the C-terminal UBZ domain
(Figure 1) with the ubiquitin moiety of PCNA [67]. The interaction of Pol η with PCNA
through the PIP domain [64,65] and with Rev1 through the RIR domain is also required for
efficient recruitment of Pol η to sites of replication arrest [8,61,75].
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Alternatively, to promote error-free bypass by fork reversal (Figure 3c), PCNA can
be polyubiquitinated through the formation of K63-linked multi-ubiquitin chains by the
E2 complex Mms2-Ubc13, and by HLTF or SHPRH, human homologs of the yeast E3
ligase RAD5 [116,118–120]. In response to UV-induced damage or other bulky lesions,
HLTF binds to the primer terminus at arrested forks [121–123]. Following HLTF-mediated
PCNA polyubiquitination, the DNA translocase ZRANB3 binds to the modified PCNA
to promote fork reversal and restart replication [124]. As well as having ubiquitin ligase
activity, HLTF can also catalyse this fork reversal step [122]. In human HLTF-knockout cells
lacking HLTF-mediated fork reversal, replication fork progression still continues after UV
irradiation, consistent with TLS (Figure 3a) and PrimPol-mediated repriming (Figure 3b)
acting to bypass the damage [125]. Conversely, the recruitment of HLTF suppresses other
DDT pathways [126], indicating that there is competition between different DDT pathways
at the sites of replication arrest. Fork reversal allows error-free bypass of lesions by provid-
ing the undamaged complementary nascent strand as a transient template for replication
(Figure 3c). However, this process also generates single-ended DSBs (seDSBs) which are vul-
nerable to degradation by Mre11 and other nucleases [2,127]. BRCA1 and BRCA2 proteins
play key roles in protecting seDSBs from Mre11-mediated DNA degradation [2,128–130].
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Other DDT pathways, including TLS, are therefore important to ensure lesion bypass and
fork stability in BRCA-deficient cancer cells [131], with potential opportunities for the
development of novel targeted cancer therapies [2].

Pol η-mediated TLS occurs either directly at the fork (Figure 3a) or during the filling
of post-replicative gaps (Figure 3b). Pol η has been shown to directly bypass UV-induced
CPDs and cisplatin lesions at the fork (Figure 3a) in human cells [25,116,132–134], and
in a reconstituted yeast TLS system in vitro [135]. Pol η is associated with the ongoing
replication fork in normal cells and is recruited to sites of replication arrest [87]. Direct
TLS at the fork promotes genome stability by allowing replication to continue without the
generation of ssDNA gaps or strand breaks [136]. After the completion of lesion bypass,
Pol η is post-translationally modified by ubiquitination and SUMOylation, as described
above, leading to the release of Pol η and replacement with pol δ, which extends the nascent
DNA strand until it reaches the Cdc45-MCM-GINS-Pol ε-engaged (CMGE) complex, where
Pol ε continues the replication of the leading strand [137]. The lesion remains in the DNA
template and may be subsequently repaired by NER or BER.

If a lesion is not bypassed directly by TLS at the fork (Figure 3a), an alternative
pathway is repriming, in which a primase synthesises a new RNA primer downstream of
a lesion on the leading strand. This leaves behind a single-stranded DNA (ssDNA) gap
in the nascent strand while allowing replication to continue (Figure 3b). Initial evidence
from yeast demonstrated that repriming was carried out by Pol α-primase, leading to
an accumulation of ssDNA gaps, which was increased in rev1-, rev3-, or rad30-defective
strains [138]. In human cells, the RNA primase activity of PrimPol rather than Pol α-primase
plays the central role in repriming, in particular following replication arrest at lesions on
the leading strand [8,15,139,140] (Figure 3b). Gaps accumulate behind the replication fork
as the replisome continues to synthesise DNA beyond the lesions [117,140–144]. Gap filling
then becomes a critical process as unrepaired single-strand gaps can be converted to more
lethal double-strand breaks by nuclease action [2,134,136]. Consistent with a role for Pol
η-mediated TLS in preventing the conversion of ssDNA gaps into double-strand breaks,
the DSB marker γH2AX co-localises with post-replicative ssDNA gaps in UV irradiated
Pol η-deficient cells [134,145].

Post-replicative ssDNA gaps are filled either by TLS by Pol η [145] or other TLS
polymerases, in particular Pol ζ [8,117,146–148] (Figure 3(b1)), or by template switching
(Figure 3(b2)) in the late-S or G2 phases of the cell cycle [116,149]. The mode of the interac-
tion of PrimPol with RPA molecules bound to the ssDNA positions PrimPol downstream
of RPA, and defines the length of the gap [140]. It was recently demonstrated that, in
TK6 lymphoblastoid cells, PrimPol is recruited soon after replication arrest, restricting
the length of the ssDNA gaps that are generated and preventing the formation of long
stretches of ssDNA around the lesion site [8]. Repriming by PrimPol thus plays a key
role in ensuring efficient co-ordination between TLS at the fork and at post-replicative
gaps [8]. Post-replicative gaps can also be repaired in an error-free manner by template
switching (Figure 3(b2)), initiated by RAD51-mediated strand invasion, where the undam-
aged nascent strand from the sister chromatid serves as a transient replication template to
facilitate error-free lesion bypass [150].

The process of post-replicative gap filling, also termed gap suppression, ensures
that single-strand gaps are filled before cells enter mitosis. This process is of increasing
interest as such gaps can also arise as a result of oncogene-induced replication stress,
or in cells where other tolerance pathways are compromised such as in BRCA-deficient
cells [136]. Targeting the process of post-replicative gap-filling may therefore have thera-
peutic potential [136], and a more detailed understanding of the molecular mechanisms of
post-replicative gap filling is important in this context [67,151].
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4. Non-Canonical Roles of Pol η in Replication and Repair

In addition to its’ established role in translesion synthesis described above, there
is increasing evidence that Pol η plays a number of other non-canonical roles in DNA
metabolism [33] (Figure 1).

4.1. Replication at Common Fragile Sites (CFS)

Regions of repetitive sequences in the genome present a challenge to the DNA repli-
cation machinery, resulting in increased susceptibility of such genomic regions to DNA
breakage [152–154]. Such sites, termed common fragile sites (CFSs), often adopt non-B
DNA conformation, forming hairpins or G-quadruplex (G4) structures that are a barrier
to replication [153,155]. While replicative polymerases including Pol ε cannot carry out
efficient synthesis through repetitive sequences and G4 structures, Pol η retains the ability
to traverse these templates [156,157]. Pol η-deficient cells show defects in the replication
of CFSs, supporting a role for Pol η in the replication of difficult-to-replicate genomic
regions [35,36,38,157–159]. Pol η also plays a role during replication stress induced by
Myc-overexpression [160] or dNTP depletion [87,157]. Consistent with roles in replication
even in the absence of DNA lesions in the template, Pol η is found to be associated with
replication forks in undamaged cells [87,161]. The recruitment of human Pol η to CFSs
appears to be independent of interactions with PCNA [157] but requires Rad18-dependent
SUMOylation of Pol η on K163 by the SUMO ligase PIAS1 [87]. Rad18 binds to both Pol η
and PIAS1, acting as a scaffold to promote K163 SUMOylation [87]. The expression of
the K163R-mutated form of Pol η, which cannot be SUMOylated, leads to the generation
of under-replicated DNA, and segregation defects in mitotic cells [87]. Phosphorylation
of Pol η at S687 by CDK2 in the late S and G2 phases [80,82,162] may also contribute to
the recruitment of Pol η protein to chromatin for CFS replication which occurs in the late
S phase [35]. XPV cells lacking Pol η show increased genomic instability at a number of
CFS loci, including FRA16D and NEGR1, with the formation of micronuclei containing
NEGR1 sequences, consistent with incomplete replication of this CFS region in the absence
of Pol η [38]. Corradi et al. [110] further reported that the frequency of mobile element
insertion and retrotransposition was increased in a cohort of 11 skin tumours from Pol
η-deficient XPV patients, indicating that Pol η normally suppresses such genomic rearrange-
ments, potentially by reducing strand break formation at sites that could act as entry points
for mobile elements. Notably, the replication of CFSs by Pol η may contribute to sequence
variation at these regions in the general population, as genomic DNA sequencing revealed
a Pol η-specific mutation signature within the sequenced CFS regions [38]. Overall, Pol η
contributes to genomic stability by ensuring the efficient replication of difficult-to-replicate
genomic regions, in addition to its’ established role in TLS at sites of DNA damage.

4.2. Generation of Immunoglobulin Diversity

The non-canonical role of Pol η in the generation of immunoglobulin diversity during so-
matic hypermutation (SHM) of immunoglobulin (Ig) genes is well-established [39–41,163–166].
Pol η therefore contributes significantly to the adaptive immune response that generates
an array of antibodies to combat diverse pathogens [39]. Pol η expression is strongly
induced in activated B cells in germinal centres where SHM occurs, compared to resting B
cells [39,41], and is thus available for error-prone DNA synthesis that generates characteris-
tic mutations at A/T base pairs. During SHM, APOBEC-mediated cytosine deamination
generates uracil in the genome [5]. Mutations at G/C base pairs are not dependent on
Pol η but result from the replication of uracil-containing DNA by polymerases δ and ε [5].
However, evidence from cell-based systems and from knockout mouse models have clearly
demonstrated that mutations at A/T base pairs in Ig genes during SHM are strongly
Pol η-dependent [39–41,163–166]. Pol η is recruited to sites of SHM through interaction
with PCNA [167–169], and generates characteristic WA to WG mutations as a result of
efficient misincorporation of dGTP opposite the thymine of an A/T base pair in the WA se-
quence context [170] during error-prone DNA synthesis at single-strand gaps, generated by
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the action of the Msh2/Msh6 mismatch repair complex to remove uracils from DNA [5,40].
Consistent with the role of Pol η in SHM, the frequency of mutations at A/T bases in Ig
genes in memory B cells is reduced in XPV cells [41]. In POLH−/−-knockout mice, there
is an increased frequency of transversion mutations in Ig genes, consistent with a role for
Pol κ in SHM when Pol η in not available [165]. Of note, it was recently reported that, in
two cohorts of XPV patients, the absence of Pol η also leads to an age-dependent increase
in the frequency of 10–20 base-pair deletions at the JH4 intron junctions of Ig genes [171]. In
the absence of Pol η, it is proposed that an alternate polymerase, possibly Pol θ, generates
deletions during SHM [171]. This indicates a dynamic interplay between TLS polymerase
activity, replicative stress, and genome stability in memory B cells.

The A/T base pair-specific mutational signature in Ig genes, observed under conditions
of increased Pol η expression and replicative stress, is referred to as signature 9 or SBS9 [172].
While SHM is targeted to Ig genes, one consequence of elevated Pol expression in memory
B cells is that the enzyme potentially has access to other regions of the genome. Consistent
with this, the Pol η-associated SBS9 signature can be identified across the genome of memory
B cells [172]. Thus, Pol η may contribute to the frequency of background mutations in
cancer-related genes, as well as to somatic hypermutation in Ig genes, with consequences for
lymphoma development [172]. Furthermore, the SBS9 mutational signature has also been
identified in various other cancers, including pancreatic tumours [38,173]. This highlights
the broader implications of increased Pol η expression for cancer development, indicating
the potential link between Pol η-mediated mutagenesis and tumorigenesis.

4.3. R-Loop Processing, and Ribonucleotide Incorporation

As well as carrying out DNA synthesis on damaged and undamaged templates as
outlined above, there is increasing evidence that Pol η can (i) use an RNA strand as a
primer for DNA synthesis [44–46]; (ii) incorporate ribonucleotides into DNA, including
during lesion bypass [42,43]; (iii) synthesise RNA and carry out transcriptional bypass
of lesions [174–176]; and (iv) generate a DNA copy of an RNA template by acting as a
reverse transcriptase [46,48]. Consistent with this broader role for Pol η, the protein binds to
DNA-DNA, DNA-RNA, and RNA-DNA templates with approximately equal affinities [46].

R-loops, formed when a nascent RNA molecule hybridises with double-stranded DNA
creating a three-stranded structure consisting of an RNA-DNA hybrid and a region of
single-stranded DNA, contribute to genome instability [177,178]. Pol η can utilise the RNA
strand in an R-loop structure as a primer to initiate DNA synthesis in vitro, an activity that
could facilitate fork restart after replication arrest [44]. Purified Pol η has also been shown
to utilise an RNA primer to bypass a CPD or an 8-oxoG lesion in a DNA template [46], and
could therefore play a role in lesion bypass during replication initiation, or at an Okazaki
fragment on the lagging strand [46].

While Pol η shows strong selectivity for incorporation of dNTPs rather than ribonu-
cleotides, Pol η can nonetheless incorporate ribonucleotides during translesion synthesis
past CPDs and 8-oxoG lesions [42], as well as opposite guanine–guanine intrastrand cis-
platin adducts [43]. X-ray crystallographic studies show that the position of the ribose sugar
in the active site is altered compared to the deoxyribose in a dNTP, due to the presence
of the F18 residue in the active site which acts as a steric gate [42]. Time-resolved X-ray
crystallography of extension of a ribonucleotide primer by Pol η demonstrated that the
presence of the 2′OH of the ribosugar increased the misincorporation frequency during
extension from the ribonucleotide end [45]. Under conditions of hydroxyurea-induced
dNTP depletion In vivo, the incorporation of ribonucleotides allows yeast Pol η to continue
DNA synthesis even when dNTP levels are limiting, ensuring the completion of DNA
replication [179]. Under these conditions, RNaseH activity is critical to remove the incor-
porated ribonucleotides from the genome, to prevent formation of single-strand breaks
at these sites [179]. It has also been proposed that Pol η could facilitate elongation of a
blocked RNA strand during transcription, by virtue of the capacity to both incorporate
ribonucleotides opposite a DNA lesion and extend the ribonucleotide strand [179]. In



Genes 2024, 15, 1271 12 of 22

support of this role, it has been shown that purified Pol η can bypass lesions in an in vitro
transcription system [175,176]. While further investigation is required, this expands the
potential roles of Pol η in the cell to include RNA as well as DNA synthesis.

4.4. Reverse Transcriptase Activity in TC-NHEJ

Recent evidence that Pol η not only has DNA polymerase activity but can also act as a
bona fide reverse transcriptase, using RNA as a template for the synthesis of a complemen-
tary DNA strand, has further expanded our understanding of the non-canonical roles of
Pol η in the cell [46,48,180]. Consistent with this role of Pol η In vivo, the depletion of Pol η
in HEK293 cells, or a lack of Pol η in XPV cells, reduces reverse transcriptase activity in cell
extracts, which is restored by the addition of purified Pol η [46–48]. The RT activity of Pol η
is proposed to play a central role in the process of transcription-coupled non-homologous
end joining (TC-NHEJ), where an RNA transcript provides a complementary template
for error-free repair of double-strand breaks in transcribed genes [33,46,48]. This process
is important to prevent the accumulation of mutations in coding regions of the genome
in non-proliferating cells, which cannot utilise homologous recombination for error-free
double-strand break repair [48]. Mechanistic evidence supports a role for Pol η in TC-NHEJ.
Human Pol η is found associated with nascent RNA, and as part of a multiprotein complex
with RNA Pol II in HEK293 cells [48]. Pol η depletion leads to an increase in R-loop forma-
tion in the genome after treatment with bleomycin, indicating that RNA is normally used
as a template to fill the gap at DSB sites via the reverse transcriptase activity of Pol η [48].
The N-terminal of Pol η also interacts with the NHEJ scaffold protein Kruppel-associated
box-associated protein 1 (Kap1) forming a ternary complex with Rad18 during repair of
etoposide-induced DSBs [113], consistent with the proposed role for Pol η in double-strand
break repair by TC-NHEJ.

4.5. D-Loop Extension Activity during Homologous Recombination

Unlike other DNA polymerases, Pol η can carry out the extension of a D-loop [49], a
three-stranded DNA intermediate formed during HR [181]. In vitro studies have demon-
strated that recombinant Pol η can recognise and preferentially bind to D-loop structures,
efficiently extending the invading DNA strand [49,50]. Moreover, Pol η-deficient XPV cells
are defective in D-loop extension, supporting the role of Pol η in this step of HR [49]. D-loop
extension by Pol η is PCNA-independent as the PIP box is dispensable [50]. However,
interaction of PALB2 and BRCA2 with Pol η stimulates extension of the invading strand
during HR-mediated repair at collapsed replication forks [51]. This function of Pol η may
be important in break-induced replication (BIR), required to repair a single-ended DSB
formed by template strand breakage at the site of replication fork collapse [2]. Overall,
the ability of Pol η to carry out D-loop extension highlights a role in repair of replication
arrest-induced strand breaks by HR, separate from the canonical role in TLS.

4.6. Alternate Lengthening of Telomeres

The maintenance of telomere length at the ends of chromosomes, either by re-expression of
telomerase [182], or by using the alternate lengthening of telomeres (ALT) pathway [183], is
crucial for the survival of cancer cells. Consistent with a role for Pol η in telomere replication,
XPV cells show an increased frequency of damage-induced telomere aberrations [52]. Pol η
is localised to telomeres after UV-induced DNA damage, reducing ATR-dependent damage
response signalling [52]. In the absence of damage, Pol η is required for DNA synthesis
during ALT [53]. Pol η interacts with TRF1, a component of the shelterin complex that
normally protects telomeres from the action of DNA repair proteins [53]. Analogous to
its role in DNA loop extension, Pol η initiates recombination-mediated DNA synthesis
on telomeric DNA, generating DNA strands that are subsequently extended by Pol δ [53].
Reduced Pol η levels lead to telomere aberrations, including exchange of DNA between
telomeres, and extensive telomeric DNA synthesis by Pol δ in mitosis [53]. Thus, Pol η
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plays a role in ensuring that telomere structure is maintained during replication in cancer
cells, with implications for cancer cell survival.

5. Pol η Mutations and Cancer

Given the key role of Pol η in TLS, there is increased interest in targeting TLS poly-
merases, including Pol η, in cancer cells, to enhance the effectiveness of chemotherapeutic
DNA damaging agents, particularly in genetic backgrounds that make cancer cells more
dependent on TLS for survival [1,10]. However, given the non-canonical roles of Pol η in a
number of other processes outlined above, the wider implications of targeting Pol η in the
cell must be considered [33], but these pathways could also provide new opportunities for
precisely targeted interventions [48].

The role of Pol η in suppressing skin cancer development is clear, since inactivating
mutations in Pol η lead to XPV, as result of increased mutagenesis during replication of
UV-damaged DNA in skin cells [18,19,108,109,184]. The majority of POLH mutations in
XPV are either missense mutations altering key residues that inactivate protein function or
frameshifts leading to protein truncation [108,184]. The inactivating missense mutations
mainly occur in the N-terminal catalytic domain [108,185–187]. One missense mutation,
T692A, in the C-terminal domain of Pol η has been reported in XPV [188]. This mutation
leads to the formation of a 721 amino acid protein, due to the presence of a second point
mutation that eliminates the normal stop codon, causing the addition of eight amino acids
to the C-terminal of Pol η [188]. The resulting protein has near normal lesion bypass activity
in vitro but is unstable in cells due to proteasomal degradation of the altered protein [188].
Splicing mutations in POLH that lead to loss of Pol η protein expression have also been
reported in a small number XPV patients [41,189,190]. Of note, in two cases the causative
splicing mutations are located at splice junctions within or upstream of the untranslated
exon 1 [41,189].

In addition to inactivating mutations in POLH that cause XPV disease, single-nucleotide
polymorphisms that encode missense variants of Pol η have been identified in the non-XPV
population [191,192]. However, the functional effects of most of these changes on Pol η
protein function have not been investigated to date. Yeom et al. [193] recently reported
analysis of a series of germline missense variants in Pol η. Purified Pol η proteins carrying
either the C34W, I147N, or R167Q missense mutations showed a reduced ability to bypass
cisplatin lesions in vitro, and these missense variants could not fully complement cisplatin
sensitivity when expressed in Pol η-deficient cells [193]. This provides evidence that poly-
morphisms in POLH can affect Pol η activity. The POLH genotype could be important in
the response of tumours to DNA damaging cancer chemotherapeutics [194], particularly as
cancer genomics databases (COSMIC; cBioportal) list somatic POLH mutations that have
been identified by sequencing genomic DNA from tumour tissues. Given the non-canonical
roles of Pol η, it will be important to understand how individual mutations affect the func-
tion of the protein not only in TLS but also in other roles, including replication of regions of
undamaged DNA, somatic hypermutation, and in TC-NHEJ. Specific mutations could also
affect key protein–protein interaction domains, or sites of post-translational modification,
rather than directly affecting DNA or RNA synthesis activity [184]. Further, POLH mRNA
is over-expressed in a subset of cancers, including non-small cell lung cancer and head
and neck squamous cell carcinoma, as a result of amplification of the POLH genomic locus
on chromosome 6 [29,159,194]. Over-expression of Pol η has consequences for genome
stability, for example in memory B cells [172], and in tumours where the Pol η-dependent
SBS9 mutation signature can be detected [38,173].

As noted above, inhibitors of Pol η are under investigation in order to enhance the
effectiveness of DNA damaging agents in chemotherapy [32]. A number of inhibitors of
Pol η and other TLS polymerases have been identified [1,31,32,195]. Inhibition may be
more effective depending on the status of other DNA damage tolerance pathways in the
tumour [10,196]. Given the non-canonical roles of Pol η in addition to TLS outlined here,
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the effects of inhibition on these activities should also be investigated, to better understand
the consequences of such inhibitors for genomic stability.

6. Conclusions and Future Perspectives

Pol η has key roles in bypassing lesions, and contributes to both accurate and muta-
genic DNA replication, depending on the lesion. Its’ major role is in bypass of UV-induced
lesions, as evidenced by the consequences of POLH mutations in XPV. In the case of UV-
induced lesions, Pol η bypass reduces the frequency of mutations at dipyrimidine sites,
exemplified by the increased mutation frequency in XPV-derived cells and skin tumours.
Overall, TLS by Pol η ensures continued nascent strand synthesis, contributing to cell
survival, albeit at the cost of introducing mutations to the genome during bypass of certain
lesions. Because the active site of Pol η can accommodate ribonucleotides as well as deoxyri-
bonucleotides, and carry out synthesis using RNA as well as DNA as the primer or template,
there is increasing evidence that Pol η also plays key roles in a number of other cellular
processes, including replication of common fragile sites, generation of immunoglobulin
gene diversity, reverse transcription in TC-NHEJ, and primer extension during recombi-
national repair and telomere maintenance. It will be important to better understand the
relative importance of the canonical and non-canonical activities of Pol η, including how
access of Pol η to replication and repair sites is regulated in different chromosomal contexts.
In addition, the PPIs and PTMs that regulate specific non-canonical functions are not well
understood. The effects of mutations in Pol η, and the effects of Pol η inhibitors on these
functions also need to be investigated. These insights will be important to further advance
targeting of Pol η to enhance the effectiveness of DNA damage-based cancer therapies, and
to understand the consequences of mutations in POLH for genome stability.
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