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Abstract: Protein-based emulsion gels are an ideal delivery system due to their unique structure,
remarkable encapsulation efficiency, and tunable digestive behavior. Freshwater mussel (Solenaia
oleivora) protein isolate (SoPI), an emerging sustainable protein with high nutritional value, possesses
unique value in the development of functional foods. Herein, composite emulsion gels were fabricated
with SoPI and κ-carrageenan (κ-CG) for the delivery of curcumin. SoPI/κ-CG stabilized emulsions
possessed a high encapsulation efficiency of curcumin with a value of around 95%. The addition of
κ-CG above 0.50% facilitated the emulsion gel formation and significantly improved the gel strength
with 1326 g. Furthermore, the storage and digestive stability of curcumin were significantly improved
as the κ-CG concentration increased. At 1.50% κ-CG, around 80% and 90% curcumin remained after
21-day storage at 45 ◦C and the 6 h in vitro gastrointestinal digestion, respectively. The addition
of 0.50% κ-CG obtained the highest bioaccessibility of curcumin (~60%). This study illustrated the
potential of SoPI emulsion gels as a carrier for stabilizing and delivering hydrophobic polyphenols.

Keywords: aquatic protein; κ-carrageenan; cold-set emulsion gel; encapsulation; in vitro digestion;
bioaccessibility

1. Introduction

Emulsion gels are a kind of soft, solid-like food system possessing both emulsion
and gel characteristics that have been used for encapsulation, protection, and delivery of
both hydrophilic and lipophilic bioactives [1,2]. Commonly used proteins for the fabri-
cation of emulsion gels are milk proteins, plant proteins, and myofibrillar proteins [3–5].
The appearance, physicochemical properties, digestive behavior, and controlled release
properties of emulsion gels are primarily determined by their structural type, material
category and concentration, and intermolecular interplays [6–9]. Recently, the utilization of
protein-polysaccharide interplays has become a more effective strategy for the fabrication
and regulation of emulsion gels. Compared with emulsion gels formulated with a single
protein, the existence of polysaccharides influenced not solely the gelation process and
the architecture of the aqueous phase but also had an impact on the distribution of oil
droplets, as well as the interfacial composition and structures [10–12]. Leveraging the
combined benefits of polysaccharides and proteins, it becomes feasible to create emulsion
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gels with multi-level or hierarchical microstructures that exhibit improved stability and
tunable digestive characteristics [8,13,14].

Recently, there has been a heightened interest in exploring novel edible and sustainable
protein sources derived from aquatic animals and their by-products. This is attributed to
their lower greenhouse gas emissions, fewer religious dietary restrictions, and reduced risks
of immunogenic diseases compared to proteins obtained from terrestrial sources [15,16].
Solenaia oleivora, a significant freshwater economic shellfish found exclusively in China,
boasts a low-fat content and is particularly rich in protein, accounting for 73% of its dry
weight in the edible parts [17]. Freshwater mussel (Solenaia oleivora) protein isolate (SoPI)
possesses a high content of leucine, lysine, valine, and isoleucine lysine and a high essential
amino acid index of 49.2, making it suitable for the development of functional food prod-
ucts [18]. Despite the poor hydrosolubility and functionality of SoPI, our previous studies
have demonstrated processing treatment (e.g., ultrasound and high-pressure homogeniza-
tion) can significantly reduce particle size and enhance hydrophobicity and surface charges,
resulting in the improvement of hydrosolubility and emulsifying activities of SoPI [18,19].
However, SoPI is currently underutilized in the fabrication of emulsions and gels. Hence, it
is imperative to explore viable processing techniques aimed at enhancing the properties of
SoPI and broadening its application spectrum within food products.

Curcumin, a natural polyphenolic compound, possesses a bis-feruloylmethane struc-
ture with a range of beneficial effects, including antioxidant, anti-inflammatory, antibac-
terial, anticancer, liver-protective, and anti-atherosclerosis effects [20]. However, natural
curcumin suffers from poor hydrosolubility, sensitivity to environmental factors including
oxygen, light, and heat, and diminished bioavailability after oral administration, thereby
restricting its application in functional foods [21,22]. Consequently, the development of
edible delivery systems is essential to improve their physicochemical stability and bioac-
cessibility. To date, emulsion gels fabricated with numerous proteins (e.g., whey proteins,
pork myofibrillar protein, pea proteins, and rice proteins) have been reported for the
encapsulation and protection of curcumin and regulation of gastrointestinal digestion
behavior [23–26]. However, there are no reported studies focused on the fabrication of
emulsion gels formulated with SoPI for the delivery of curcumin.

κ-Carrageenan (κ-CG), a linear polysaccharide, consists of α-(1-3)-D-galactopyranose
and β-(1-4)-3,6-anhydro-D-galactopyranose with 15–40% ester sulfate content [27]. κ-CG/
protein composite gel networks can be induced by salt ions, acids, or spontaneously formed
at room temperature after heating. The presence of κ-CG in protein-based emulsion gels
can improve protective effects and controlled release of bioactives, which is dependent on
the protein/polysaccharide interplays, polysaccharide concentration, and gelation meth-
ods. [28–31]. Increasing κ-CG concentration is an effective strategy to induce protein
micro-phase separation or protein/κ-CG segregative phase separation, resulting in the
formation of protein/κ-CG coupled gel networks or κ-CG dominated gel networks en-
trapped protein phase or emulsified oil droplets [32,33]. The diverse gel structures facilitate
the modification of gel texture and controlled hydrolysis of protein and oil phase during
the digestion process [1]. For example, a low κ-CG concentration at 0.25% could enhance
the lipid hydrolysis of pea protein emulsion gels during the digestion due to decreased
oil droplet aggregation and coalescence, while a high κ-CG concentration above 1.0%
could significantly delay the digestion of pea protein and oil phase because of stronger
gel networks, higher viscosity, and more extensive flocculation [10]. Su and co-workers
reported that the incorporation of κ-CG in curcumin-loaded whey protein emulsion gels
could decrease the release of curcumin during the gastric phase, leading to more curcumin
released in the intestinal phase [23].

This study aims to fabricate the medium-chain triglyceride (MCT) oil emulsion gel
formulated with SoPI and κ-CG for the delivery of curcumin. Impacts of the κ-CG on texture
properties of SoPI emulsion gel and chemical stability, release profile, and bioaccessibility
of curcumin were explored. Our research aims to expand the utilization of SoPI as a novel
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protein source, paving the way for the development of edible delivery systems within the
food industry.

2. Results and Discussion
2.1. Emulsion Characterization
2.1.1. Particle Size Distribution and ζ-Potential

As shown in Figure 1A, all SoPI-stabilized emulsions with or without κ-CG showed
a bimodal size distribution. For SoPI-stabilized emulsions, the smaller peak ranging
from 100 to 200 nm was attributed to the SoPI aggregates [18], while the peak above
500 nm was ascribed to the oil droplets [34]. The particle sizes of both SoPI aggregates
and emulsified oil droplets increased slightly with increasing κ-CG concentration. At low
polysaccharide concentrations, both negatively charged κ-CG and SoPI molecules may
co-solubilize in the natural environment, thereby exhibiting no significant impact on the
emulsified oil droplets [35]. The particle size of the emulsified oil droplets varied from
1 µm to 2 µm as the κ-CG concentration was above 1.0%, possibly resulting from the
depletion flocculation between emulsified oil droplets induced by the presence of much
unabsorbed κ-CG molecules in the continuous phase [36,37]. In this situation, the presence
of unadsorbed κ-CG molecules within the continuous phase induces an osmotic gradient,
which results in the extraction of water from the droplet’s depletion region, ultimately
causing aggregation of the oil droplets [38].
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Figure 1. Effect of κ-carrageenan concentration on the size distribution (A) and ζ-potential (B) of
SoPI-stabilized emulsions.

The ζ-potential of SoPI emulsions was about −42 mV (Figure 1B). The pH of the
emulsions at around 7.0 was higher than the isoelectric point of SoPI (about 4.5~5.5) [39],
and thus emulsified oil droplets exhibited negatively charged surfaces. The addition
of κ-CG exhibited no significant impact (p < 0.05) on the ζ-potential of emulsified oil
droplets, with values ranging from −42 to −46 mV. It can be inferred that κ-CG was not
adsorbed onto the surface of the emulsified oil droplets at pH 7.0 due to the relatively large
electrostatic repulsion between negatively charged κ-CG containing sulfate groups and
emulsified oil droplets [37]. The above results indicated that the negatively charged κ-CG
molecules were mainly presented in the aqueous phase of emulsions [36,40].

2.1.2. Encapsulation Efficiency of Curcumin in Emulsions

Curcumin possesses a high log p value of 3.29 and limited solubility in aqueous solu-
tion with a value of 11 ng/mL at ambient temperature [21]. Encapsulation within protein
particles and emulsions is an effective strategy for improving the hydrosolubility and
stability of curcumin [41,42]. In Figure 2, the encapsulation efficiency of curcumin in SoPI
emulsions was around 94%, which is similar to the Tween 80/Span 80 stabilized MCT
emulsions (87–98%) [41] and glutelin fibrils stabilized MTC emulsions (~94%) [43]. The rel-
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atively high encapsulation efficiency may result from the good emulsifying properties of
ultrasound treatment SoPI and strong interfacial protein membrane formation, preventing
the release of curcumin from the oil phase to the aqueous phase [18,44]. Furthermore, the
lipophilic nature of curcumin made it more likely to be located in the inner oil phase of emul-
sions [45]. The addition of κ-CG had no significant impact on the curcumin encapsulation.
These results suggest that SoPI emulsions could be as good curcumin-loaded carriers.
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Figure 2. Encapsulation efficiency of curcumin in SoPI-stabilized emulsions at various κ-carrageenan
concentrations.

2.2. Emulsion Gel Formation and Characterization
2.2.1. Visual Appearance

Figure 3 shows the visual appearance of the inverted curcumin-loaded SoPI emulsion
gels with κ-CG. SoPI emulsions with or without 0.25% κ-CG flowed to the tube bottom, sug-
gesting emulsions at low protein concentrations (1% w/w) could not form the self-support
gel structure. Conversely, the self-support emulsion gel formation could be observed as
the κ-CG concentration was above 0.50%. Therefore, SoPI emulsion gels with κ-CG varied
from 0.50% to 1.50% and were chosen for subsequent characterization.
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2.2.2. Water Holding Capacity

Generally, the water-holding capacity of SoPI emulsion gels is expected to increase
with increasing κ-CG concentrations (Figure 4). As the κ-CG concentration was above 1.00%,
the water-holding capacity of SoPI emulsion gels reached 96%. The elevated concentration
of κ-CG promoted the formation of SoPI/κ-CG composite or continuous κ-CG dense gel
networks with diminished pore sizes, which in turn enhanced stronger capillary forces,
facilitating the retention of a greater number of water molecules [10]. Moreover, the
substantial number of hydroxyl groups on the κ-CG can engage in hydrogen bonding with
water molecules, thereby contributing to a reduction in water loss [46,47].
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Different letters indicate the statistically significant difference (p < 0.05).

2.2.3. Textural Properties

Table 1 shows the texture characteristics of SoPI emulsion gels with various concen-
trations of κ-CG. Overall, the textural profile of emulsion gels was mainly determined by
the structure of the gel matrix and emulsified oil droplets and their interactions [6]. The
gel hardness and chewiness increased with increasing κ-CG concentration, with values of
1326 g and 169 g at 1.50% κ-CG, respectively. This indicates that the incorporation of κ-CG
could improve the mechanical properties of SoPI emulsion gels. A similar phenomenon
was also observed in the pea protein/κ-CG composite emulsion gels [31]. Polysaccharides
exhibit thickening and space-occupying effects on the protein gel formation process [48].
The increased κ-CG composite would induce the formation of the carrageenan continuous
gel matrix with high water content (Figure 4) and decreased void spaces, thereby increasing
gel strength [32,49]. Furthermore, increasing polysaccharide content may facilitate inter-
plays between SoPI-coated oil droplets and κ-CG in an acidic environment, contributing
to the further increase in gel strength. The addition of κ-CG slightly increased the gel
springiness but did not significantly affect the cohesiveness of SoPI emulsion gels (Table 1).
This observation is consistent with findings in emulsion gels formulated with egg yolk
and sodium alginate [50] and curcumin-loaded whey protein/sugar beet pectin composite
emulsion gels [49].

Table 1. Effects of κ-carrageenan concentration on the mechanical characteristics of SoPI emulsion gels.

κ-Carrageenan
Concentration (%)

Hardness
(g) Springiness Cohesiveness Chewiness

(g)

0.50 516.8 ± 93.4 a 0.489 ± 0.021 a 0.359 ± 0.026 a 88.91 ± 8.36 a

0.75 689.1 ± 53.1 b 0.510 ± 0.024 ab 0.361 ± 0.021 a 139.38 ± 7.56 b

1.00 910.7 ± 81.3 c 0.545 ± 0.023 b 0.386 ± 0.023 a 155.18 ± 15.32 bc

1.50 1326.3 ± 108.3 d 0.563 ± 0.039 b 0.373 ± 0.031 a 169.32 ± 19.16 c

Different letters in the same column indicate statistically significant differences (p < 0.05).
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2.3. Chemical Stability of Curcumin in the Emulsion and Emulsion Gel

Curcumin is highly unstable in neutral and alkaline conditions and labile to degra-
dation under light and heat [51,52]. It has been reported that curcumin dispersed in the
aqueous phase experienced a degradation of over 80% during 30 min at pH 5.0, due to the
autoxidative process driven by free radicals [22,52]. In Figure 5A,B, the retention of cur-
cumin in the SoPI emulsions decreased slowly during the storage both at 20 ◦C and 45 ◦C,
with 49% and 19% remaining after 21 days, respectively. The high retention of curcumin in
SoPI emulsions is because curcumin was encapsulated within the inner oil phase, which af-
forded it substantial protection from the sensitive external environment [53]. Furthermore,
the decreased pH during the emulsion gel formation induced by glucono-δ-lactone (GDL)
could further improve the physicochemical stability of curcumin molecules [52].
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Following the addition of κ-CG, the degradation of curcumin was further diminished
(Figure 5), indicating that the emulsion gel structure offered robust protection for curcumin.
This protective effect becomes more pronounced at high κ-CG concentrations, both at 20 ◦C
and 45 ◦C. As the κ-CG concentration was 1.50%, the retention of curcumin was around
84% and 80% after storage at 20 ◦C and 45 ◦C for 21 days, respectively (Figure 5). Previous
studies demonstrated that bioactives entrapped within a gel network could improve their
physicochemical stability [2,54]. The dense emulsion gel networks, characterized by high
mechanical properties, were expected to be more effective in retarding the degradation
of encapsulated bioactives [51]. This may be attributed to the effective physical barrier
that prevents the diffusion of pro-oxidants or free radicals [55]. Furthermore, the hard
gel networks could restrict the mobility of bioactive molecules and contact with environ-
mentally sensitive agents during storage [23]. Therefore, the encapsulation of curcumin in
SoPI/κ-CG composite emulsion gels with high κ-CG concentration and strong mechanical
properties (Table 1) could effectively improve its chemical stability during storage.

2.4. In Vitro Digestion
2.4.1. Free Fatty Acids Release

Figure 6 illustrates the release of free fatty acids from SoPI emulsion gels at different
concentrations of κ-CG throughout the intestinal digestion process. Generally, there was
a swift surge in free fatty acids at the onset, which then tapered off to a more moderate
increase over time. Without the presence of κ-CG, approximately 38% of free fatty acids
were liberated within the first 30 min. Subsequently, the free fatty acid release decelerated,
reaching a total of 60% by the conclusion of the intestinal digestion phase.
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Figure 6. The release of free fatty acid from SoPI emulsion gels at various concentrations of
κ-carrageenan during in vitro intestinal digestion.

The inclusion of 0.25% κ-CG enhanced both the rate and extent of free fatty acid
release throughout the digestion process, with values of 43% and 75% after 30 min and
240 min, respectively (Figure 6). This accelerated effect may be attributed to anionic κ-CG
coated on the surface of SoPI emulsified oil droplets preventing the massive aggregation
of oil droplets in the gastric phase, thereby facilitating the adsorption of lipases onto the
oil droplets and lipid hydrolysis [56]. As the κ-CG concentration was above 0.50%, the
production of free fatty acids from emulsion gels began to slow down. Notably, at a 1.5%
κ-CG concentration, there was a significant suppression of lipid digestion, with only 18%
and 32% of lipids being digested after 30 min and 240 min, respectively. The decrease in
lipid hydrolysis at high κ-CG concentration was mainly attributed to the hard and dense
gel networks that prevent the disintegration of the gel matrix and digestive enzymes from
accessing the gel interior during intestinal digestion [57]. Moreover, the elevated viscosity
and extensive flocculation and coalescence induced by cations present in the gastrointestinal
fluids may result in diminished accessibility for lipase to the oil droplets [58].

2.4.2. In Vitro Digestive Stability

As shown in Figure 7A, all samples have a curcumin retention of above 90% after
the gastric digestion stage. It is to be expected that the significantly reduced contents
of curcumin could be observed during the small intestine digestion since curcumin was
rapidly degraded to bicyclopentadione, ferulic acid, and vanillin at neutral and alkaline
conditions [59]. The degradation of curcumin was reduced in the small intestine stage as the
κ-CG concentration increased. The retention of curcumin was above 83% after the overall
digestion, as the κ-CG concentration was higher than 0.50%. These results demonstrated
that the incorporation of κ-CG into SoPI emulsion gels could enhance the digestive stability
of curcumin. This result was in line with curcumin-loaded composite emulsion gel with
myofibrillar protein and carboxymethyl cellulose [24]. The enhanced protective effects may
be due to the stronger gel structure (Table 1) and the less release of curcumin-loaded oils to
the digestive fluids (Figure 6) [60].
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Figure 7. Retention (A) and bioaccessibility (B) of curcumin in SoPI emulsion gels at various
concentrations of κ-carrageenan during in vitro digestion. Different letters indicate the statistically
significant difference (p < 0.05).

2.4.3. Bioaccessibility of Curcumin

Water-dispersed curcumin possesses a low bioaccessibility varied from 2% to 17% due
to its relatively high Log p value of 3.29 and chemical instability [41,61]. The hydrolysis of
lipids during digestion promotes the formation of mixed micelles stabilized by bile salts,
leading to the solubilization of curcumin and improving its bioaccessibility [62]. Therefore,
the bioaccessibility of curcumin loaded within the oil phase of emulsion gels was largely
influenced by lipid digestion. The bioaccessibility of curcumin in SoPI emulsions was 38%
(Figure 7B). The addition of κ-CG at 0.25% could further increase the bioaccessibility of
curcumin to 45%. With the further increase in κ-CG concentration to 0.50%, the bioacces-
sibility of curcumin reached its highest level with a value of around 60%. It is important
to mention that the bioaccessibility of curcumin was not in proportion to the amount of
free fatty acids, as the κ-CG concentration varied from 0% to 0.50%. The reason for the
lower bioaccessibility of curcumin at 0% and 0.25% κ-CG may be due to the relatively
faster degradation (Figure 7A) and insufficient micelle production for the solubilization of
initially and rapidly released curcumin molecules. However, the high κ-CG concentration
varied from 1.00% to 1.50%, resulting in a significant decrease in the bioaccessibility of cur-
cumin with values of 29% and 26%, respectively (Figure 7B). The reduced bioaccessibility
could be largely attributed to the substantial amount of curcumin that persisted within
the undigested oil droplets of the emulsion gel system following exposure to simulated
intestinal digestion (Figure 6).

3. Conclusions

In this study, emulsion gels formulated with SoPI and κ-CG have been successfully
fabricated, exhibiting good encapsulation, protection, and delivery performance for cur-
cumin. The addition of κ-CG could facilitate the SoPI emulsion gel formation and improve
the gel strength and protective effect of encapsulated curcumin against degradation dur-
ing the storage and in vitro digestion processes. Furthermore, κ-CG concentration had a
significant impact on the in vitro digestion behavior of emulsions and the bioaccessibility
of curcumin. A middle-level κ-CG concentration at 0.50% facilitates achieving the highest
bioaccessibility of curcumin in the SoPI emulsion gels. These findings obtained here should
provide an understanding of SoPI for the development of emulsion gels as effective carriers
for hydrophobic polyphenols.



Gels 2024, 10, 659 9 of 14

4. Materials and Methods
4.1. Materials

Fresh freshwater mussel (Solenaia oleivora) was obtained by Jinghuai Special Aquatic
Products Co., Ltd. (Funan, China). Medium-chain triglyceride (MCT) oil (C8:C10 = 60:40)
was obtained from Yong Sheng Industry and Trade Co., Ltd. (Guangzhou, China). Porcine
pepsin (≥500 U/mg), bile salts, porcine pancreatin (4 × USP specifications), κ-carrageenan,
and curcumin were obtained from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). Other
analytical grade agents were provided by SinoPharm CNCM Ltd. (Shanghai, China).

4.2. Freshwater Mussel (Solenaia oleivora) Protein Isolation and Ultrasound Treatment

Freshwater mussel (Solenaia oleivora) protein was isolated using an alkaline extraction–
isoelectric precipitation method and then treated by ultrasonication according to our
previously reported study [18]. Briefly, shelled and mashed mussel flesh was mixed with
water at a weight ratio of 1:6 at pH 12.0 for 1 h using 4 M NaOH. This mixture was then
centrifuged at 10,000× g for 20 min at 20 ◦C. The pH of the resulting supernatant was
adjusted to 5.0 using 2 M HCl and left for 30 min before being centrifuged at 10,000× g
for 10 min. The precipitate was redispersed and neutralized to a pH of 7.0 using 2 M
NaOH. The protein dispersion was frozen at −20 ◦C overnight and then lyophilized at
−80 ◦C/0.014 mBar for 72 h by a benchtop freeze dryer (Freezone, 2.5, Labconco, Kansas
City, MO, USA). The obtained protein powder was stored at −20 ◦C. The purity of the final
SoPI powder was assessed to be 95.2% using the Kjeldahl method.

Pre-cooled SoPI dispersions at 2.0 wt% were processed using ultrasonication at an
output power of 600 W (131–138 W/cm2) for 20 min with a pulse cycle consisting of 5 s
on-time and 1 s off-time using an ultrasonicator (Jingping Instrument Co. Ltd., Wuxi,
China). The SoPI samples that underwent ultrasonic treatment were stored at 4 ◦C for
further use.

4.3. Emulsion Preparation

κ-CG (3%, w/w) stock solution was prepared by dispersing the powder into deionized
water while stirring continuously at a temperature of 55◦C. Curcumin was dispersed in
MCT at 1 mg/mL. To prepare the MCT emulsions, the ultrasound-treated SoPI solution
was combined with MCT at a 5% (w/w) concentration, using a high-speed blender set
at 12,000 rpm for 2 min. This mixture then underwent high-pressure homogenization at
45 MPa for 4 cycles. Subsequently, varying amounts of the κ-CG solution were introduced
to the SoPI-stabilized emulsions to produce SoPI/κ-CG emulsions. The resulting emul-
sions comprised 1% (w/w) ultrasound-treated SoPI and an κ-CG concentration ranging
from 0 to 1.5% (w/w) in the aqueous phase. Sodium azide (0.02%, w/v) was added to the
final emulsions for the inhibition of microorganism growth.

4.4. Particle Size Distribution and ζ-Potential Measurement

Emulsions were diluted with ultrapure water. Their particle sizes were then assessed
three times at 25 ◦C with a scattering angle of 90◦ using a NanoBrook Omni particle size
analyzer (NanoBrooker Omni, Brookhaven Instruments Ltd., New York, NY, USA). The
ζ-potential values were derived from calculations based on the Smoluchowski theory.

4.5. Encapsulation Efficiency of Curcumin in the Emulsion

The content of curcumin distributed in emulsified oil droplets of emulsions was de-
tected by previously reported protocols [25]. Emulsions were subjected to centrifugation
with a 5804 R centrifuge (Eppendorf Co., Ltd., Hamburg, Germany) at 13,000× g for 30 min
at 4 ◦C. The whole emulsion and the obtained aqueous phase were mixed with a 9-fold
volume of ethanol, followed by a centrifugation at 10,000× g for 10 min at 4 ◦C. The content
of curcumin in the ethanol extracts was determined by a UV–visible spectrophotometer
(Shimadzu, Tokyo, Japan) at 425 nm according to a curcumin standard curve at concen-
trations ranging from 0.25 µg/mL to 10 µg/mL. The background of the blank sample
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was subtracted from raw experimental data. The encapsulation efficiency was calculated
utilizing Equation (1):

Encapsulation efficiency (%) =

(
1 − Ca

Ct

)
× 100% (1)

where Ct and Ca were the content of curcumin in the whole emulsion and the aqueous
phase, respectively.

4.6. Emulsion Gel Fabrication

Emulsion gels were fabricated with glucono-δ-lactone (GDL) following previously
reported protocols [10]. The emulsions were rapidly mixed with 25% GDL and stored
overnight at 4 ◦C for gel formation. The final concentration of GDL was 1% in the emulsion
gels. The final pH of emulsion gels was around 4.85.

4.7. Water Holding Capacity Analysis

The water-holding capacity of emulsion gels was carried out following a previously
established protocol [48]. Approximately 3 g of the gel sample was transferred into a
50 mL tube, which was then subjected to centrifugation at a speed of 8000× g for 20 min.
Following this process, any surplus water was carefully blotted away using filter paper.
The water holding capacity was subsequently calculated utilizing Equation (2):

Water holding capacity (%) =

(
1 − Wt − We

Wt

)
× 100% (2)

where Wt symbolizes the mass of the emulsion gel before centrifugation (expressed in
grams), while We represents the mass of the emulsion gel after it has been centrifuged to
remove excess water (also in grams).

4.8. Texture Profile Analysis

Texture properties were characterized by a TA. XTPlus texture analyzer (Stable Micro
Systems, Surrey, UK) equipped with a P-36 R cylindrical test probe (diameter = 36 mm) [10].
Cylindrical samples of the emulsion gel, measuring 2 cm in diameter and 1.5 cm in height,
were positioned on the carrier table, which was conducted using a 3 g trigger force, 2-cycle
sequence, a 50% strain, and a test speed of 1.0 mm/s. The texture analysis software supplied
with the instrument generated the textural parameters.

4.9. Stability of Curcumin in Emulsion Gels

All samples were stored in an incubator at 20 ◦C and 45 ◦C for up to 21 days. The con-
tent of curcumin in emulsion gels was determined by previously reported protocols [25,63].
Briefly, 0.5 g of emulsion gel samples were mixed with 9.5 mL of ethanol for the curcumin
recovery, and then the mixture was centrifuged at 10,000× g for 10 min. The resulting su-
pernatant was determined by a UV spectrophotometer at 425 nm. The stability of curcumin
within the whole emulsion gels was assessed by its retention throughout storage, which
was quantified as a percentage relative to the initial curcumin content in freshly prepared
emulsion gels.

4.10. In Vitro Digestion Analysis
4.10.1. Simulated Gastrointestinal Digestion

The digestive behavior of emulsion gels was evaluated through an INFOGEST model
with slight modifications [10,64]. Briefly, the emulsion gel sample (10 g) was shredded and
then mixed with 10 mL simulated gastric fluid (pH 3.0, 2000 U/mL pepsin) for 2 h. The
gastric digesta was further incubated with 20 mL of simulated intestinal fluid consisting
of 100 U/mL pancreatin and 10 mM bile at pH 7.0 for 4 h. NaOH (0.1 M) was used to
consistently maintain the pH of the digestion system at 7.0 throughout the entire simulated
intestinal digestion process.
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4.10.2. Free Fatty Acid Measurement

Free fatty acid release during intestinal digestion was determined using the pH-stat
method [65]. The pH of the intestinal digestive fluid was examined for different digestion
times, while the pH was maintained at 7.0 by titration using NaOH solution. It is assumed
that two free fatty acids are produced for each triacylglycerol molecule by lipase action.
The release of free fatty acids was calculated using Equation (3):

Free fatty acid release (%) =
VNaOH × CNaOH × MLipid

2 × WLipid
× 100% (3)

VNaOH is the consumed volume of NaOH for the titration (mL), CNaOH is the molar
concentration of NaOH (0.1 M), MLipid is the average molecular weight of MCT (500 g/mol),
and WLipid is the weight of the lipid initially present in the reaction vessel (g).

4.10.3. Stability and Bioaccessibility of Curcumin during the Digestion

To assess the stability of curcumin, digesta were collected at predetermined intervals
during digestion and analyzed as outlined in Section 4.9. Regarding bioaccessibility,
samples were gathered following the completion of simulated intestinal digestion. These
samples were then centrifuged at 10,000× g for 30 min at 4 ◦C. The resultant clear middle
layer, presumed to be the micellar fraction containing solubilized curcumin, was isolated
for analysis. The bioaccessibility of curcumin was determined using Equation (4).

Bioaccessibility (%) =
Cmicelle
Ctotal

× 100% (4)

where Cmicell represents the quantity of curcumin solubilized within the micellar fraction,
and Ctotal denotes the initial content of curcumin present in the emulsion gels.

4.11. Statistical Analysis

All measurements were taken in triplicate and reported as the mean value ± standard
deviation. For statistical analysis, one-way analysis of variance (ANOVA) with the Duncan
post hoc test was selected using SPSS software (SPSS 20.0, IBM SPSS Institute, Inc., New
York, NY, USA). A p < 0.05 level was considered as the significant difference.
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