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Abstract: The European olive tree, Olea europaea L., and its polyphenols hold great therapeutic
potential to treat neuroinflammation and cognitive impairment. This review examines the evidence
for the anti-inflammatory and neuroprotective actions of olive polyphenols and their potential in the
treatment of long COVID and neurodegenerative diseases such as Alzheimer’s disease (AD), Parkin-
son’s disease (PD), and multiple sclerosis (MS). Key findings suggest that olive polyphenols exhibit
antioxidant, anti-inflammatory, neuroprotective, and antiviral properties, making them promis-
ing candidates for therapeutic intervention, especially when formulated in unique combinations.
Recommendations for future research directions include elucidating molecular pathways through
mechanistic studies, exploring the therapeutic implications of olive polyphenol supplementation,
and conducting clinical trials to assess efficacy and safety. Investigating potential synergistic effects
with other agents addressing different targets is suggested for further exploration. The evidence
reviewed strengthens the translational value of olive polyphenols in conditions involving cognitive
dysfunction and emphasizes the novelty of new formulations.

Keywords: neuroinflammation; neurodegenerative diseases; oxidative stress; olive oil; extra-virgin
olive oil; blood brain barrier; hydroxytyrosol; oleouropein; oleocathal; phenolic compounds

1. Introduction

The ancient Greeks believed that the goddess of wisdom, Athena, created the olive
tree. In antiquity, the Olea europaea L. tree and its products played an important role as early
as the Middle Minoan period, with inscriptions of the words olive and olive oil on Linear
A tablets [1,2]. Linear B tablets elucidate the use of olive oil, not only for consumption
and cooking but also in the perfume and unguent industry [3]. Theophrastus, in his work
“Concerning Odors” (Περὶ oσµών), includes recipes and information about the ingredients
used to produce scented olive oil [4]. Greek athletes ritually rubbed it over their bodies
before training or competing. The health benefits of olive oil were also known in the ancient
world. The Ebers Papyrus, a medical text dating back to ancient Egypt, around 1550 BC,
contains recipes and remedies for various disorders, many of which include the use of olive
oil [5]. Ancient Greeks also believed that olive oil had medicinal properties. Homer called
it “liquid gold” and Hippocrates “great healer” [6]. It was recommended as a treatment for
skin conditions and digestive disorders [7] and as a form of birth control [8]. Dioscorides,
in “De Materia Medica” (Περὶ ὕλης ἰατρικῆς) [7], recommends the use of olive oil (green
olive oil) for toothaches and headaches.
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Many studies have confirmed the medicinal properties of products derived from the
olive tree, Olea europaea L., and have identified the active compounds for a variety of phar-
macological effects. Herein, the anti-inflammatory and neuroprotective properties of olive
polyphenols are discussed in relation to brain fog, long COVID, and neurodegeneration.

The Mediterranean Diet (MD)’s growing popularity is due to its healthy and anti-
aging properties, particularly in reference to olive oil, as the review by Rigacci et al. (2016)
indicates. The review explores the biochemical and physiological correlations of olive tree
polyphenols and their derivatives in olive oil, their clinical and epidemiological relevance,
and their potential against age-related diseases [9]. Olive oil and the MD are linked to
longevity, supported by ecological and epidemiological studies. Biochemical studies and
randomized clinical trials show that olive oil’s antioxidant potential and high monounsatu-
rated lipid content are essential for its beneficial effect [10]. Another study on Greek olive
oil polyphenols found significant health benefits. Polyphenols like hydroxytyrosol (HT),
tyrosol, oleacein, and oleocanthal (OC) were linked to specific parameters like geographical
origin, production, and cultivation practice. The study found that OC and oleacein acti-
vated healthy aging-promoting pathways and suppressed oxidative stress in mammalian
cells and in the Drosophila in vivo model [11].

In this review, we first briefly review the pathological hallmarks of long-term COVID,
Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS). Under-
standing the pathological hallmarks and elucidating the cellular and molecular mechanisms
of neurodegenerative diseases, including long COVID, are imperative for the development
of effective therapies. Identifying novel therapeutic targets becomes crucial for the de-
velopment of targeted interventions that extend beyond symptom alleviation to disease
prevention and modification. While AD, PD, and MS share common features of protein
misfolding, inflammation, and neuronal damage, each disease presents distinct pathologi-
cal features and clinical manifestations. In contrast, long COVID has so far been associated
with disruption of the blood-brain barrier (BBB) and activation of microglia [12]. Thus,
further research into the intricate cellular and molecular mechanisms underlying these dis-
orders will pave the way for the development of innovative treatments aimed at improving
patient outcomes.

1.1. Overview of Neuroinflammation and Brain Fog in Neurodegenerative Diseases and
Long COVID

Neuroinflammation and its effects on neurodegenerative diseases pose significant chal-
lenges and burdens to public health, with conditions such as AD, PD, and MS affecting mil-
lions worldwide [12–29]. Recent findings have shown a correlation between COVID-19, cog-
nitive impairment commonly known as “brain fog” [30–33], and neurodegeneration [34,35]
implicating COVID-19 in the future development of neurodegenerative diseases.

The recent COVID-19 pandemic has further highlighted the importance of under-
standing the neurological complications associated with viral infections, particularly in
long COVID patients [12,33,36–47]. COVID-19, primarily affecting adults and women,
causes severe respiratory problems but may also cause long COVID syndrome, which is
characterized by fatigue and cognitive dysfunction, including sleep disturbances, anxiety,
depression, attention deficit, and post-traumatic stress, lasting for at least two months and
cannot be attributed to an alternative diagnosis [48]. The paper by Theoharides et al. (2021)
describes how COVID-19 often causes severe respiratory problems and long COVID syn-
drome, primarily affecting cognitive dysfunction and fatigue. Symptoms, including brain
fog, are similar to those experienced in cancer patients, myalgic encephalomyelitis (ME),
chronic fatigue syndrome (CFS), and mast cell activation syndrome (MCAS). The authors
propose a phytosomal formulation in olive pomace oil of the natural flavonoid luteolin [32]
to mediate those symptoms. Overall, the pathogenesis of brain fog is unknown [32,49,50].

According to the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) [51]
reporting health metrics based on 2021, with a particular emphasis on changes in mortality
and life expectancy that occurred, 16 million people died during the 2020–2021 COVID-19
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pandemic, representing 12% of all deaths, and life expectancy decreased in 84% of nations
and regions. From 1950 to 2021, the average global lifespan rose by nearly 23 years, reaching
71.7 years from 49. However, there was a decrease of 1.6 years between 2019 and 2021
due to the COVID-19 pandemic [51]. The prevalence of long COVID in those affected by
SARS-CoV-2 was observed at 77.7%, with the most commonly reported residual symptoms
being fatigue (64.1%) and cough (43.9%) [48].

Neurodegenerative disorders are characterized by progressive neuronal dysfunction
and degeneration in the central nervous system (CNS), blood-brain-barrier (BBB) dysfunc-
tion, increased oxidative stress, and neuroinflammation leading to debilitating cognitive
and motor dysfunction, including impairments in visuospatial and executive functions,
working memory, abstraction, and orientation [52]. The putative mechanisms of cognitive
dysfunction in long COVID include viral persistence, activation of complement and platelet
aggregation leading to microthrombosis, fusion of neurons and glial cells, neuroinflamma-
tion, impaired neurogenesis, and vagal signaling associated with low serotonin [12,53–61].

1.1.1. Alzheimer’s Disease (AD)

AD is the most prevalent neurodegenerative disease, with >55 million cases world-
wide, and affects 60–70% of global dementia cases. It is pathologically characterized by the
accumulation of amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs)
known as tau protein tangles in the brain, leading to synaptic dysfunction and neuronal
loss and is associated with cognitive decline and memory loss [13,62–66]. Furthermore, AD
pathogenesis is associated with dysregulated neurotransmitter signaling, inflammation,
and oxidative stress, contributing to about 60–80% of all dementia cases [13]. The current
treatment options include acetylcholinesterase inhibitors, n-methyl-d-aspartate (NMDA)
antagonists, and monoclonal antibodies targeting Aβ [13], but are generally ineffective.

1.1.2. Parkinson’s Disease (PD)

PD is the most common movement disorder and affects approximately 1% of the global
population over the age of 60. It is estimated that almost 10 million people worldwide
are living with PD. PD is characterized by the degeneration of dopaminergic neurons in
the substantia nigra. Reduced dopamine levels along the nigrostriatal axis lead to motor
dysfunction, characterized by four cardinal symptoms: bradykinesia, tremors, postural
instability, and rigidity [15,18,24,25]. The key molecular features of PD are α-synuclein
(α-syn) aggregation, the main constituent of pathological Lewy bodies within neurons,
along with mitochondrial dysfunction and oxidative stress. Drugs such as levodopa
(L-DOPA), carbidopa, dopamine agonists, MAO inhibitors, and anticholinergics are com-
monly prescribed to help manage motor symptoms [15,25]. These medications work by
partially replenishing dopamine levels in the brain or by mimicking the effects of dopamine.
Physical therapy, occupational therapy, speech therapy, and sometimes deep brain stim-
ulation (DBS) are also used to treat PD patients. While current treatments for PD focus
on symptom management, future therapies may offer disease-modifying effects and per-
sonalized approaches by targeting underlying disease mechanisms or gene and stem cell
therapy approaches [15,18,24,25,67,68].

1.1.3. Multiple Sclerosis (MS)

In MS, infiltration of immune cells into the CNS leads to inflammation, demyelination,
and axonal damage [18,67,68]. Dysregulated immune responses, breakdown of the BBB,
and activation of microglia and astrocytes contribute to MS pathology. Treatment for
MS typically involves a combination of medications that include interferon-beta (IFNβ),
such as glatiramer acetate, fingolimod, dimethyl fumarate, and others to either prevent
immune cells from entering the brain or inhibit their activities. Acute courses of high-
dose corticosteroids, such as oral prednisone or intravenous methylprednisolone, are used
to manage symptoms and treat flare-ups, while dietary and lifestyle modifications are
aimed at slowing disease progression and improving quality of life. Treatment is often
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individualized based on the type and severity of symptoms, disease activity, and individual
preferences [18].

1.1.4. Coronavirus Disease-2019 (COVID-19)

It is now clear that COVID-19 can affect the CNS, and patients diagnosed with
COVID-19 may develop neurological symptoms, including brain fog [30–33,69]. A ret-
rospective analysis of over 200,000 patients in the UK found that 1.74 and 0.26% of patients
admitted to the intensive therapy unit (ITU) due to COVID-19 infections developed demen-
tia and PD, respectively, in the 6 months after initial infection [70]. In attempts to explain
this finding, neurodegenerative biomarkers like neurofilament light chain (NfL) and glial
fibrillary acidic protein (GFAP) were measured and found to be higher in COVID-19 pa-
tients than non-COVID-19 patients with mild cognitive impairment or AD [71]. These
markers were correlated with the severity of COVID-19 [34]. Individuals with pre-existing
dementia or PD are more susceptible to severe COVID-19 and higher mortality rates. Case
reports have documented the emergence of acute PD, AD, or amyotrophic lateral sclerosis
(ALS) following COVID-19, with some patients experiencing worsened symptoms after
contracting the virus [35,72]. The SARS-CoV-2 virus, responsible for COVID-19, can po-
tentially invade the CNS, leading to neurological symptoms [73–75] and causing neuronal
damage, primarily due to the transient and persistent stimulation of endothelial cells and
microglia by the spike protein located on the membrane of the virus and required for target
cell recognition [50]. Recent studies did not detect spike protein in the brains of COVID-19
patients, but they looked only at CSF [76] or in brain regions of very few patients [77].
Evidence from experiments with human brain organoids and autopsies of COVID-19
patients indicates significant SARS-CoV-2-induced neuronal death [78]. The immune re-
sponses and cytokine storm triggered by COVID-19 may lead to neuroinflammation and
neurodegeneration [35,72].

SARS-CoV-2 Spike enters host cells by binding to its receptor human angiotensin-
converting enzyme 2 (hACE2) through its receptor-binding domain (RBD) [73] in some
COVID-19 patients [74,79]. Studies have demonstrated that SARS-CoV-2 can infect neural tis-
sues and result in substantial neuronal death, as evidenced by experiments with human brain
organoids, mice over-expressing ACE2, and autopsies of COVID-19 patients [74,78,80,81].

Cytokines released during severe COVID-19 infections may cross the BBB, causing
direct neurotoxicity and activating microglia and astrocytes [82]. Peripheral immune cells
infiltrating the brain may further contribute to neuroinflammatory and neurodegenerative
processes. Severe COVID-19 cases have been associated with a cytokine storm featuring
increased levels of proinflammatory cytokines like interleukin (IL)-1, IL-6, and tumor necro-
sis factor (TNF)-α, which may promote neuroinflammation and neurodegeneration [83].
Proinflammatory cytokines may directly induce apoptosis in neurons and breach the BBB,
allowing inflammatory cells to enter the brain leading to chronic neuroinflammation and
neuronal death. Activation of the NLRP3 inflammasome during SARS-CoV-2 infection
could contribute to tau aggregation and neurodegeneration, possibly through the interac-
tion of viral proteins with NLRP3 [84]. Finally, evidence suggests that SARS-CoV-2 infects
human monocytes, leading to NLRP3 activation and cell death [84,85].

Clinically, patients with dementia have higher severity and mortality rates with
COVID-19. Similarly, individuals with PD experience worsened motor and nonmotor
symptoms after contracting COVID-19 [86]. Furthermore, several case reports have docu-
mented the onset of acute PD, AD, or ALS following COVID-19 infection [87,88]. Clinical
observations suggest that patients with dementia or PD experience higher severity and
mortality with COVID-19.

However, observational studies have limitations in establishing causation. Therefore,
whether COVID-19 triggers neurodegeneration remains uncertain. It is crucial to acknowl-
edge potential biases in observational studies that link the severity and duration of COVID
illness experience with cytokine production, and neuroinflammation might shed light on
the process of degeneration [49].
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1.1.5. Long COVID

As if the COVID-19 pandemic was not enough, as many as 50 percent of patients
infected with SARS-CoV-2 develop post-acute sequelae of SARS-CoV-2 (PASC), commonly
referred to as long COVID syndrome, with various symptoms including “brain fog” weeks
to months after the initial infection regardless of the severity of the disease [89,90]. Long
COVID has been considered as the “Next national health disaster” for the United States
(US) [50] and could cost the economy as much as $4 trillion.

Long COVID is characterized by persistent fatigue, various neuropsychiatric, neurolog-
ical, and neurodegenerative issues, as well as cognitive deficits or impaired consciousness,
often described as “brain fog”. The exact mechanism(s) involved in the pathogenesis of
Long COVID remains elusive [50,91]. The available evidence indicates that SARS-CoV-2
does not infect brain cells. Instead, the SARS-CoV-2 Spike protein may enter the brain
from the nose through the nasal neural mucosa, following the olfactory nerve tract, leading
to neuroinflammation that can damage brain blood vessels and neurons. Perivascular
inflammation has been reported in the brains of COVID-19 patients, along with evidence of
BBB disruption [92]. Autopsy studies of patients with COVID-19 showed severe neuronal
loss in the capillaries of the choroid plexus and damage of choroid plexus cell types, as well
as neuronal necrosis and glial cell hyperplasia Recent evidence and our studies indicate
that the SARS-CoV-2 Spike protein can directly activate the unique immune cells, mast cells
and microglia [92], leading to perivascular neuroinflammation, brain endothelial dysfunc-
tion, BBB disruption and reduced blood flow to the brain [93]. In particular, we recently
reported that recombinant SARS-CoV-2 Spike protein stimulates human mast cells [94]
and microglia [32] to release proinflammatory and neurotoxic molecules via activation of
different receptors, such as the ACE2 and toll-like receptor 4 (TLR4). Brain fog and various
long COVID symptoms, described in various studies, are summarized in Table 1.

Table 1. Symptoms associated with long COVID.

Long COVID Symptoms
* CNS Symptoms in Bold * Indicative Studies

Headache, Fever
Fatigue

Anosmia-Taste/smell loss
[29,37,47,95,96]

Diarrhea
Abdominal pain [38,40,47]

Cognitive Disfunction “Brain fog”
Peripheral Neuropathy
Peripheral neuropathy

[30–32,36,40,41]

Arrythmia, Tachycardia
Chest pain [12,41,97,98]

Dyspnea
Dry cough [37,38,40,46,99]

Insomnia
Anxiety or depression

Stress sensitivity
Hair loss

Mood disorders
Psychiatric symptoms

[12,22,31–33,42,49,52,100]

Preclinical studies also support a link between SARS-CoV-2 infection and PD- and
AD-related neurodegeneration. In hamsters intranasally infected with SARS-CoV-2, neu-
roinflammation is present in the olfactory bulb, and α-syn and tau accumulate in the cortex,
recapitulating the hallmark pathological features of PD and AD, respectively [101,102].
SARS-CoV-2 proteins interact with α-syn and increase its expression in vitro [103]. Further-
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more, female animals exhibit a more pronounced response, correlating with changes in
myeloid cell density [104]. In infected non-human primates, α-syn accumulations were
found in the midbrain several weeks after recovery [105].

1.2. Importance of Polyphenols in Addressing Neuroinflammation in Cognitive Health

Consumption of olive oil is associated with reduced overall morbidity and mortality
in neurodegenerative diseases [97,106–121]. Thus, attention has turned to natural com-
pounds with potential anti-inflammatory and neuroprotective properties [121–127], mainly
polyphenols derived from Olea europaea L., such as hydroxytyrosol (HT) [128], oleocanthal
(OC) [70,129,130] and oleuropein (OL) [123,124,126,127,131]. Polyphenols are naturally
occurring compounds present in a wide variety of fruits and vegetables, as well as their
derivatives, such as olive oil. The term polyphenols is used to indicate compounds with
phenolic moieties (hydroxyl groups attached to benzene rings).

Various preclinical and clinical trials have highlighted the protective properties of
olive oil and its phenolic compounds on well-characterized neurodegeneration path-
ways, linked to multiple putative mechanisms, and, importantly, with no reported toxic
effects [109,113,115,132–136].

1.3. The Chemistry of Polyphenols in Olea europaea L. Extracts

Olive oil is composed primarily of lipophilic components, rich in monounsaturated fats
and a polar fraction of phenolic compounds [137]. These components play an important
role in the Mediterranean diet’s health benefits [138]. Alongside its known benefits in
lowering lipid and blood glucose levels, olive oil also exhibits anti-inflammatory and
antioxidant properties [139]. Olive fruits contain several types of phenols, mainly tyrosol
derivates, phenolic acids, flavonols, and flavones [140].

The two bioactive secondary metabolites found in olive extracts (Figure 1), phenolic
alcohols tyrosol; and HT, in the presence of elenolic acid derivatives, undergo esterification
resulting in their glycosylated analogs, ligstroside and OL respectively. It has been proposed
that their degradation by specific endogenous esterases [141,142] and β-glucosidases results
in the corresponding decarboxymethylated aglycons, OC, and oleacein [143].
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The distribution and concentration of phenolic compounds in olive extracts can be
significantly affected by a variety of factors ranging from the genetic origin of the plant and
the ripening stage to the processing and storage conditions [144,145] that can alter the activity
of endogenous enzymes involved in the biosynthesis of these compounds [146,147]. Olive oil
chemical profiling, extraction methods, and quality control were reviewed recently [148,149].

Due to these variations, contradictory results can be found in the literature, but most
researchers agree that HT, OL, and OC are the main phenolic phytochemicals of therapeutic
interest [128,150–154]. Notably, the processing of olive fruits in the production of edible
olives and olive oil can affect the composition of several components, such as OL, which
is present in small quantities or even absent in the final product, olive oil [117,137,155].
Olive leaves, on the other hand, represent an exploitable, sustainable alternative source
of OL, as studies indicate that it is the predominant phenolic compound found in leaf
extracts [122,156,157], in addition to HT [114,140,158–160].
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Extracting the targeted bioactive compounds from natural sources is a critical step
toward their isolation and subsequent exploitation; therefore, the employment of suitable
extraction methodologies from agricultural leftovers and transformation residues like olive
leaves is noteworthy. Traditionally, extraction of phenolic compounds from olive leaves is
performed using maceration in organic solvents, resulting in low extraction yields since
polyphenols are sensitive to high temperatures [161]. Consequently, new methodologies
have been developed in recent years, such as ultrasound, microwave, pressurized liquid,
and supercritical fluid properties, to overcome the limitations [162–164]. Different assay
methods have been used to identify additional bioactive molecules [165,166].

Residual biomasses resulting from agro-industrial processes, such as olive leaves, are,
as previously mentioned, rich in bioactive compounds. The extraction and isolation of
these compounds as ingredients for a variety of applications in the food, pharmaceutical,
and cosmetic industries are therefore desirable for the emerging bioeconomy [149,167,168].
Minor components of olive oil include the flavonoids, luteolin and apigenin [169,170],
as well as the luteolin-7-O-glucoside [171]. Moreover, luteolin-4′-O-rutinoside, luteolin-
7,4-O-diglucoside, and luteolin-7-O-rutinoside were selected from 222 compounds in the
oliveNet TM database as strongly binding to proteins relevant to AD [172]. Luteolin and
its derivatives are considered important in the management of many neuroinflammatory
conditions [173–176].

The absorption, distribution, metabolism, and excretion (ADME) properties of olive
tree polyphenols (OPs), which are crucial for their nutritional efficacy and toxicological
impact, have been partly examined in the review by Galmez et al. (2021). The review
provides a comprehensive perspective on ADME processes, potentially aiding future
nutritional and toxicological studies [177]. An earlier study by de Bock et al. (2013)
investigated the bioavailability and metabolism of phenolic compounds from the olive
plant, specifically HT and OL. Nine volunteers were given either encapsulated or liquid
OL, and their plasma and urine samples were collected 24 h post-ingestion. The primary
metabolites recovered were conjugated HT metabolites. The study found a gender effect
on the bioavailability of phenolic compounds, with males showing greater plasma area
under the curve for conjugated HT. The study suggests that OL effectively delivers these
compounds to plasma in humans [178].

A mouse-based study by Nikou et al. (2024) investigated the metabolic fate of OC
in vivo. The results showed that OC was not detected, and 13 metabolites were identified.
The study suggests the association of specific metabolites with the biological effects of
OC administration, but more research is needed to better understand its metabolism and
mechanism of action [179].

1.4. Premise and Aims of Study

Olive polyphenols exhibit antiviral, anti-inflammatory, and neuroprotective properties
that may alleviate symptoms and improve outcomes in patients with neuroinflammatory
and neurodegenerative diseases, including cognitive impairment.

Here, we provide an overview of the chemical nature, properties, and potential ther-
apeutic effects of polyphenols in neuroinflammation, neurodegeneration, and the neu-
rological manifestations observed in long COVID, especially cognitive impairment. We
also offer recommendations for further basic and translational research, including clinical
applications. HT, OL, OC, and other polyphenols are positioned as promising therapeutic
agents that may offer novel approaches to managing these conditions.

Food supplements containing polyphenols are also discussed, including their evalua-
tion and regulation.

An extensive search was performed, spanning the period from 1990 to 2024, focusing
mostly on the last five years, on scientific databases including PubMed, Scopus, Google
Scholar, and Web of Science in order to identify studies discussing the neuroprotective, anti-
inflammatory and antioxidant effects of Olea europaea L. polyphenols. The search utilized
specific keywords such as “polyphenols”, “hydroxytyrosol”, “oleuropein”, “oleocanthal”,
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“neuroinflammation”, “neurodegeneration”, “Long COVID”, “COVID-19”, “cognitive
decline”, “brain fog” and related terms to locate relevant articles that have been published
in peer-reviewed journals. The search was restricted to papers written in the English
language. Out of the 450 papers reviewed, 145 were excluded due to their low degree
of relevance.

2. Results
2.1. Neurobiological Effects and Modes of Action of Olive Polyphenols

A substantial body of literature supports the anti-inflammatory, antioxidant, and
neuroprotective effects of olive polyphenols in various neuroinflammatory and neurode-
generative conditions [136,180–183]. Their ability to attenuate neuroinflammation, reduce
to oxidative stress, and promote neuronal survival in in vivo and in vitro experimental
models is well-documented. The study by Kaddouni et al. (2022) examined the effects of
daily consumption of refined olive oil (ROO) and extra-virgin olive oil (EVOO) on brain
function and cognitive function in individuals with mild cognitive impairment (MCI) and
found that EVOO significantly improved clinical dementia rating and behavioral scores,
reduced BBB permeability, and enhanced functional connectivity. The study also found
that EVOO biophenols contributed to the effect, suggesting that further clinical trials are
needed to assess olive oil’s protective effects against AD and its potential role in preventing
MCI conversion to dementias [184]. The review paper by Grubić et al. (2022) provides
an updated understanding of olive polyphenols’ beneficial properties and mechanisms
of action. The authors state that neurological diseases like stroke and MS are significant
medical challenges, and polyphenols from olive trees can alleviate or prevent demyelina-
tion, neurodegeneration, cerebrovascular diseases, and stroke. These polyphenols reduce
inflammation and oxidative stress, reducing the risk of stroke. They also improve plasma
lipid profiles and insulin sensitivity in obese individuals [185].

In addition, according to Infante et al. (2023), olive oil is a key part of the MD,
promoting health and preventing chronic diseases. The authors point to the fact that
high-quality EVOO is produced in Mediterranean countries and contains the polyphenol
OC, among others, which has antioxidant and anti-inflammatory properties. Their review
discusses the antioxidant and anti-inflammatory effects of OC, its potential anti-cancer
and neuroprotective actions, and the need to include OC content in EVOO nutrition
facts labels. The review also discusses the production of certified organic EVOO [186].
Similarly, Boronat et al. (2023) state that olive oil rich in phenolic bioactive compounds
has been linked to a lower risk of neurodegenerative diseases and improved cognitive
performance in older populations. These compounds can counteract oxidative stress and
neuroinflammation, which are linked to age-related cognitive decline. However, the authors
stress that there is no direct evidence in humans of the bioactivity of olive oil phenolic
compounds. Further research is needed to understand the underlying mechanisms and
potential clinical applications [187].

2.1.1. Anti-Inflammatory Properties

HT exhibits potent anti-inflammatory effects by modulating inflammatory cytokines
and signaling pathways. In vitro and in vivo, it inhibits the activation of pro-inflammatory
transcription factors such as nuclear factor-kappa B (NF-κB) and pro-inflammatory cy-
tokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6, and
IL-8 [125,188–190], which are elevated in patients with severe COVID-19 and contribute to
the cytokine storm [32,46,59,94,191–194]. HT also has been demonstrated to increase levels
of the anti-inflammatory cytokine IL-10 [195,196]. In vivo, HT has additionally demon-
strated an increase in IL-2, IL-4, and IL-10 and a reduction in IL-17A and TGFβ [123]. By
modulating inflammation, HT may alleviate symptoms such as fatigue, muscle pain, and
cognitive dysfunction experienced by patients with neurodegenerative diseases or long
COVID [81,197].
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Like HT, OL also inhibits NF-κB, TNF-α, IL-1β, IL-6, IL-8, and IL-17A [125,188–190]
and modulates levels of IL-10 and TGF-β [198,199]. OL also decreases the release of TGF-β
in LPS-induced RAW246.7 macrophages [177]. In vivo, OL has additionally demonstrated
a decrease in IFN-γ and IL-4 [123]. Finally, in a mouse model of Alzheimer’s disease
(5xFAD), OL suppresses the activation of NLRP3 inflammasomes and RAGE/HMGB1
pathways [200]. However, one study showed that “nutritionally relevant concentrations”
of OL and HT could not inhibit the LPS-stimulated release of pro-inflammatory cytokines
from peripheral blood mononucleotides (PBMCs) [125].

OC offers significant potential benefits for neurodegenerative disorders and long
COVID [106,132,154]. It can be considered a natural non-steroidal anti-inflammatory drug
(NSAID) as it confers dose-dependent inhibition of cyclooxygenase-1 and –2 (COX-1, COX-
2), the key enzymes responsible for the synthesis of pro-inflammatory prostaglandins [110].
In fact, at the same dose, OC is a more potent anti-inflammatory agent than ibuprofen.
Additionally, it decreases LPS-induced inflammation by reducing expression levels of IL-1β,
IL-6, TNF-α, MIP-1α, and GM-CSF [70].

The anti-inflammatory properties of HT, OL, and OC’s could mitigate the inflamma-
tory response associated with neurodegenerative diseases and long COVID, potentially
attenuating the cytokine storm characteristic of severe COVID-19 cases [32,50,60,191–193].

2.1.2. Anti-Oxidant Properties

Oxidative stress, a main contributor to neurodegeneration, is also implicated in the
pathogenesis of long COVID and its long-term complications, including tissue damage and
organ dysfunction. By neutralizing oxidative stress, olive polyphenols may protect against
cellular damage and promote tissue repair in patients with long COVID.

HT acts as a powerful antioxidant by scavenging free radicals and reducing oxidative
stress-induced damage to cells and tissues [180,181,201–203]. It directly neutralizes reac-
tive oxygen species (ROS) and reactive nitrogen species (RNS), thereby preventing lipid
peroxidation, protein oxidation, and DNA damage.

OL, on the other hand, mitigates oxidative stress through activation of antioxidant
enzymes such as superoxide dismutase (SOD) and catalase, as well as inhibition of neuronal
apoptosis pathways [151,188,204,205]. It reduces inducible nitric oxide synthase (iNOS) ac-
tivity [198] and activates the Nrf2-ARE pathway, leading to the upregulation of antioxidant
genes and the enhancement of cellular antioxidant defenses. Additionally, OL inhibits the
activity of enzymes involved in neuroinflammation, such as cyclooxygenase (COX) and
lipoxygenase (LOX), thereby attenuating inflammatory responses in the brain.

OC lowers the expression of genes associated with oxidative stress like Nicotinamide
Adenine Dinucleotide Phosphate (NADPH) oxidase and enhances the activity of antiox-
idant enzymes like SOD and Glutathione Peroxidase (GPX) [70,206], and Nicotinamide
Adenine Dinucleotide Phosphate Oxidase (NOX) [70].

Overall, these findings highlight the potential therapeutic utility of HT, OL, and OC in
neuroinflammatory diseases and neurodegenerative disorders, including those associated
with long COVID [144,207–209].

2.1.3. Neuroprotective Effects

A number of papers have reviewed the potential neuroprotective actions of olive oil
components [186,210]. The molecular mechanisms of action of HT, OL, and OC involve
several pathways that could benefit patients with long COVID [127,211–214].

HT and OL have been shown to inhibit the formation of β-amyloid plaques and tau
protein aggregates, thereby mitigating neurodegeneration [70,123,125–127,154]. Similarly,
in PD, these compounds have been found to protect dopaminergic neurons from oxidative
damage and inflammation [106,109,136]. A recent study proposed five olive oil polyphenols
as potential nutraceuticals to prevent or reduce the formation of α-syn oligomers that cause
PD. The compounds, including vitamin C, were tested in a cellular model and a Caenorhab-
ditis elegans PD animal model. Results showed that HT, hydroxytyrosol acetate (HTA),
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and dihydroxyphenyl acetic acid (DOPAC) effectively inhibited α-syn aggregation in vitro,
while dopamine reduced aggregation by 28.7%. DOPAC and HTA were found to be more
effective in vivo, demonstrating the potential of olive oil tyrosols as nutraceuticals [215].
Romero-Márquez et al. (2022) also state that HT and OL compounds reduce amyloid-β
formation and neurofibrillary tangles. Consumption of olive phytochemicals promotes au-
tophagy and restores proteostasis, reducing toxic protein aggregation in AD models. Thus,
according to the authors, olive phytochemicals may be a promising treatment tool [216].

OL shows promise in mitigating neurological complications associated with COVID-
19 by targeting proteins involved in neurodegeneration pathways. Molecular docking
studies indicate strong binding between OL and target proteins relevant to neurological
complications, like TLR-4 and Prolyl Oligopeptidases (POP) [123]. OL protects against
neurodegeneration by inhibiting the aggregation of misfolded proteins, such as β-amyloid
and α-syn, which are implicated in AD and PD, respectively [200,216–219]. In addition,
it may protect against neurological complications associated with long COVID, such as
cognitive impairment and neuropathies. OL inhibits α-syn aggregation and neurode-
generation pathways, which seem to be implicated in long COVID-related neurological
symptoms [105,220,221]. OL also enhances BBB integrity and function and improves
memory in AD mouse models [200,219]; it also confers neuroprotection in a PD animal
model [222]. A recent study reported that consuming 7 g of olive oil daily decreases
dementia-related death risk by 28% [223]. By reducing misfolded and aggregated protein
burden and preserving neuronal function and integrity, OL may improve cognitive func-
tion and alleviate neurological symptoms in patients with long COVID-19 [65,224–226]. In
neurodegenerative diseases, OC helps by reducing inflammation, clearing amyloid plaques,
and protecting against tau pathology [64,106,109,129]. In long COVID, OC’s ability to
reduce chronic inflammation, protect neurons, enhance antioxidant defenses, and improve
vascular health makes it a promising compound for alleviating persistent symptoms and
promoting recovery [227]. Overall, HT, OL, and OC exert their neuroprotective effects
through a combination of antioxidant, anti-inflammatory and anti-apoptotic mechanisms,
making them promising candidates for the treatment of neurodegenerative diseases and
long COVID.

2.2. Implications for Long COVID

HT exhibits potential antiviral activity against influenza A virus (IAV), human im-
munodeficiency virus (HIV), and coronaviruses, including SARS-CoV-2. This compound
demonstrates high binding energies to viral proteins, suggesting efficacy in reducing viral
virulence. HT has been shown to possess antiviral properties by inhibiting viral replica-
tion and attachment. It may interfere with viral entry into host cells by blocking viral
receptors or fusion proteins, thus preventing viral infection and spread [227–229]. In pa-
tients with long COVID, HT’s antiviral activity could help reduce viral persistence and
prevent reactivation of the virus, potentially alleviating symptoms and preventing disease
progression [32,60,227–229].

The recent work by Crudele and colleagues [230] provides solid evidence in vitro that
SARS-CoV-2 remaining in host cells after viral clearance may contribute to the pathogenetic
mechanisms of long COVID by inducing a cascade of interferon-related inflammatory genes
and proteins and increasing the apoptotic rate and expression of several oxidative stress
markers in epithelial cells. Treatment with HT restored the expression of pro-inflammatory
genes/proteins at levels similar to controls, reduced apoptotic rate and pro-oxidant state,
suggesting the potential therapeutic potential of HT against Long-COVID pathologies.

OL exhibits antiviral activity by targeting viral proteins involved in replication and
virulence. It may inhibit viral proteases, such as the main protease (3CLpro), essential for
viral replication. By blocking viral proteases, OL can disrupt viral replication and reduce
viral load, potentially preventing viral persistence in patients with long COVID.
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2.3. Integration of the Molecular Mechanisms of Action

In addition to the well-known actions of polyphenols discussed above, certain minor
components of Olea europea L. have been reported to have unique properties beneficial to
COVID-19 and Long COVID [231,232]. Prominent among them is the flavonoid luteolin
(tetramethohydroxyflavone) [174], which has potent antiallergic and anti-inflammatory
actions, is neuroprotective, [175] reduces cognitive dysfunction, especially brain fog [233],
and may be used against brain-related disorders [176,234]. Luteolin was reported to in-
hibit SARS-CoV-2 by binding to ACE2 [235,236], and a luteolin-rich fraction inhibited
SARS-CoV-2 Spike protein-induced NLRP3-dependent lung inflammation [237]. More-
over, luteolin 7-O-b-D-glucopyranoside was identified as an inhibitor of SARS-CoV-2
RNA-dependent RNA polymerase [238], and the luteolin structural analog eriodictyol
(tetramethoxyflavanone) was identified as a potent inhibitor of SARS-CoV-2 [239]. Other
polyphenolic compounds present in olive oil [122] and olive leaves [227,240], such as OL
and HT, have also been found to be powerful SARS-CoV-2 antiviral [241] and serine pro-
tease inhibitors [242]. In fact, OL was identified as a potent compound against neurological
complications associated with COVID-19 [123]. In addition, berberine has been shown
to inhibit the serine protease involved in SARS-CoV-2 entering the target cells [243], and
sulforaphane has been reported to inhibit SARS-CoV-2-induced cytokine storms [244]. As
discussed earlier, neurovascular inflammation has been identified as a key pathologic event
in many neurodegenerative diseases, especially long COVID [12,92]. Platelet-activating
factor (PAF) has been implicated in micro-clotting in COVID-19 [228,245,246], and it is
interesting that olive components can modulate the activity of PAF [247–250]. A summary
of the key neurobeneficial effects discovered in the last three years is shown in Table 2.

Table 2. Summary of key neurobeneficial effects of Olea europaea L. polyphenols.

Polyphenol Study Type Model/Cell Type Effects * Reference

Hydroxytyrosol (HT)

In vitro

BV2 microglia and primary
microglia cells

AI: Dose-dependent decrease of
pro-inflammatory mediators (modulation
of M1/M2 polarization), TLR4 (NF-κB p65

and ERK signaling)

[75]

NP: Complete inhibition of α-syn
aggregation with HT-acetate [215]

In vivo
Mouse

AI: Dose-dependent decrease of
pro-inflammatory mediators,

microglia/astrocyte activation
[75]

C. elegans NP: 76.2% inhibition of α-syn aggregation
with HT-acetate [215]

Oleuropein (OL)

In vitro

Molecular dynamics
trajectory analysis

NP: Stabilizes α-syn monomer and
nontoxic aggregates [113]

(LPS)-treated
monocyte/macrophages (THP-1)
and endothelial cells (HUVECs),

senescent HUVECs and
Poly(I:C)-treated small airway

epithelial cells (hSAECs)

AI: Decreased pro-inflammatory mediators
(IL-1β, TNF-α, IL-8, ICAM, VCAM) and

release of IL-6. In hSAECs, modulates the
expression of SOD2, NF-kB, ACE2

and TMPRSS2

[127]

CD4+ T cells from PBMCs of healthy
controls and rheumatoid

arthritis patients

AI: Dose-dependent increase in frequency
of CD4+ CD25+ FoxP3 Tregs, IL-10 and

TGF-β production
[199]

In vivo

3 mo 5XFAD AD model

AI: Inhibition of NF-κB, NLRP3
inflammasomes and RAGE/

HMGB1 pathways
NP: Reduction of total Aβ brain levels and

enhanced BBB integrity and function

[200]

C. elegans

AO: Decreased oxidative stress involving
DAF-16/FOXO and SKN-1/NRF2,

and HSP-16.2
NP: Decreasesd Aβ and tau aggregation

[216]
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Table 2. Cont.

Polyphenol Study Type Model/Cell Type Effects * Reference

Rotenone PD model

NP: Increased CREB and phosphorylation
of Akt and GSK-3β; reduction of

mitochondrial dysfunction by activation of
enzyme complexes and downregulation of

the proapoptotic markers

[222]

Clinical Probable mild AD patients NP: Neurocognitive parameters stabilized
or improved [136]

Oleocanthal (OC)

In vitro

Adipocytes

AI: Decreased TNF-α induced
IL-1β, COX-2

Decreased TNF-α induced MCP-1,
CXCL-10, M-CSF

Decreased TNF-α induced miR-155-5p,
miR-34a-5p and let-7c-5p

Increased PPARγ
Decreased TNF-α induced

NF-κB activation
AO: Decreased TNF-α induced NADPH

oxidase, SOD, GPX

[206]

Murine peritoneal macrophages

AI: Decreased LPS-induced MAPK
pathway, inflammasome cascade signaling

pathway, IL-1β, IL-6, IL-17, INF-γ,
and TNF-α

AO: Decreased LPS-induced
ROS production

[213]

AO: Demonstrated ROS scavenger capacity
against HOCl and O2

•− [133]

In vivo

5XFAD AD model (females)

AI: COX inhibition, suppressed C3AR1
activity (via STAT3)

AO: Decreased Aβ plaques and
tau phosphorylation

[66]

5XFAD AD model

AI: Decrease NF-κB pathway and NLRP3,
OC only decreased RAGE/

HMBG1 pathway
NP: Decreased Aβ levels

[66]

TgSwDI AD model, (6 months)

AI: Inhibition of NACHT, LRR, and NLRP3
NP: Restored BBB function, reduced Aβ
pathology induced autophagy through
activation of AMPK/ ULK1 pathway

[132]

Clinical Obese and prediabetic individuals
AI: Decreased IFN-γ

NP: Increased total antioxidant status,
decreased lipid and organic peroxides

[154]

* Anti-inflammatory (AI), Antioxidant (AO) and Neuroprotective (NP).

2.4. Olive Polyphenols as Dietary Supplements with Potential Clinical Applications

Several in vivo and clinical studies have investigated the effects of supplementing
food with olive polyphenols, with promising results, both in terms of neuroprotection
and limiting adverse effects [152,251]. Interestingly, even though the use of HT as a novel
food ingredient was approved the European Union (Regulation (EC) No 258/97) [251]
and the United States [252] for the (GRN876 [US FDA, 2020]; [253] for GRN 600 [US
FDA, 2015]), there is to date only a limited number of studies focusing on commercial
dietary supplements containing olive extracts or olive polyphenols.

The addition of polyphenols to foods has been reported to improve their nutritional
value [156,254]. The EFSA reference cited in the article is a decision where the panel
concluded that synthetic hydroxytyrosol is safe to be added to fish and vegetable oils and
to margarine (up to 215 mg/kg and up to 175 mg/kg, respectively) for consumption by
the general population, excluding children under 36 months of age, pregnant women and
breastfeeding women. Nevertheless, our understanding is that aqueous extracts of olive
fruit containing more than 10% hydroxytyrosol are considered by the EU as novel foods.
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Olife®, a food supplement based on an infusion of olive leaves and marigold aqueous
extracts (80–95% Olea europaea L. extract; [255], and Bonolive®, an olive leaf extract supple-
ment, containing 40% oleuropein [256], were included in clinical studies on glyco-metabolic
parameters and joint functional capacity, respectively.

An olive juice extract rich in HT, Hidrox®, is produced on a large scale from the
aqueous effluent of the olive oil industry (olive vegetation water or olive juice), which
carries almost 50% of the weight of the olive fruit and is usually discarded as wastewa-
ter. The process relies on citric acid (1%) assisted mild hydrolysis of naturally occurring
hydroxytyrosol esters, producing HT in high yields [257]. Various studies have demon-
strated the beneficial effects of Hidrox® on health in both in vitro and in vivo systems for
the regulation of inflammation, neurodegeneration, and Parkinson’s disease [258–260].
Recently, Hidrox® solution has been reported to exhibit time- and concentration-dependent
SARS-CoV-2-inactivating, virucidal activity. From a mechanistic point of view, Hidrox®

was shown to induce structural changes in SARS-CoV-2, which changed the molecular
weight of the spike proteins, regardless of their glycosylation status, while also disrupting
the viral genome [261].

2.5. Fatigue

The chronic effects of supplementation with a biodynamic and organic olive fruit
water phytocomplex (OliPhenolia® [OliP]), rich in HT, on submaximal and exhaustive
exercise performance and respiratory markers of recovery were investigated by Roberts and
colleagues [100]. Twenty-nine recreationally active participants (42 ± 2 yrs; 71.1 ± 2.1 kg;
1.76 ± 0.02 m) consumed 2 × 28 mL·d−1 of OliP or a taste- and appearance-matched placebo
(PL) over 16 consecutive days. Consumption of the phytocomplex resulted in increased
time to exhaustion and provided some benefits for aerobic conditions and acute recovery.

Another study demonstrated that exercise-induced fatigue and damage to muscle
and immune functions are mediated via the regulation of mitochondrial dynamic remodel-
ing [262]. The reversal of the downregulation of mitochondrial biogenesis and upregulation
of autophagy by HT supplementation was, thus, accompanied by improvement in en-
durance capacity and muscle atrophy.

Supplementation with 1200 mg olive leaf extract enriched in OL, containing
16–24% oleuropein and ≥30% olive phenols [263], as nontransparent capsules, for one week
in a randomized, balanced, double-blind manner was found to alter the serum and urine
metabolomes of athletes compared to the placebo administration. Overall, the findings
support the notion that OL administration alters an array of factors concerning crucial
biochemical pathways that are implicated in physical condition, feelings of fatigue and
muscle pain, and activity readiness, including the upregulation of tryptophan and the
increase in the circulating acylcarnitines in the serum and urine [264].

The OL antioxidant effect was found to be an effective agent for olive leaf extract’s
effects on obesity, cognitive decline, depression, and endurance exercise capacity in a mouse
model [265]. In physically inactive mice fed a high-fat diet, olive leaf extract administration
inhibited body weight increases and did not allow the onset of cognitive declines, and
more specifically, improved working memory and reversed depressive behaviors. Addi-
tionally, olive leaf extract increased endurance exercise capacity under atmospheric and
hypoxic conditions.

The study by Rodríguez-Pérez et al. (2022) investigated the neuroprotective effect
of 3′,4′-dihydroxyphenylglycol (DHPG) from EVOO in a diabetic model. The effect was
evaluated in brain slices and retinal nerve cells. Diabetic rats showed higher levels of
oxidative stress and reduced neuronal cell numbers. DHPG or HT administration reduces
oxidative stress and brain lactate dehydrogenase efflux, reducing cell death. The combi-
nation of DHPG and HT seemed to have improved their neuroprotective and antioxidant
effects [266].

In one study of rodent mice, the addition of isoflavones to the chow decreased fatigue
and associated blood-brain inflammatory markers [267].
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2.6. Psychiatric Symptoms

As the COVID-19 crisis developed, the psychological impact of COVID-19-related
quarantine has been reported to include post-traumatic stress disorder (PTSD), confusion
and frustration [268]. Mental distress, grief and bereavement, deliberate or unintentional
harm to family, loss/separation from family, self-injury, shame, guilt, helplessness, addic-
tion or substance use, medical mistrust and inclination towards conspiracies, panic attacks,
stress, anxiety, depression, loneliness, suicidal ideation, mood problems, sleep problems,
worry, denial, boredom, ambivalence, uncertainty, frustration, anger, fear, stigmatization,
marginalization, xenophobia, mass hysteria, socioeconomic status, and other mental health
concerns have also been indicated worldwide [269].

The presentation of depression during COVID-19 differs in older adults compared
to younger ones [270]. For example, older adults with cardiovascular disease (CVD) and
depression are less likely to manifest affective symptoms and are more likely to display
cognitive changes, somatic symptoms, loss of interest along with dysfunctional defense
mechanisms regarding health problems (e.g., refusal to accept actual state of health) and
failure to conform to doctor’s instructions than are younger adults [271–275]. Quarantine
measures in the general population have raised a number of issues for mental health. In
a study in Australia, the COVID-19 impact and quarantine measures include an array
of mental health concerns that may aggravate or trigger existing distress [276]. Rates of
elevated psychological distress were higher than expected, with 62%, 50%, and 64% of
respondents reporting elevated depression, anxiety, and stress levels, respectively, and
one in four reporting elevated health anxiety. Participants with a self-reported history of a
mental health diagnosis had significantly higher distress, health anxiety, and COVID-19
fears than those without a prior mental health diagnosis. Higher engagement in hygiene
behaviors was associated with higher stress and anxiety levels.

HT may exert an antidepressant activity through its ability to stimulate hippocampal
neurogenesis and neuron survival in young and aged mice [277]. Chronic unpredictable
mild stress (CUMS) mice are considered one of the most widely accepted mouse models
of depression. HT supplementation of such an experimental model has been shown to
exhibit a strong anti-depressant effect. More specifically, its anti-depressant activity was
associated with reduction of oxidative stress and with increased number of glial fibrillary
acidic protein (GFAP)-immunoreactive astrocytes, as well as increased activity of the
BDNF/TrkB/CREB signaling pathway [278]. The latter is also involved in stimulating
neurogenesis, which is, therefore, the mode of anti-depressant activity of HT revealed by
this study. Furthermore, Fan et al. reported [279] that HT exerts a significant antidepressant
effect in association with the improvement of the HPA axis. This is implied by the decrease
in serum corticosterone, adrenocorticotropic hormone (ACTH), and also TNF-α, IL-1β,
and IFN-γ in CUMS mice. Additionally, it was also shown to be capable of reverting the
alteration in gut microbiota composition, but only partially, which may imply that this is
not the primary anti-depressant mode of action for HT.

In the case of OL, a different anti-anxiety mechanism was proposed involving the
ability to restore the levels of hippocampal Neuropeptide Y, which modulates serotonergic
pathways, as well as the levels of brain-derived neurotrophic factor (BDNF), as reported by
Lee et al. [280]. Additionally, the depression-like symptoms of mice were elicited by OL
administration (8 to 32 mg/kg i.p.). This activity was suggested to be caused by restoring
the brain’s serotonin and dopamine levels [281].

Using an AD model, 5xFAD mice treatment with OC (10 mg/kg) resulted in improving
several of the assessed parameters to levels similar to or approaching those of the wild-type
(WT) mice, including sleeping time during the day and anxiety-like behavior [282].

2.7. Cognitive Impairment

There is increasing evidence that cognitive difficulties and memory problems are
present in the post-acute phase of SARS-CoV-2 infection, which is very frequently compared
with and associated with an AD-type cognitive impairment [283–285]. Indeed, several



Int. J. Mol. Sci. 2024, 25, 11040 15 of 31

reports demonstrate various neuropathological similarities of PASC Cognitive Syndrome
with AD, including numerous elevated AD marker genes, including FERMT2, HLA-DRB1,
GNA15, STAB1, ICA1L, COLGALT1, TNFAIP2, ITGAM, VASP, IDLIA, PVR, TECPR1,
several circulatory biomarkers, such as GFAP, NFL, P-tau 181, UCH, NSE, and S100B,
and the presence of Apolipoprotein E4 allele (APOE4) [283,285]. It would, therefore,
be reasonable to suggest that any potential anti-AD activity of HT, OL, and OC would
be supporting evidence for the high value of these molecules in fighting against long
COVID symptoms.

In a C. elegans model of AD, the effects of an olive fruit extract 20% rich in HT on the
molecular mechanisms associated with AD features like Aβ- and tau-induced toxicity were
evaluated. The extract showed a reduction of proteotoxicity associated with the aggregation
of the tau protein, whereas, from the RNAi tests, the SKN-1/NRF2 transcription factor and
of HSP-16.2 also limited the expression of [286].

In a mouse model study, supplementation with HT significantly improved the cog-
nitive functions of TgCRND8 mice and also reduced Aβ42 and pE3-Aβ plaque area and
number in the cortex. In the hippocampal areas of HT-fed TgCRND8 mice, the pE3-Aβ

plaque number was also significantly reduced together with a tendency toward a reduction
in Aβ42 load, associated with a marked reduction of TNF-α expression and astrocyte
reaction. The beneficial effects of HT were attributed to macro-autophagy induction and
modulation of MAPKs [287]. Similarly, in APP/PS1 transgenic mice orally treated with HT
acetate, improved cognition was witnessed by the escape latency, escape distance, and the
number of platform crossings of AD mice in the water maze test by ameliorating neuronal
apoptosis and decreasing inflammatory cytokine levels. It was further demonstrated that
HT acetate stimulated the transcription of ERβ and enhanced neuronal viability and elec-
trophysiological activity in primary neurons but that these beneficial effects were abolished
upon ERβ deficiency [288].

HT was also studied against the learning and memory decline of obese mice. Both
abilities were significantly improved, and the expressions of brain-derived neurotrophic
factors (BDNFs) and postsynaptic density proteins were enhanced, protecting neuronal
and synaptic functions in obese mice. Transcriptomic results further confirmed that HT im-
proved cognitive impairment by regulating gene expression in neural system development
and synaptic function-related pathways [289].

Cognitive impairment could be addressed in different ways, but the results are in-
conclusive [290,291]. The dietary supplement BrainGain® contains a combination of HT,
luteolin, calcium folinate, and berberine in olive pomace oil, which increases oral absorption
and provides additional polyphenols [9]. Unique aspects of these dietary supplements are
that they are made in a GMP-certified facility that is registered with the US Food and Drug
Administration (FDA), but that they also have an FDA-issued Certificate of Free Sale renew-
able every two years. Unfortunately, most other dietary supplements contain individual
components of questionable purity and do not comply with regulatory requirements [292].

3. Discussion—Future Directions and Challenges

Recently, Filardo et al. (2024) stressed health challenges that are becoming increasingly
global, with chronic diseases like cardiovascular, neurological, and respiratory diseases,
cancer, and diabetes being major threats along with antimicrobial resistance, which is a
growing public health concern. In their review, natural products like olive tree leaves, fruits,
and oil are being investigated for their health-promoting properties. Olea europaea L secoiri-
doids, including OL, OC, oleacein, and ligstroside, are promoted for their anti-inflammatory,
antioxidant, cardioprotective, neuroprotective, and anticancer activities [116]. Platelet Ac-
tivating Factor (PAF) is a potent inflammation mediator, contributing to chronic diseases
like cardiovascular, metabolic, inflammatory, renal, and neuropsychiatric diseases [60].
The effect of MD on PAF was covered in a systematic review [247]. The protective effect
of olive oil microconstituents in atherosclerosis and the role of PAF has been stressed by
Antonopoulou et al. [250]. A systematic review of epidemiologic and intervention stud-
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ies found that healthy MD components, such as cereals, legumes, vegetables, fish, and
wine, can modulate PAF’s pro-inflammatory actions. A healthy diet with PAF inhibitors
may target inflammation and microthrombosis [245]. Detopoulou et al. (2021) suggested
that yogurt enriched with PAF inhibitors could potentially modulate PAF biosynthetic
and catabolic pathways [249]. Vlachogianni et al. (2015) examined PAF biosynthesis and
showed that it is inhibited by phenolic compounds in U-937 cells under inflammatory
conditions [248].

As presented herein, the olive tree produces key bioactive compounds with neuropro-
tective properties that can be proven effective in the management of conditions affected by
neuroinflammation and cognitive decline. In the absence of any published benefit of repur-
posed drugs, investigating the use of high-quality dietary supplements for long COVID is
a prudent next step, as they are safe and potentially quite effective [254,276,293–295].

Environmentally and economically sustainable procedures could be applied to olive
oil processing on an industrial scale [296], yielding high-purity isolates [297] with neuro-
protective benefits, as evident by this review and other clinical studies [13,298,299]. The use
of Machine learning and NMR in the detection and quantification of phenolic compounds
is also promising [170,300].

Given the findings discussed above, it appears that all complex disorders reviewed in-
volve neurovascular inflammation that may benefit from the introduction of Olea europaea L.
polyphenols. However, the best approach would require simultaneously addressing vari-
ous target points. These may include the BBB, entry of leukocytes in the brain, microglia,
misfolded proteins, specific receptors, inflammasome, extracellular matrix, generation of in-
flammatory molecules, matric degrading enzymes, production of neurotrophic factors, etc.

In the case of long COVID, this approach could entail targeting ACE2 necessary for
viral binding, serine protases required for viral entry, RNA polymerases for viral multipli-
cation, and TLRs for inflammatory molecule production (Figure 2). For instance, luteolin
and eriodictyol, an in silico inhibitor of human ACE2 receptor required for SARS-CoV-2
binding to host cells [301], would inhibit both ACE2 and TLR4 [302], while OL, HT, and
sulforaphane would inhibit the serine esterases and RNA polymerases (Figure 2). Luteolin
has anti-inflammatory properties [173–176] but is difficult to dissolve in aqueous media
and is poorly absorbed in powder form (less than 10%) after oral administration, while
eriodictyol offers the advantage of being partially soluble in water. The unique combination
of eriodictyol, HT, OL, and sulforaphane is found in the dietary supplement ViralProtek®.

Additional mechanistic studies will further elucidate the mode of action and explore
the potential synergistic effects of HT, OL, and OC in combination with other related
compounds that could improve their beneficial properties. A major impediment to the
conduction of mechanistic studies is the lack of relevant in vivo or in vitro models for these
diseases. The recent development of human microfluidic organoid brain-on-a-chip models
could be used as a disease “surrogate” and would greatly enhance our understanding of
pathogenetic mechanisms [303–305], such as a system presently used in our laboratory
(TCT) for the study of ALS, long COVID, and PD where we also investigate the effect of
Olea europaea L. polyphenols.

To date, only a small number of marketed food supplements contain combinations
of Olea europaea L. polyphenols alone or with other relevant natural molecules. Exploring,
therefore, novel formulations appears to be a safe and potentially effective way of managing
complex neuroinflammatory disorders. Additional clinical trials are also warranted to
evaluate the efficacy, safety levels, and long-term effects of these compounds in relation to
their neuroprotective properties and their use as targeted food supplements. Unfortunately,
there is a lack of interest in funding clinical studies using dietary supplements because they
are not covered by patents; instead, interest has focused on repurposing approved drugs,
even though such studies have not yielded any significant findings.
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4. Materials and Methods

In order to conduct this review, an extensive search was performed on scientific
databases, including PubMed, Scopus, Google Scholar, and Web of Science. The purpose
of this search was to identify studies that have investigated the neuroprotective, anti-
inflammatory, and antioxidant effects of Olea europaea L. polyphenols, HT, OL, and OC. The
search utilized specific keywords such as “polyphenols”, “hydroxytyrosol”, “oleuropein”,
“oleocanthal”, “neuroinflammation”, “neurodegeneration”, “Long COVID”, “COVID-19”,
“cognitive decline”, “brain fog” and related terms to locate relevant articles that have
been published in peer-reviewed journals. Items searched include mostly journal articles,
conference papers, and technical reports and reviews. The introduction of the review
provides an explanation of the review’s purpose in relation to the existing knowledge.
The background section introduces the topic. The study clearly outlines its objectives and
research inquiries. The eligibility criteria for both the inclusion and exclusion criteria were
determined, and the studies were categorized based on their primary focus. Inclusion
criteria were determined based on the pertinence to the subject matter and the quality of
the evidence. Data collection involved extracting information regarding the study’s design,
participants, interventions, outcomes, and significant conclusions and discoveries.

The comprehensive analysis pertains to 620 ‘relevant’ publications that were obtained
from online databases. This study references a total of 305 publications. The inclusion
criteria for this review study encompassed the following aspects: The search was conducted
on the entire text of the papers to ensure that no relevant articles were excluded due to
the absence of the searched keywords in the abstracts or titles. The search was restricted
to papers written in the English language. Every other language is not included. The
publication period spanned from 1990 to 2024, focusing mostly on the last five years.
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Out of the 450 papers that were finally reviewed, 145 were excluded due to their
lower degree of relevance. The excluded papers were the outcome of the authors working
autonomously to reduce bias and adhere to the eligibility criteria. The minor inconsisten-
cies were resolved through consensus, considering the established selection criteria. The
duration of this research spanned from March 2024 to August 2024. The process consisted
of five stages: Preparation, formulation of research questions and queries, retrieval of data,
analysis of data, synthesis of data, and presentation of results. The PRISMA 2020 statement
was utilized to streamline the preparation and reporting of the present review. However, a
Prisma diagram is omitted from the paper since this review is not a systematic review.

After extracting the data, we conducted analysis, assessed the quality, and synthesized
the information. During the synthesis phase, a thorough analysis, primarily qualitative in
nature, has been conducted on the information obtained from the reviewed articles, reports,
and papers. This was essential for facilitating the classification and integration of data.
The objective was to accurately outline the primary domains of investigation pertaining
to our research inquiries. The results and discussion Sections 2 and 3 contain significant
findings and conclusions, which are supported by references to the included papers. This
specific review has not undergone any statistical analysis. The synthesis of the identified
studies, including different perspectives, gaps, and trends, is presented. The literature
review has resulted in the proposal of best practice recommendations. Ultimately, this
research highlights the results, effects, and significance it has on the scientific community.
Additionally, this study also provides further recommendations for future research.
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Abbreviations

Absorption, distribution, metabolism, and excretion (ADME), α-synuclein (α-syn),
adrenocorticotropic hormone (ACTH), Alzheimer’s disease (AD), amyloid-β (Aβ), amy-
otrophic lateral sclerosis, ALS), angiotensin converting enzyme 2 (ACE2),Apolipoprotein E
ϵ4 allele (APOE4), blood brain barrier (BBB), brain-derived neurotrophic factors (BDNFs),
central nervous system (CNS), chronic fatigue syndrome (CFS), cyclooxygenase-1 and–2
(COX-1, COX-2), deep brain stimulation (DBS), extra virgin olive oil (EVOO), glial fibrillary
acidic protein (GFAP), hydroxytyrosol (HT), intensive therapy unit (ITU); interferon-beta
(IFNβ), interleukin-1 beta (IL-1β), mast cell activation syndrome (MCAS), Mediterranean
Diet (MD), multiple sclerosis (MS), myalgic encephalomyelitis (ME), nuclear factor-kappa
B (NF-κB); neurofibrillary tangles (NFTs), n-methyl-d-aspartate (NMDA), oleocanthal (OC),
oleuropein (OL), Parkinson’s disease (PD), peripheral blood mononucleotides (PBMCs),
post-acute sequelae of SARS-CoV-2 (PASC), receptor-binding domain (RBD), superoxide
dismutase (SOD), tumor necrosis factor (TNF)-α, toll-like receptor 4 (TLR4).
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