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Abstract: Protein hydrolysates from the goat placenta provide multiple benefits, such as immune
system enhancement, antioxidant activities, and reductions in uric acid levels. Despite these benefits,
their industrial applications have been underexplored. This study aimed to prepare extract protein
hydrolysates (GPERPs) from residual goat placenta extract (GPER) and assess their functional prop-
erties, focusing on how different drying methods influence these properties. The essential amino
acid contents were 30.94% for the GPER and 34.11% for the GPERPs. Moreover, all the essential
amino acids were present, and the amino acid score (AAS) for each exceeded 1.0 in the GPERPs. The
foaming properties of the spray-dried GPERPs (95.56 ± 5.89%) were significantly greater than those
of the freeze-dried GPERPs (49.13 ± 4.17%) at pH values of 4.0~10.0. The emulsion stability (ES) of
the spray-dried GPERPs (453.44 ± 8.13 min) was notably greater than that of the freeze-dried GPERPs
(245.58 ± 7.12 min). Furthermore, the water retention capacity (WRC) of the freeze-dried GPERPs
(201.49 ± 6.12%) was significantly greater than that of the spray-dried GPERPs (103.35 ± 7.13%),
except at pH 10.0 (101.44 ± 8.13%). Similarly, at pH values of 6.0, 8.0, and 10.0, the oil retention
capacity (ORC) of the freeze-dried GPERPs (715.58 ± 12.15%) was significantly greater than that
of the spray-dried GPERPs (560.56 ± 11.15%), although the opposite trend was noted under acidic
conditions. In terms of the antioxidant activity, the ability of the goat placenta extract residual protein
hydrolysates (GPERPs) to scavenge DPPH radicals and superoxide anion radicals increased with the
increasing peptide powder concentration, and the maximum scavenging rates of the DPPH radicals
(39.5 ± 0.56%) and superoxide anions (81.2 ± 0.54%) in the freeze-dried peptide powder were greater
than those in the spray-dried peptide powder. These findings contribute to the understanding of the
physicochemical and antioxidant properties of GPERPs under various drying methods and provide
fundamental data for the development of functional foods based on GPERPs.

Keywords: goat placenta; protein hydrolysates; drying process; physicochemical properties; antioxi-
dant properties

1. Introduction

The goat placenta is known to contain a variety of bioactive compounds, including
growth factors, proteins, peptides, and vitamins, and it facilitates material exchange be-
tween the ewe and the fetus during pregnancy. It is particularly abundant in protein (more
than 80% of its dry weight), 17 amino acids, 14 trace elements, and other components [1].
In China, the goat placenta is a potent component of Chinese medicine that is widely used
as a traditional alternative therapy. The goat placenta is documented in the ancient Chinese
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medical book Compendium of Materia Medica as a traditional tonic [2,3]. Chou et al. [4]
found that sheep placenta extract could significantly reduce the aging index, attenuate
oxidative stress damage, enhance the antioxidant capacity, and effectively delay aging
in mice experiments. Hou et al. [5] conducted an in vitro immunoreactivity assay using
goat placental proteins and examined the changes in the immunoreactivity at different
temperatures and pH values; the proteins retained their maximal immunoreactivity at
30 ◦C and demonstrated strong pH adaptability.

Protein hydrolysates, defined as sources of releasable mixtures of bioactive peptides [6],
are complex mixtures of oligopeptides, peptides, and free amino acids generated by the
enzymatic, chemical, or microbial hydrolysis of whole proteins [7,8]. Active peptides
offer significant health benefits, including immune enhancement, cell regeneration, im-
proved skin elasticity, antioxidant effects, and age-delay properties [9–11]. Simultaneously,
peptides can be used as additives to improve food physicochemical properties, such as
the solubility, emulsifying capabilities, thickening abilities, water-holding capacity, and
oil-binding abilities, which are crucial for their application in the food, pharmaceutical, and
cosmetic industries [12–15].

The drying methods employed during the production of proteins or protein hy-
drolysates can significantly impact their functional properties and stability [16–18]. Dong
et al. [19] found that the drying method significantly influences the physicochemical prop-
erties of fish skin protein hydrolysate (SPH), with spray-dried SPH (SPH-SD) exhibiting
a higher antioxidant activity and unique structural characteristics compared with freeze-
dried SPH (SPH-FD). Soraiyay et al. [20] investigated the effects of spray drying (SD at
180 ◦C), freeze drying (FD at −35 ◦C), and foam-mat electrohydrodynamic drying (EHD)
on egg white; while the gel hardness and water-holding capacity showed no significant
differences, foam-mat EHD produced powders with the highest protein content of 66.1%
and a foaming capacity of 725%, closely resembling FD powders in their microstructure
and properties. Freeze drying, which is conducted at a low temperature of −30 ◦C, is
widely acclaimed for producing high-quality, high-value products [21]. Zeng et al. [22]
employed freeze-drying, spray-drying, and hot-air-drying processes to produce collagen
peptide powder from chicken skin, and the freeze-dried collagen peptide powder was
better than the hot-air-dried and spray-dried peptide powders in terms of the solubil-
ity, emulsion stability, water retention, oil absorption, and water absorption. In a study
on the biochemical and emulsification properties of two gluten hydrolysates prepared
with the same protease to the same degree of hydrolysis (1.4%) but subjected to different
drying processes, E. Linarès et al. [23] reported that while the drying process did not
significantly affect the molecular size distribution, hydrophobicity, or solubility of the
gluten hydrolysates, the freeze-dried dispersions showed superior emulsifying proper-
ties compared with the spray-dried ones, suggesting that the insoluble fraction behavior
during drying influences the emulsification performance. Kleekayai et al. [24] compared
spray-dried (SD) and freeze-dried (FD) whey protein hydrolysates (WPHs) made with
Alcalase® and Prolyve® (Sigma-Aldrich, Dublin, Ireland), finding that the SD-WPHs had
higher antioxidative properties due to a greater proportion of peptides (<1 kDa), with
the most potent WPH showing oxygen radical absorbance capacity and Trolox equivalent
values of 1132 and 686 µmol TE/g, respectively. The application of heat can alter the
functional properties of proteins by inducing denaturation and aggregation, which can be
mediated by hydrophobic and sulfhydryl–disulfide bond exchange reactions [25]. Protein
hydrolysates (peptides, oligopeptides, and amino acids) serve as essential components of
food systems, fulfilling both structural and functional roles. They act as structural building
blocks, regulating gel properties and enhancing biocompatibility, which are of particular
importance for their application in food systems [26]. Consequently, the drying method
employed for protein hydrolysates is a critical consideration during the construction of
food systems.

Currently, most studies on the goat placenta focus on the preparation and efficacy of
peptides and do not investigate the effects of the drying processes on the properties of goat
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placenta protein hydrolysates [27]. Concurrently, the expansion of the dairy goat industry
and the concomitant increase in the goat population have significantly elevated the demand
for efficacious goat placenta processing technology [28]. The aim of this study was to
investigate the effects of drying methods (freeze drying and spray drying) on the functional
properties of GPERPs. Evaluating the effects of different drying methods on the functional
properties and stability of protein hydrolysates is essential for optimizing their industrial
application. In this study, alterations in the amino acid composition and the distribution
of essential amino acids during the reaction process were analyzed. Furthermore, to
investigate the potential application of GPERPs in food systems, the foaming performance,
emulsification capacity, oil retention capacity, and antioxidative properties of GPERPs
under different drying methods were comparatively analyzed. This study aimed to provide
a preliminary analysis of how different drying processes influence peptide preparation and
their application in food systems.

2. Materials and Methods
2.1. Materials and Chemicals

Goat placenta was obtained from ewes at parturition and preserved by freezing at
−45 ◦C. The neutral protease (3.97 × 103 U/g) and flavored protease (4.69 × 103 U/L)
were purchased from Novozymes (China) Biotechnology Co., Ltd. (Tianjin, China). 1,1-
Biphenyl-2-pierylhydrazyl (DPPH), Pyrogallol, and 1,10-Phenanthroline were purchased
from Beijing Solarbio Science & Technology Co., Ltd (Beijing, China). All other reagents
used in this study were of analytical grade.

2.2. Preparation of Protein Hydrolysates from Goat Placenta Extraction Residue

The goat placenta was collected immediately after delivery, frozen at −45 ◦C with
immersion freezing for 12 min, and preserved at −20 ◦C [29]. The process of producing
GPERPs from GPER is illustrated in Figure 1. Two drying methods were employed: freeze
drying and spray drying. Both are the most commonly used drying methods for bioactive
ingredients in industry [30]. The hydrolysis conditions of the GPERPs were as follows:
the enzyme dosage was 2500 U/g; the neutrase and flavorzyme complex ratio was 1.75:1;
the hydrolysis time was 4 h; the hydrolysis pH was 7.0; the temperature was 45 ◦C; and
the solid–liquid ratio was 1:50 [31]. The spray-drying process parameters for the inlet air
temperature were as follows: 165 ± 1 ◦C; exhaust air temperature: 98 ± 2 ◦C; pump speed:
8.0 mL/min; exhaust air pressure: −100~150 Pa; and atomization frequency: 25 Hz. The
freeze-drying process parameters for the drying bin temperature were as follows: 30 ◦C;
drying bin pressure: 20 Pa; cold trap temperature: maintained at −50 ◦C. Under these
conditions, the degree of hydrolysis was 39.60%, and the peptide yield was 67.85%.
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2.3. Analysis of Amino Acid Profiles and Free Amino Acids

An amino acid composition analysis of the GPERPs and GPER was performed using an
amino acid analyzer (S433D, Sykam, Germany) [32]. The protein quality was characterized
by the amino acid score (AAS). The AAS determines the efficiency with which absorbed
dietary nitrogen can meet essential amino acid requirements at safe levels of protein intake.
It is calculated as described in FAO/WHO/UNU (2007) [33].

2.4. Functional Properties

Among the characteristics of technological ingredients, the foaming properties, emul-
sifying capacity, and water and oil retention capacities are of the greatest importance in
food formulation [34]. The functional properties under different drying methods, including
the foaming capacity (FC), foaming stability (FS), water retention capacity (WRC), and oil
retention capacity (ORC), were measured.

2.4.1. Foaming Properties

The FC and FS of the hydrolysates were determined as described previously with slight
modifications [35]. Aliquots (30 mL) of sample solution (1%, m/v) at various pH values
(2.0~10.0) were blended at high speed (10,000 rpm) in a homogenizer (Y50, Shanghai Yuldor
Machinery Equipment Co., Ltd., Shanghai, China) for 1 min. The resulting suspensions
were rapidly transferred into calibrated tubes, and the total volume of the resultant mixtures
was determined after 0.5 and 20 min. The FC and FS (%) were estimated as follows:

FC(%) =
volume a f ter whipping (0.5 min)− volume be f ore whipping

volume be f ore whipping
(1)

FS(%) =
volume a f ter whipping (10, 30, 50, 70, 90 min)− volume be f ore whipping

volume be f ore whipping
(2)

2.4.2. Emulsifying Properties

The emulsion properties were determined according to the method described by
Wang [36]. To prepare the emulsion, 10 mL of soybean oil and 30 mL of sample solution
(0.2%, w/v) at different pH values were shaken together and homogenized at 12,000× g
and 20 ◦C for 1 min. A 50 µL sample of the emulsion was taken from the bottom of the
container at different times and diluted with 5 mL of a 0.1% (w/v) sodium dodecyl sulfate
(SDS) solution. The absorbance of the diluted emulsion was determined at 500 nm. The
emulsifying activity was determined from the absorbance measured immediately after
emulsion formation. The emulsifying activity index (EAI) and emulsion stability (ES) were
calculated as follows:

EAI(m2/g) =
2 × 2.303 × n × A
ρ×φ× 10000

(3)

ES(min) =
A0 × 10

A0 − A10min
(4)

where A denotes the absorbance of the emulsion; n denotes the dilution ratio; ρ denotes
the mass concentration (0.002 g/mL); φ denotes the ratio of the oil phase in the emulsion
(0.25); A0 denotes the initial absorbance of the emulsion; and A10min is the absorbance of
the emulsion after 10 min.

2.4.3. Water Retention Capacity (WRC)

The WRC was determined according to the procedure described by Zhang [35]. Briefly,
the dried sample (1.0 g) was first mixed with distilled water (20 mL) for 24 h. The mixed
sample was subsequently centrifuged (6000 rpm for 15 min) to collect the residue, which
was subsequently weighed. The RWC was calculated via Equation (5):

WRC (g/g) = (W2 − W1)/W1 (5)
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where W2 is the weight of the aqueous residue (g) and W1 is the weight of the dry sample (g).

2.4.4. Oil Retention Capacity (ORC)

The ORC analysis was performed as previously described [37]. The sample (1.0 g) was
mixed with soybean oil in a centrifuge tube and allowed to stand at room temperature (RT)
(25 ◦C) for 1 h. The mixture was then centrifuged at 1500× g for 10 min, the supernatant
was poured off, and the solid particles were recovered by filtration. The ORC was calculated
via Equation (6):

ORC(g/g) = (W2 − W1)/W1 (6)

where W2 is the pellet weight (g) and W1 is the dry weight (g).

2.5. Antioxidant Properties
2.5.1. Measurement of Superoxide Radical-Scavenging Capacity

The superoxide radical-scavenging ability of GPERPs treated with different drying
methods was tested via the o-triol oxidation method [38], and the Tris-HCl buffer solution
and sample solution to be tested were added to different tubes according to the require-
ments in Table 1. The reaction was terminated by adding 1 mL of 10 mol/L HCl each after
10 min of reaction at room temperature for A0, A1, A2, and A. The absorbance values were
measured at 320 nm, and the scavenging rate was determined via Equation (7):

O2− scavenging rate(%) = 1 − A − A0

A1 − A2
× 100 (7)

Table 1. The amount of reagent added was used to determine the superoxide radical-scavenging
capacity.

Tris-HCl
(50 mM) Sample (50 g/L) HCl

(10 M)
Catechoroglucinol

(3 mM)

A0 5 mL 1 mL 1 mL 1 mL
A 5 mL 1 mL - 1 mL
A1 5 mL - - 1 mL
A2 5 mL - 1 mL 1 mL

2.5.2. Determination of DPPH Free Radical-Scavenging Capacity

Two milliliters of the sample was mixed with 2 mL of 0.1 mmol/L DPPH–ethanol
solution in a test tube and, after standing for 30 min, the absorbance value (A1) was deter-
mined using anhydrous ethanol as a reference; in the control solution, 2 mL of anhydrous
ethanol was used instead of the hydrolyzed solution and, after standing for 30 min, the
absorbance value (A0) was determined using anhydrous ethanol as a reference; 2 mL of the
same concentration of the hydrolyzed solution was mixed with 2 mL of anhydrous ethanol,
and the background absorbance value (A2) was measured with anhydrous ethanol as a
reference [39]. The absorbance values were determined at 517 nm, and the scavenging rate
was determined via Equation (8):

DPPH scavenging rate(%) =
A0 − (A1 − A2)

A0
× 100 (8)

2.6. Statistical Analysis

The results are expressed as the mean ± standard deviation of information obtained
via triplicate calculations. Analysis of variance (ANOVA) was performed at a p value < 0.05.
Multiple comparisons were compared via Duncan’s test.
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3. Results and Discussion
3.1. Preparation of GPER and GPERPs
3.1.1. The Basic Components of the GPER

The basic chemical compositions of the GPER are shown in Table 2. The GPER
exhibited a high moisture content (93.12%). On a dry basis, the GPER contained the highest
amount of protein in the solid phase at 97.73%. A previous study has shown that freeze-
dried and supercritical CO2-defatted goat placenta powder contained 91.2% protein [40].
GPER, characterized by its high protein content and low fat content, is well suited for the
preparation of bioactive peptides.

Table 2. Proximate composition of the extracted goat placenta residue.

Composition Content (%)

Moisture 93.121 ± 0.761
Protein 6.723 ± 0.213

Fat 0.062 ± 0.005
Total Carbohydrates 0.017 ± 0.002

Ash 0.023 ± 0.009

3.1.2. Composition and Analysis of Amino Acids

The amino acid composition affects the structure and hydrophobicity of proteins,
thereby affecting their biological activity and physicochemical properties [41,42]. The amino
acid compositions and amino acid scores (AASs) of the GPER and GPERPs are shown in
Tables 3 and 4. In both the GPER and GPERPs, glutamic acid (Glu), aspartic acid (Asp), and
glycine (Gly) were the most abundant amino acids. Ren et al. [43] reported similar results
in Tibetan goat placenta peptides, with Glu, Gly, and Asp being the most abundant amino
acids. In the GPERPs, the contents of essential amino acids (including threonine (Thr),
valine (Val), isoleucine (Ile), phenylalanine (Phe), lysine (Lys), and tryptophan (Trp) were
greater than those in the GPER. The process of protein breakdown leads to the formation
of amino acids and small peptide chains, thereby increasing the levels of amino acids in
the resulting substance. There was minimal difference between the GPER and GPERPs
regarding the content of hydrophobic amino acids.

Table 3. Amino acid composition of GPER and GPERPs.

Amino Acid GPER/% GPERPs/%

Asp 8.59 7.88
*Thr 4.18 4.61
Ser 4.41 3.94
Glu 13.41 11.64
Ala 6.83 6.97
Cys 1.85 1.79
*Val 4.62 5.31
Met 2.14 2.10
*Ile 3.69 4.29

*Leu 7.15 6.97
Tyr 3.08 4.34

*Phe 3.86 4.26
*Lys 6.30 6.92
His 2.10 2.70
Arg 7.40 7.66
Pro 7.09 6.42
Gly 12.46 11.65
*Trp 1.14 1.75

Essential amino acids 30.94 34.11
Hydrophobic amino acids 45.7 45.87

Note: * represents essential amino acids.
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Table 4. Essential amino acid compositions (AASs) of GPER and GPERPs.

Amino Acid FAO/WHO
GPER GPERPs

Content AAS Content AAS

Ile 40 36.9 0.92 42.9 1.07
Leu 70 71.5 1.02 69.7 1.00
Lys 55 63.0 1.15 69.2 1.26

Met + Cys 35 39.9 1.14 38.9 1.11
Phe + Tyr 60 69.4 1.16 86.0 1.43

Thr 40 41.8 1.05 46.1 1.15
Trp 10 11.4 1.14 17.5 1.75
Val 50 46.2 0.92 53.1 1.06

Value 360 380.1 423.4
Note: content represents the amount (mg) of essential amino acids per gram of protein.

The percentages of essential amino acids in the GPER (30.94%) and GPERPs (34.11%)
were compared with the FAO/WHO recommendations. Ren et al. [44] prepared Tibetan
goat placenta peptides using a complex enzyme method with papain and neutral protease,
with essential amino acids comprising 34.54% of the total amino acids. According to Table 3,
all essential amino acids were present, with most having an amino acid score (AAS) equal
to or exceeding 1.0. Notably, all the essential amino acid AAS values for the GPERPs were
greater than 1, indicating superior nutritional quality compared with the GPER. An AAS
greater than 1 indicates that the dietary protein provides the amino acid at levels surpassing
the body’s basic requirements, which serves as a positive nutritional indicator, suggesting
that this protein offers an advantage in providing essential amino acids [45]. These findings
suggest that GPERPs may serve as a valuable nutrient in functional foods, with greater
potential for application.

3.2. Physicochemical Properties of GPERPs
3.2.1. Foaming Capacity (FC) and Foaming Stability (FS)

The FC and FS represent the increase in the volume of a foam after mixing and the
volume remaining over time, respectively. A higher FC requires proteins or peptides to
disperse easily in water, migrate quickly to the water–air boundary, and expand to form a
protective layer around air bubbles [46]. Numerous factors influence the foaming capacity
of proteins or their hydrolysates, including their concentration, molecular weight, ratio
of hydrophobic amino acids, and capacity to reduce surface tension [47–49]. Proteins
with flexible molecules and loose structures generally exhibit better foaming abilities and
stabilities than those with rigid structures. The foaming stability is typically highest near
the isoelectric point, provided that the solubility remains relatively constant [50].

As shown in Figure 2a, the foaming capacity (FC) values of the spray-dried GPERPs
were significantly greater than those of the freeze-dried GPERPs across various pH values
(p < 0.05), except at pH 2.0. At pH 2.0, there was no significant difference in the foaming
abilities between the spray-dried and freeze-dried GPERP samples. The inferior foam
formation in the freeze-dried GPERPs compared with the spray-dried GPERPs may be
attributed to the spherical nature of protein hydrolysates, which hinders their ability to
form surface membranes around air bubbles. The foaming properties of GPERPs are more
favorable under neutral conditions than under highly acidic or alkaline conditions [51].
Both drying methods yield GPERPs with foaming properties, likely due to the large
number of peptides produced during enzymatic hydrolysis. This process reduces the
molecular weight and allows more air to enter the molecular interior, increasing the surface
activity [52]. Kanwate et al. [53] reported similar results for gelatin extracted from the
swim bladder of Labeo rohita. As shown in Figure 2b, the FS of the spray-dried GPERPs
decreased significantly over time. At both pH 2.0 and pH 10.0, the stability of the spray-
dried GPERPs was significantly compromised, as evidenced by the complete absence
of foam at pH 2.0 after 30 min and a marked reduction in the foam stability at pH 10,
indicating that the FS is markedly influenced by highly acidic or alkaline conditions. The
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low FS of spray-dried GPERPs may result from conformational changes in the peptide
chain, leading to a brittle liquid film that cannot effectively encase air bubbles [54]. As
depicted in Figure 2c, the freeze-dried GPERPs exhibited greater stability for the first 50 min
within the pH range of 4–6, which may be attributed to the isoelectric point of the peptide.
For the foaming properties of goat placenta residue hydrolysates, spray drying clearly
offers more advantages.
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Figure 2. Effects of different drying processes on the foaming characteristics of GPERPs: foaming
capacity (a), foaming stability of spray-dried GPERPs (b), and foaming stability of freeze-dried
GPERPs (c). Lowercase letters denote comparisons between the foaming capacity of GPERPs under
different pH conditions in the spray-dried group, and uppercase letters denote comparisons between
the foaming capacity of GPERPs under different pH conditions in the freeze-dried group. Different
letters indicate significant differences (p < 0.05).

3.2.2. Emulsifying Activity Index (EAI) and Emulsion Stability (ES)

Peptides present in self-assembled gel systems, and Pickering emulsions can modulate
the microstructures and overall properties of both emulsions and gels because of their
distinct structural characteristics and hydrophilic/hydrophobic properties. Moreover,
peptides exhibit remarkable surface activity and interfacial stability within these systems.
The emulsification activity indexes (EAIs) and emulsion stabilities (ESs) of the spray-dried
and freeze-dried GPERPs are shown in Figure 3a,b. The EAIs and ESs of the goat placenta
protein hydrolysates from the two drying methods showed different trends. Among them,
the EAI of the freeze-dried samples was significantly greater than that of the spray-dried
samples, whereas the emulsification stability exhibited the opposite trend. The EAI of
the GPERPs increased with the increasing pH (p < 0.05); at pH values of 4.0 and 6.0, the
EAI of the freeze-dried GPERPs was significantly greater than that of the spray-dried
GPERPs, whereas at pH values of 8.0 and 10.0, there was no significant difference in
the EAI. At lower pH values, the hydrolysate has a positive charge, causing electrostatic
repulsion between molecules and hindering the formation of an emulsification system.
Under alkaline conditions, the hydrolysate promotes oil and water interface diffusion,
resulting in effective emulsification [28]. The impact of the pH on the ES of the GPERPs is
depicted in Figure 3b. Both the spray-dried and freeze-dried GPERPs exhibited increased
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ESs with the increasing pH (p < 0.05). The ES for the spray-dried GPERPs was 94.13 min at
pH 2.0, which significantly increased to 453.44 min at pH 10. Similarly, the freeze-dried
GPERPs showed a significant increase in their ES (p < 0.05), from 74.67 min at pH 2.0 to
245.58 min at pH 10.0.
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The presence of more hydrophobic amino acids may be linked to the observed effects.
Du et al. [55] performed a functional characterization of freeze-dried, vacuum-dried, and
spray-dried egg white peptide powders and reported that the emulsifications and emulsion
stabilities of the vacuum-dried and spray-dried samples were significantly lower than
those of the freeze-dried samples. During spray drying and heating, protein molecules re-
aggregate through hydrogen and disulfide bonds, reducing their flexibility and significantly
impacting their emulsification and emulsification stability. Proteins rich in hydrophobic
amino acids within the emulsion–gel matrix can enhance both the stability and emulsifica-
tion characteristics [56,57].

3.2.3. Water Retention Capacity (WRC) and Oil Retention Capacity (ORC)

The water retention capacity refers to the ability of proteins or their hydrolysates to
absorb water at room temperature, which is affected by the pH, temperature, surface charge,
ionic strength, protein structure, and amino acid composition [58]. For proteins to exhibit
a good water retention capacity, three conditions must be met: protein or hydrolysate
particles fully swell after rehydration but do not dissolve; protein or hydrolysate particles
have good viscosity after rehydration; and proteins or hydrolysates form gel network
structures [59].

The effects of different pH values on the WRC of the GPERPs are shown in Figure 4a.
The WRC of the freeze-dried GPERPs was significantly greater than that of the spray-dried
GPERPs (p < 0.05), except at pH 10.0. The WRC of the freeze-dried GPERPs reached
its maximum value of 201.49% when the pH was 6. At pH values between 6.0 and 8.0,
the WRCs of the spray-dried GPERP samples were not significantly different but were
significantly greater than those at pH 2.0 and 4.0 (p < 0.05). Overall, the WRC of the
freeze-dried GPERPs was greater than that of the spray-dried GPERPs, possibly because
the spray-dried WGPERP particles were fine, dissolved quickly in water, and had difficulty
swelling, whereas the freeze-dried powder particles were coarse, had poor solubility, and
swelled easily, so the WRC was greater than that of the spray-dried WGPERPs.
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The oil retention capacity (ORC) is another crucial functional property of proteins or
hydrolysates in food systems. The lipophilic properties of proteins are related to the nature
of the lipophilic groups on the surfaces of their molecules [60]. The nonpolar amino acid
side chains of proteins can form hydrophobic interactions with the hydrocarbon chains of
lipids, which influence their oil-binding capacity [61]. The effect of the pH on the ORC of
the GPERPs is shown in Figure 4b. The figure indicates that the ORC of the spray-dried
GPERPs under acidic conditions exceeds that under alkaline conditions, with a maximum
ORC of 560% at pH 4.0. Compared with that of the spray-dried GPERPs, the ORC of the
freeze-dried GPERPs exhibited the opposite trend. Under alkaline conditions (pH 8.0), the
ORC of the freeze-dried GPERPs was 715%, which was significantly greater than that of
the spray-dried GPERPs (382%) (p < 0.05).

3.3. Antioxidant Properties of GPERPs

Antioxidant peptides can prevent oxidation by reacting with free radicals, transform-
ing them into more stable products, and aborting the chain reaction of free radicals. O2− is
the primary reactive oxygen radical in living organisms; although it is not highly active, it
can produce H2O2 and hydroxyl radicals through disproportionation reactions and other
pathways. Many studies have shown that peptides effectively scavenge free radicals and
that the scavenging effect of peptides on free radicals is closely related to the amino acids
they contain [62,63].

The O2−-scavenging effects of the different concentrations of the goat placenta peptide
powders obtained via the two drying methods are shown in Figure 5a. The O2−-scavenging
ability of the peptide powder is related to its solution concentration; as the concentration
increases, its scavenging ability improves for peptide powders produced via different
processes. At the same concentration, the magnitude of the O2−-scavenging rate was
as follows: that of the freeze-dried peptide powder was greater than that of the spray-
dried peptide powder. Certain factors inherent to the spray-drying process—including
the shear force of the nozzle, the thermal stress generated during droplet drying, and the
adsorption of proteins or peptides at the air–liquid interface—can potentially damage these
biomolecules [64]. The DPPH-scavenging activities of the placental peptides obtained via
different drying methods are shown in Figure 5b. The DPPH-scavenging activity of the
peptides obtained via freeze drying at the same concentration was slightly greater than
that of the peptides obtained via spray drying. DPPH, a stable free radical with a single
electron, participates in oxidation reactions. After the addition of free radical scavengers,
the DPPH lone pair of electrons is paired, resulting in a decrease in the absorbance value
of its ethanol solution at a wavelength of 517 nm, and the degree of discoloration is
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quantitatively related to the number of electrons it accepts. Wang et al. demonstrated that
the spray-drying parameters also influence the antioxidant capacity of peptide powder.
These findings indicate that with an increasing inlet temperature, the antioxidant capacity
decreases. However, up to a certain threshold, an increased feed rate can positively affect
the antioxidant capacity, possibly by safeguarding heat-sensitive components [65,66]. Guo
et al. [67] reported that the presence of amino acids such as Try, Phe, and Lys at the C
or N terminus of a peptide exhibits strong antioxidant activity. However, it is not only
the presence of some favorable amino acids in the peptide sequence that is crucial for the
activity of the peptide but also their correct position in the peptide sequence. However, we
do not know the exact position of these amino acids in goat placenta peptides. Therefore,
determining the sequence of the antioxidant peptides is the direction of future research,
which can be facilitated by further purification of the peptides by ultrafiltration to facilitate
the discovery.
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4. Conclusions

Studying the changes in the physicochemical properties of GPERPs under different
drying conditions is essential for understanding them and applying them in food systems.
From the investigations of the present work, it can be concluded that the different drying
methods (freeze drying and spray drying) of the GPERPs had an impact on the physic-
ochemical and antioxidant properties. Moreover, GPERPs contain more essential amino
acids than GPER, and the AAS values of all the essential amino acids of GPERPs are greater
than 1, indicating that its nutritional quality is superior to that of GPER. The functional
property results revealed that the spray-dried GPERPs have superior foaming properties
and emulsifying activity, whereas freeze-dried GPERPs have a better water retention capac-
ity, and oil retention capacity at most pH values. GPERPs have good antioxidant properties,
and freeze-dried powder generally outperforms spray-dried peptide powder. Overall,
freeze drying or spray drying could be appropriate drying methods for the preparation of
hydrolysates from residual goat placenta extract with better functionalities. The findings
of this study will enhance our understanding of the functional properties of GPERPs,
guiding their application in self-assembly, Pickering colloids, and other food ingredients,
thereby expanding the use of goat placenta residues and increasing the economic value of
this byproduct.
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and editing, supervision, project administration. All authors have read and agreed to the published
version of the manuscript.
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