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Abstract: Addressing the privacy protection and data sharing issues in Chinese medical texts, this
paper introduces a federated learning approach named FLCMC for Chinese medical text classification.
The paper first discusses the data heterogeneity issue in federated language modeling. Then, it
proposes two perturbed federated learning algorithms, FedPA and FedPAP, based on the self-attention
mechanism. In these algorithms, the self-attention mechanism is incorporated within the model
aggregation module, while a perturbation term, which measures the differences between the client
and the server, is added to the local update module along with a customized PAdam optimizer.
Secondly, to enable a fair comparison of algorithms’ performance, existing federated algorithms
are improved by integrating a customized Adam optimizer. Through experiments, this paper first
conducts experimental analyses on hyperparameters, data heterogeneity, and validity on synthetic
datasets, which proves that the proposed federated learning algorithm has significant advantages in
classification performance and convergence stability when dealing with heterogeneous data. Then,
the algorithm is applied to Chinese medical text datasets to verify its effectiveness on real datasets.
The comparative analysis of algorithm performance and communication efficiency shows that the
algorithm exhibits strong generalization ability on deep learning models for Chinese medical texts. As
for the synthetic dataset, upon comparing with comparison algorithms FedAvg, FedProx, FedAtt, and
their improved versions, the experimental results show that for data with general heterogeneity, both
FedPA and FedPAP show significantly more accurate and stable convergence behavior. On the real
Chinese medical dataset of doctor–patient conversations, IMCS-V2, with logistic regression and long
short-term memory network as training models, the experiment results show that in comparison to the
above three comparison algorithms and their improved versions, FedPA and FedPAP both possess the
best accuracy performance and display significantly more stable and accurate convergence behavior,
proving that the method in this paper has better classification effects for Chinese medical texts.

Keywords: federated learning; Chinese medical text; text classification; self-attention mechanism;
Adam optimizer

1. Introduction

In the age of medical intelligence, the rapid development of health and medical big
data has profoundly influenced the advancement of the medical industry. Medical text
data, such as doctors’ notes, patient reports, and the medical literature, have become
indispensable data assets within the healthcare sector. The continuous improvement in
the quantity and quality of these data provides a solid foundation for the enhancement of
medical services.

However, the particularity of medical data lies in that they encompass not only the
health status and medical treatment processes of the subjects but also a wealth of sensitive
individual information. If handled carelessly, this could lead to a series of societal issues,
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including data privacy breaches, misuse of personal information, and damage to the
reputation of healthcare institutions. According to IBM’s statistics, healthcare organizations
have topped the list for data breach costs for nine consecutive years, with an average loss
of 6.5 million U.S. dollars [1]. Despite the enactment of regulations such as the European
Union’s General Data Protection Regulation (GDPR) [2] and the California Consumer
Privacy Act (CCPA) [3], reliance solely on legal constraints cannot fully prevent data
leaks, especially in the era of artificial intelligence, in which the protection of personal
information is particularly challenging. Therefore, it is particularly important to explore
medical text mining methods that can achieve intelligent and efficient processing while
protecting privacy.

Medical text classification is a key step in the processing of medical text data. It
involves categorizing medical text data according to specific standards to enable automated
processing of information such as patient diagnoses, treatments, and tests. This includes
symptom diagnosis, drug treatment, and medical literature retrieval, which can help the
medical industry better understand and utilize existing medical data, alleviate the shortage
of medical resources, and improve the quality and efficiency of medical services. It can
be widely applied in fields such as medical diagnosis to build intelligent medical inquiry
systems or assist doctors in providing accurate and rational treatment plans.

Early medical text classification methods primarily focused on feature extraction from
medical texts, such as the bag-of-words model, the TF-IDF, the N-grams, and other common
methods. However, the Chinese language typically features synonyms, antonyms, and
polysemy, and single-text information is insufficient to capture its complex structure and
semantic richness.

As research has advanced, scholars have proposed medical text classification methods
based on deep learning that consider the textual context, greatly improving text classifi-
cation accuracy and recall rates. Nevertheless, these methods still encounter numerous
difficulties in practical application and promotion. On the one hand, many single medical
institutions have accumulated a small amount of text data which are of low quality and
feature homogeneous characteristics, often failing to meet the training needs for deep
learning-based text classification. On the other hand, due to the emphasis on protecting
patient data privacy by healthcare institutions, medical information has not been shared,
and data are scattered across various institutions as isolated islands, greatly reducing data
usability. Additionally, Chinese medical texts contain relatively complex definitions of
modern medical professional terms and a large number of medical abbreviations. Feature
labels are often influenced by various factors such as doctors, medical institutions, and
disease types, leading to inconsistency in data distribution across different institutions.

In response to these challenges, federated learning offers a new approach. It allows
models to be trained locally or in the cloud without sharing data, and training results are
transmitted back to the local institution or cloud in real time. This technology enables
an intelligent medical inquiry system that can learn quickly without the need for data
movement. In recent years, the integration of federated learning with deep learning, which
achieves strong privacy protection and high predictive accuracy, has proven effective in
performing intelligent medical tasks.

Although scholars have proposed federated learning methods suitable for the medical
field, research on federated learning methods for Chinese medical text classification is not
yet mature. The main challenge lies in the inherent medical information characteristics and
semantic complexity of Chinese medical texts, as well as the differences among medical
institutions in patient clinical practices, treatment measures, and demographics. The het-
erogeneity of medical text data stored in different centers leads to biases in the classification
models built collaboratively by multiple centers, lacking sufficient generalizability. Against
this backdrop, this paper proposes a federated learning method for Chinese medical text
classification, named FLCMC, which connects data islands between different medical insti-
tutions, breaks down data barriers, protects data privacy, and enhances the efficiency of
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Chinese medical text data utilization, contributing to the innovation of intelligent medical
services. The main contributions of this paper are as follows:

1. This paper proposes a Chinese medical text classification method based on federated
learning, named FLCMC, which applies the federated learning framework to the
task of Chinese medical text classification. It enables the construction of classifica-
tion models by participating medical institutions without sharing original patient
data, overcoming the limitations of existing multi-center collaborative modeling that
requires data aggregation and centralized training, thus filling the research gap in
federated Chinese medical text classification.

2. Regarding the issue of federated heterogeneity, this paper addresses the data hetero-
geneity problem present in existing Chinese medical texts. It proposes the FedPA
algorithm, which introduces a self-attention mechanism in the model aggregation
module to assign contribution weights to clients and adds a perturbation term in
the local update module to measure the discrepancy between clients and the server.
The algorithm’s excellent performance on various heterogeneous datasets has been
proven through multiple experiments.

3. To enhance federated classification performance, this paper improves existing feder-
ated algorithms, such as FedAvg, FedProx, FedAtt, and FedPA, by embedding custom
Adam and PAdam optimizers in the local update module. It presents three new
algorithms—FedProP, FedAttP, and FedPAP—and proves their effectiveness and good
generalization ability on Chinese medical text deep learning models.

In summary, this paper aims to seek a federated Chinese medical text classification
model architecture with superior performance, filling the current void in federated Chinese
medical text classification research. By utilizing federated learning and deep learning, the
paper enhances the availability of medical text data and protects data privacy while driving
deep models to learn rich semantic information from Chinese medical texts. This addresses
the constraints faced by most researchers in medical text classification tasks, such as small
datasets, low quality, and homogeneous features.

Due to the limitations of Chinese medical text datasets, this study only conducts an
analysis on the IMCS-V2 dataset, ignoring generalization discussion on other datasets. In
addition, this paper only focuses on text-type medical data. In the future, it can be extended
to other Chinese medical text datasets and further explore medical multimodal federated
learning. Other potential further work includes considering introducing differential pri-
vacy technology to enhance privacy protection and optimizing noise addition strategies,
introducing interpretability to achieve interpretable federated learning, and exploring
the combination of lightweight models and federated learning to ensure performance on
resource-constrained clients.

The remainder of the paper is organized as follows: Section 2 provides an overview of
relevant literature, Section 3 presents the methodology and details of the developed model,
Section 4 presents the datasets, experiment details and evaluation indicators, Section 5
presents the experimental results and analysis, Section 6 presents the discussion, and
Section 7 concludes the paper.

2. Related Work
2.1. Research on Medical Text Classification Methods

As the volume of medical data rapidly grows, the need for automatic classification
and analysis of medical texts is increasingly urgent. Researchers around the world have
explored text classification methods based on machine learning and deep learning, such
as traditional methods based on feature engineering like Naive Bayes and Support Vector
Machine (SVM), as well as methods based on deep neural networks like convolutional neu-
ral networks (CNNs) and recurrent neural networks (RNNs). However, current research
still has some deficiencies in practicality and performance. Firstly, due to the uniqueness
of medical texts, including the complexity of vocabulary and semantic polysemy, existing
methods may encounter comprehension errors or information loss when processing medi-
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cal texts. Secondly, most studies rely on annotated datasets, but the process of annotating
medical texts is time-consuming, labor-intensive, and subject to subjectivity and inconsis-
tency. Moreover, existing methods typically assume that the data follow independent and
identically distributed (IID) statistics, neglecting the issue of data heterogeneity.

2.1.1. Natural Language Processing Text Classification

In the field of text classification, research by scholars both domestically and inter-
nationally mainly includes traditional machine learning algorithms and deep learning
algorithms. Text classification based on machine learning consists of three main steps:
text representation, feature selection, and classifier construction. Common classification
algorithms include Naive Bayes, Support Vector Machine (SVM), Hidden Markov Model
(HMM), and Random Forest. However, machine learning-based text classification methods
strongly depend on manually annotated features of domain knowledge and have poor
performance on high-dimensional data and generalization, leading to a shift from machine
learning to deep learning methods for text classification after the concept of deep learning
was proposed by Hinton et al. [4] in 2006.

Deep learning-based text classification leverages the automatic text representation
capabilities of deep learning models, greatly improving classification efficiency by replacing
the complex manual feature engineering of traditional methods. An important intermediate
step in text classification is text representation. In 2013, Google’s Mikolov et al. [5] proposed
the Word2Vec word vector representation method, training the model on a corpus of
6 billion words, which promoted the application of deep learning in the NLP field. In 2014,
Chen et al. [6] used a convolutional layer on top of Word2Vec’s word vectors to conduct
research on text classification based on convolutional neural networks (CNNs). In 2015,
Tai et al. [7] proposed the tree–LSTM model, extending LSTM to tree-structured network
types to learn rich semantic representations. In 2016, Yang et al. [8] introduced a hierarchical
attention network for text classification, applying the attention mechanism at both word
and sentence levels to differentiate the focus on more and less important content, enhancing
the interpretability of the algorithm. In 2017, Liu et al. [9] proposed a two-stage sentence
encoding model, first using a mean pool on a word-level Bi-LSTM model to generate the
first stage of sentence representation, followed by using an attention mechanism instead of
mean pooling for the same sentence to achieve better text representation.

It is evident that these studies all use various neural network models to learn text
representations. Recent studies indicate that models pre-trained on large corpora (PLMs)
can avoid the need to train new models from scratch, offering significant improvements for
text classification tasks. In 2018, Peters et al. [10] combined self-attention mechanisms and
the Bi-LSTM model framework to propose the ELMo pre-trained language model, which
dynamically represents the text semantic vectors of each word in the context, effectively
addressing the problem of polysemy. Following the introduction of the Transformer
structure, which relies entirely on the attention mechanism for training, PLMs with large
amounts of unannotated data began to emerge in the NLP field and were fine-tuned for
downstream tasks. Examples include the OpenAI GPT model proposed by Radford et al.
in 2018 and the BERT model proposed by Devlin et al. [11], where BERT is a model based
entirely on the bidirectional Transformer structure. Unlike Bi-LSTM, the BERT model uses
a masked language model to predict words that have been randomly masked or replaced,
while Bi-LSTM is limited to a combination of two unidirectional language models. BERT
was the first representation model based on fine-tuning and is currently the most efficient
method for text vector representation. Subsequent research has focused on improving
the BERT model, such as the RoBERT model proposed by Liu et al. [12] in 2019, which is
more robust than BERT; the ALBERT model by Lan et al. in 2020, which reduces memory
consumption and increases training speed; and the DistilBERT model by Sanh et al. [13],
which uses knowledge distillation during pre-training to reduce the size of BERT while
retaining most of its training capabilities.
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2.1.2. Medical Text Classification

Medical text classification is an important branch of text classification tasks in Natural
Language Processing (NLP). The classification of medical texts often falls into the multi-
label text classification domain, meaning that texts, as a type of sequential data, usually have
one or multiple category labels. Currently, there has been considerable research and notable
results in the field of medical text classification both domestically and internationally. In
2015, Campillos et al. [14] achieved the classification of medical and health texts by matching
pre-built rules with relevant words and sentences in queries. In 2016, Roberts et al. [15]
used the K-nearest neighbors algorithm to classify resource types of medical questions.
In 2017, Guo et al. [16] used the SVM algorithm for classifying Chinese medical texts.
Although these methods have achieved good results, they require manual construction of
classification features and struggle to capture deep semantic relationships between words
within sentences.

As research has progressed, Nam et al. [17] embarked on modeling work based on
RNN structures and sequence-to-sequence (Seq2Seq) architecture to capture the relevance
between different text label sequences, addressing the multi-label text classification prob-
lem. In 2018, Yang et al. [18] proposed viewing the multi-label classification problem
as a sequence-to-sequence generation process, introducing an SGM model based on the
attention mechanism and Seq2Seq architecture. However, the Seq2Seq-based sequence gen-
eration concept considers the dependency relationship between label sequences, meaning
the prediction of a subsequent label strongly depends on the generation of the previ-
ous label, potentially leading to an iterative effect of incorrect label prediction; thus, the
effectiveness of this sequence structure remains debatable.

With the rise of deep learning, Du et al. [19] in 2019 proposed ML-Net, a deep learning
framework for biomedical texts based on the ELMo pre-trained language model, integrating
the Bi-LSTM network structure and attention mechanism to capture the contextual semantic
associations of biomedical texts. In 2021, Chi et al. [20] proposed a Chinese health question
classification model based on the Transformer structure, utilizing the BERT pre-trained
language model to represent text word vectors and employing a topic model to obtain
the text’s topic–word matrix, enhancing the model’s ability to represent the semantics of
medical texts and its classification results.

In the field of Chinese medical text classification, in addition to the above-mentioned
work [16,20], other related work in recent years is listed as follows. Li et al. [21] proposed a
Chinese disease text classification model (DKCDM) based on medical knowledge, which
enhances the representation of disease texts by introducing an external medical knowledge
graph, alleviates problems such as data sparseness, and uses BiLSTM, CNN, and the atten-
tion mechanism to extract multi-faceted semantic features, achieving good classification
results on the Chinese disease text dataset.

Zheng et al. [22] proposed a deep neural network learning framework based on
ALBERT-TextCNN for multi-label medical text classification. This model uses the AL-
BERT pre-trained language model for dynamic word vector representation, introduces
the TextCNN convolutional neural network model to construct a multi-label classifier for
training, and effectively improves the multi-label classification effect of medical texts.

Xu et al. [23] proposed a Chinese medical text classification model, CMNN, based
on the Transformer bidirectional encoder representation BERT, the convolutional neural
network CNN, and the bidirectional long short-term memory BiLSTM neural network.
Using BERT to train word vectors, combined with CNN and BiLSTM, it captures local
potential features and contextual information and achieves good accuracy.

Zheng et al. [24] proposed a multi-label medical text classification algorithm (TLCM)
based on transfer learning and ensemble learning, which uses the multi-layer bidirectional
Transfomer structure inside the ALBERT model to train large-scale corpora to obtain
dynamic word vector representations of text in the general domain. Through transfer
learning and model fine-tuning techniques, the ALBERT pre-trained language model is used
to enhance the text semantics in the medical field, and the text semantic enhancement model
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is input into the Bi-LSTM-CNN integrated learning module to further extract information
features, achieving good classification results on the Chinese health question dataset.

Chen et al. [25] proposed a text classification method based on LSI-TF-IDF two-stage
feature selection for the sensitivity classification of medical text data. Through two con-
secutive stages of feature reduction and feature extraction, the classification accuracy is
improved, and the accuracy rate, recall rate, and F1 value are all improved, proving that
this method has a better classification effect on the sensitivity classification of medical
text data.

Li et al. [26] proposed an improved GRU deep learning framework, LS-GRU, for
solving the problem of image report text classification. By adding a layer of LSTM at the
front end of the GRU neural network to extract text features and introducing a self-attention
mechanism at the back end to locate classification features, experiments show that this
model has more accurate classification and higher robustness.

The above research work on Chinese medical text classification has been conducted
from different perspectives, focusing on specific medical text classification models and
methods, and has achieved certain results in improving the performance and effect of
Chinese medical text classification. However, there are still some challenges, such as data
privacy protection, data islands, and heterogeneity. Federated learning provides a new
idea to solve these problems, allowing models to be trained locally without sharing data,
protecting data privacy. Some researchers have carried out research on the classification of
non-Chinese medical texts based on federated learning. For instance, Bharti et al. [27] put
forward a non-Chinese cancer text classification system based on federated learning, which
employed the federated learning framework to address the issues of privacy protection
and data utilization in the healthcare system. This framework encompasses stages like
data acquisition, data preprocessing, and federated learning, and utilizes machine learning
models such as RNN, Bi-RNN, GRU, and LSTM for text classification, achieving certain
outcomes. Nevertheless, the research on federated learning methods for the classification of
Chinese medical texts is still in its infancy and requires further exploration. In view of this,
this paper proposes a federated learning method for Chinese medical text classification,
focusing on solving the problems of data privacy and sharing, and data heterogeneity of
Chinese medical texts, filling the research gap in the federated classification of Chinese
medical texts, helping to improve the utilization efficiency of Chinese medical text data,
protect data privacy, and promote the innovation of intelligent medical services.

2.2. Research on Federated Learning Technologies

Federated learning focuses on building machine learning models using datasets from
multiple medical institutions while protecting data privacy. With society’s growing em-
phasis on personal data privacy protection, federated learning in medical data mining has
emerged and shown promising outcomes, presenting a significant practical prospect and
medical value. However, most current research is centered on English medical standards
and electronic health record data; studies on Chinese medical data are sparse. Moreover,
in federated language modeling research, there is a common challenge known as the “im-
possible triangle”, which suggests that optimizing performance, efficiency, and privacy
simultaneously is not feasible.

2.2.1. Applications of Federated Learning in the Medical Field

In the medical field, existing federated learning research primarily utilizes medical
coding data and machine learning methods to handle tasks such as the classification of
medical data or the segmentation of images. This includes medical image detection, patient
representation learning, and predicting hospital admissions and mortality rates. In 2018,
Sheller et al. [28] collaborated with multiple medical institutions to build deep learning
models within a federated framework, achieving MRI brain tumor detection and mark-
ing the first application of federated learning in clinical medical imaging. Subsequently,
Lee et al. [29] used hash codes within a federated environment to compute data similarity
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distances for patient similarity learning across medical institutions, enabling the iden-
tification of similar patients from one hospital to another without sharing patient-level
information. In 2019, Li et al. [30] proposed a community-based federated machine learn-
ing algorithm that considered patient characteristics such as gender, age, and quantity,
first clustering similar patients into different communities and then predicting mortality
rates and lengths of hospital stay for patients in these communities. In the same year,
Liu et al. [31] applied federated learning to the patient representation task in clinical texts,
constructing a two-stage federated representation model that first pre-trained a patient
representation model from annotated texts using a neural network; the second stage used
input features pre-trained in the first stage to train a representation model for comorbidities
associated with obesity within a federated learning framework. In 2020, Vaid et al. [32]
combined COVID-19 datasets from five medical institutions and utilized federated learning
to improve mortality predictions for hospitalized COVID-19 patients.

In recent years, researchers have increasingly turned to federated studies based on
medical IoT devices. For instance, in 2021, Chen et al. [33] proposed the FedHealth fed-
erated transfer learning framework for wearable medical devices, aggregating data from
different organizations without compromising privacy security and achieving personalized
federated learning through knowledge transfer. Currently, international research in the
medical field has made significant progress with federated learning, concentrating mostly
on structured medical data discussions such as patient age, gender, and number of hospital
admissions. Research on unstructured data is also focused on medical imaging, while
pure clinical records and other unstructured data remain valuable resources for machine
modeling in the medical field. In a clinical setting, over 70% of information is stored
as unstructured text data [31]. Therefore, federated learning for medical text data not
only aids in better mining the rich semantic information within medical texts but also
fills the gap in domestic Chinese medical text classification research that has not consid-
ered patient privacy protection. Building an intelligent medical system that requires no
data movement and facilitates rapid learning is essential for China’s exploration of smart
healthcare infrastructure.

2.2.2. Optimizing Data Heterogeneity in Federated Learning

In 2021, Liu et al. [34] asserted that data heterogeneity is a significant challenge in
federated language modeling, especially prominent in the medical and health domain.
Initially, to address Android system update issues, Google’s McMahan et al. [35] first
proposed the concept of federated learning in 2016, allowing users to train models in their
systems, replacing the direct upload of data with model parameter uploads, and formally
introduced the Federated Averaging (FedAvg) algorithm for experiments, demonstrating
its robustness to unbalanced and non-independent and identically distributed (Non-IID)
data. The core idea of the algorithm is to optimize the local stochastic gradient descent
process for the data owner (client) individually and aggregate the operations on the central
server. As federated learning became popular, data heterogeneity emerged as a major
challenge beyond communication costs, privacy, and security. Researchers conducted a
series of studies on the precision performance issues that might affect algorithms due to
client data heterogeneity (Non-IID).

In 2018, Zhao et al. [36] conducted experiments with data of varying degrees of
Non-IID (non-independent and identically distributed) and discovered that the FedAvg
(Federated Averaging) algorithm could reduce accuracy by up to 51% on the CIFAR-10
image dataset. In 2019, Ji et al. [37] focused on the field of neural language modeling and
proposed the FedAtt algorithm, which uses an attention mechanism to aggregate client
models, proving to perform better than the FedAvg algorithm.

In 2020, Li et al. [38] introduced the FedProx algorithm, which improved upon the local
optimization function in FedAvg by adding a perturbation term to control the discrepancy
between the local models and the global model. This improved the overall convergence
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stability and, by dynamically adjusting the number of local iterations, ensured tolerance of
system heterogeneity, reducing the impact of heterogeneous data on the whole.

Karimireddy et al. [39] proposed the Scaffold algorithm, which reduces the deviation
in model updates between clients by using control variables, and demonstrated that this
algorithm could use the similarity of client data to achieve faster convergence. Lin et al. [40]
applied knowledge distillation techniques to accelerate model convergence, suggesting
that combining the strengths of local models during the aggregation phase could produce a
global model closer to the ideal training state.

It is evident that numerous scholars have made some research progress on the issue of
heterogeneity in federated learning, yet the problem has not been fully resolved to date,
especially concerning research in the medical field, which remains limited.

3. Methods
3.1. Basic Framework for Federated Learning in Medicine

Federated learning [35] is a distributed learning framework with privacy protection.
This framework allows two or more participants to cooperate to build a common machine
learning model. During the training process of the model, the training data of each partici-
pant will be retained locally. They will not leave the participating party, and the relevant
information of the model can be exchanged and transmitted between the participating
parties in an encrypted form, ensuring that no participating party can deduce the original
data of other parties.

Generally, suppose there are currently K medical institutions (data owners) participat-
ing in training together, denoted as {Fi}K

i=1, and the datasets they each own are denoted as
{Di}K

i=1. The traditional training method is to collect the data {Di}K
i=1 of all participants,

store them in a central server, and use the centralized datasets to train the model MSUM
on the server. The federated training method is a process in which a model MFED can be
jointly trained without collecting the data {Di}K

i=1 of the participating parties. The general
training process is summarized into the following five steps:

Step 1: The central server sends the initialized global model parameters to all local clients;
Step 2: The central server randomly selects clients that meet the training requirements

from all local clients;
Step 3: After receiving the global model parameters, the extracted local client performs

gradient update steps on the local datasets and uploads the model parameters to the
central server;

Step 4: After the central server receives the model parameters uploaded by all local
clients extracted in the global round, it uses the weighted average strategy to aggregate the
model and sends it to the clients of each medical institution;

Step 5: Each medical institution updates its own model parameters using the latest
global parameters received.

Depending on the actual application scenarios, the data of the participants often have
different distribution characteristics. Based on different data distribution forms, federated
learning can be divided into horizontal federated learning, vertical federated learning,
and federated transfer learning. Specifically, horizontal federated learning is suitable for
situations where the data of the participants have overlapping data characteristics but
different data samples. Vertical federated learning is suitable for situations where the data
of the participants have overlapping data samples but the participants have different data
characteristics. Federated transfer learning is suitable for situations where the data samples
and data features of the participants have little overlap.

3.2. Federated Learning Optimization and Aggregation

Federated learning optimization is essentially a distributed optimization problem.
McMahan et al. [35] pointed out that it solves the following technical difficulties [35], which
distinguishes it from typical distributed optimization problems.
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Difficulty 1: Non-independent and identically distributed. Under the federated learn-
ing framework, the training data of a given local client are usually based on the use of
mobile devices by specific users in the real world. Therefore, the local datasets of each
client are non-independently distributed Non-IID data;

Difficulty 2: Imbalance. In local clients, some users may use mobile devices more
frequently and in more diverse ways than other users, resulting in different numbers and
characteristics of local datasets for each client;

Difficulty 3: Large-scale distribution. In a real environment, the number of client
samples participating in federated optimization is very large, which is far greater than the
average number of samples of each distributed client;

Difficulty 4: Different communication states. Some local client devices are occasionally
offline, or the connection is slow, or local training is very expensive.

It is worth noting that in centralized training, computing costs are often concerned, and
currently most solutions are to use GPU training models; in federated distributed training,
communication costs dominate, and on the one hand, the client can only participate in
training in a non-offline state, that is, they will only participate in a small number of update
rounds every day. On the other hand, the client’s data are very small compared to the total
datasets. Therefore, with the help of GPU, the computational cost in federated learning
is almost negligible. Therefore, researchers in the field of federated learning focus on
communication costs and how to reduce communication rounds. McMahan et al. [35]
proposed the theory of federated learning optimization as follows:

In ordinary distributed learning, the objective function to be optimized is as follows:

min
θ∈Rd

f (θ) where f (θ)
de f
=

1
n

n

∑
i=1

fi(θ) (1)

Here, for machine learning problems, fi(θ) = l(xi, yi; θ) represents the loss of predict-
ing samples (xi, yi) using the model parameter θ, that is, the loss function.

In federated learning optimization, the loss function is usually expressed as follows:

f (θ) =
m

∑
k=1

nk
n

Fk(θ) where Fk(θ) =
1
nk

n

∑
i∈Pk

fi(θ) (2)

Here, m represents the number of clients selected to participate in training, n represents
the total sample size, nk represents the sample size of the kth client, and Pk represents the
sequence number set of sample individuals owned by the kth client. When each client obeys
the settings of IID data, Epk [Fk(θ)] = f (θ) can be derived. However, under the setting of
Non-IID data, it cannot be considered that f (θ) equals to Epk [Fk(θ)], that is, any local model
cannot be used as a global model.

Since nk has nothing to do with the model parameter θ, the gradient of the loss function
can also be calculated by weighted average, that is

∂ f (θ)
∂θ

=
K

∑
k=1

nk
n

∂Fk(θ)

∂θ
(3)

The method of calculating gradients and updating the model using this method is
called the FedSGD [35] algorithm. Among them, researchers such as McMahan [35] pointed
out that the simple SGD gradient descent algorithm is sufficient to adapt to the training
of some models. Therefore, in the federated learning framework, priority is given to
embedding SGD into the local optimization of the client, and good results were achieved.

However, due to the high communication cost, uploading the gradient to the server
every time the gradient is calculated will result in low training efficiency. In order to
reduce the number of communication rounds, the client usually calculates the accumulated
gradients for multiple rounds and then updates the accumulated model parameters. After
incremental aggregation, it is uploaded to the server. This method is called the FedAvg
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algorithm [35], and it is also the most classic and widely used federated learning aggregation
algorithm. The specific algorithm process is as follows:

Input: θ0 is the random initialization parameter; K is the client device; k is the index
of the client device; C is the proportion of clients performing calculations for each global
round; B is the local batch size from the partition Pk; E is the number of rounds of local
model training; η is the learning rate.

Output: The final global model parameter θt+1:

(1) FOR global rounds t = 1, 2, . . .;
(2) The server randomly selects C · K client local device St in proportion C to participate

in training;
(3) The server sends initialized the global model parameter θt to the selected client;
(4) Parallel computation per client k ∈ St:

Fk(θ
k
t ) =

1
nk

n

∑
i∈Pk

fi(θ
k
t ) (4)

(5) FOR client k’s local rounds i = 1, 2, . . . , E;
(6) FOR batch b ∈ B;
(7) The local update parameters are

θk
t+1 = argmin[Fk(θ

k
t )] = θk

t − η∇l(θk
t ; b) (5)

(8) Each client sends the updated the local parameter θk
t+1 to the server;

(9) After server aggregation, global parameters are output:

θt+1 = ∑k∈St

nk
mt

θk
t+1 (6)

It can be seen that the idea of the classic federated aggregation algorithm FedAvg is
very intuitive. The training process is divided into multiple rounds, and C · K local models
are selected to learn the data in each round. The epoch number of the kth local models in a
round is E and the size of batch is B, so the number of iterations is Enk/B. After a round,
the parameters of all local models participating in learning are weighted and averaged to
obtain the global model.

3.3. Federated Learning Algorithms for FLCMC

Considering the distinct heterogeneity of medical text data, this paper plans to discuss
data heterogeneity and optimize it before constructing a federated learning-based medical
text classification architecture. Looking at the improvements proposed by past researchers
in federated learning algorithms, they can be divided into two main areas: (1) model
aggregation and (2) local updates.

Ji et al. [37] focused on the scenario of English-language modeling for virtual mobile
keyboards and used the FedAtt algorithm, which employs an attention mechanism to
aggregate client models. This approach achieved better performance in neural language
modeling tasks compared to the FedAvg algorithm.

Li et al. [38] addressed system heterogeneity and data heterogeneity by introducing a
perturbation term during local model updates in client devices. This term constrains the
updates to be closer to the global model, utilizing the FedProx algorithm. Ultimately, they
demonstrated that this algorithm provides more stable and accurate convergence behaviors
compared to FedAvg in datasets involving images and texts.

These insights underline the importance of considering both algorithm enhancements
and the unique characteristics of the data involved in federated learning, especially in
sensitive and heterogeneous fields like healthcare.

Inspired by the aforementioned algorithm, we introduce a self-attention mechanism to
measure the weights of clients in model aggregation and introduce perturbation constraints
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in local updates. We propose the FedPA algorithm, which incorporates the self-attention
mechanism in global aggregation and introduces perturbed gradient descent (PGD) in local
updates, a method that can be seen as a variant of SGD.

Further considering the performance of real language modeling tasks and communica-
tion costs and aiming to enhance the performance of FLCMC when deploying deep neural
network language models, we have built upon the foundation of FedPA. We draw from
the concepts of the Adam optimizer, proposed by Kingma and Ba [41], and integrate the
Adam optimizer’s adaptive gradient adjustment for learning rates and gradient moment
estimation into the local updates of federated learning. We further propose a PAdam local
update algorithm. This integration is designed to improve the accuracy and stability of
model training.

A high-level view of the proposed FedPAP algorithm is illustrated in Figure 1, which
primarily includes the following two parts: (1) introducing the attention mechanism to
model aggregation; (2) introducing proximal operator constraints and adaptive gradient
adjustment for learning rates, along with gradient moment estimation in local updates.
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3.3.1. Global Aggregation

Self-attention [37,42–44] simulates the visual process in which humans automatically
ignore non-critical information when observing things. It was originally applied to machine
translation problems by Bahdanau et al. [42]. This study described attention as performing
a weighted average on the encoder hidden layer to calculate decoding. The contribution of
each encoder to the weighted average is determined by the similarity between the encoder’s
state and the decoder’s previous hidden state. Among them, the architecture diagram of
the encoder–decoder presented by Yu et al. [45] is shown in Figure 2.
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The encoder–decoder architecture is also called the sequence-to-sequence problem.
It is often used to deal with the problem of encoding and decoding a natural language
sentence sequence to obtain a new sequence, such as multi-label text classification problems.
In Figure 2, X represents the source sequence, Y represents the target sequence, and C
represents the semantic encoding process, which integrates the sentence information input
into the encoder, and Y is only related to C.

The role of the self-attention mechanism is to calculate the weights between each
word and all other words, applying different levels of attention to different encoder word
vectors and giving greater weight to the parts crucial for deciding the decoder word vectors.
Less important information is given lesser weight, effectively solving the problem of long-
distance dependencies in sentences. This mechanism has been widely applied to enhance
RNN and CNN models. Below, the specific theory is introduced:

The self-attention mechanism treats the source text sequence processed by the encoder
as a sequence of key-value pairs composed of a key vector K and a value vector V. The
output vector is the weighted average of the value vector V, and the weight is determined
by the similarity between the query vector Q and the key vector K. Here, the query vector
Q corresponds to the query sequence predicted by the decoder as it interprets the semantics.
In general, the attention function is a function that maps a query vector Q and some K-V
key-value pairs into an output. The specific calculation steps are as follows:

Step 1: Calculate similarity. Calculate the similarity between the vector Q = (q1, q2, · · · ,
qM) and the key vector K = (k1, k2, · · · , kN), mainly calculating the score eii of the similarity
between qi and each ki. The commonly used calculation function is as follows:

eii =



qT
i Wki, common

qT
i ki, point

qT
i ki√

dk
, scalar dot product

hTtanh(Wqt + Uki), add upsca
hTtanh(W[qt; ki]), put together

(7)

Step 2: Normalization. The softmax function is usually used to normalize the similarity
score eii to obtain the weight corresponding to the key, as follows:

aii = so f tmax(eii) =
exp(eii)

N
∑

n−1
exp(eii)

(8)
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Step 3: Weighted sum. Combine the weight aii corresponding to each key and its
corresponding value vii in the value vector V = (v1, v2, · · · , vN) to perform a weighted
sum to obtain the output of attention. The attention function is as follows:

Attention(qi, K, V) = ∑
i

aiivi (9)

The Transformer model proposed by Vaswani et al. [44] applies the attention of scaling
dot products based on the efficiency of matrix multiplication compared with addition and
the difficulty of gradient calculation due to large dimensions.

This section draws on the self-attention mechanism proposed by Ji et al. [37] to in-
troduce the federated learning model aggregation method. The goal is to find an optimal
global model close to the client model in the parameter space, that is, the input vector is the
parameter vector of the client model, the output vector is the parameter vector of the server
model, and the attention weight is regarded as the similarity between the server (global)
model parameters and the client (local) model parameters. Here, the specific federated
aggregation structure is given in Figure 3:
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The figure only shows the aggregation structure separated by time steps t = 1, in
which the model parameters are represented by θ, the attention weight is represented by α,
the number of clients is represented by m, and “+” and “−” represent parameter operations
on the neural network model. Combined with the understanding of structure diagrams,
the objective function of optimization is defined as follows:

argmin
θt+1

m

∑
k=1

[
1
2

αkL(θt, θk
t+1)

2
] (10)

Among them, θt is the parameter of the server model at moment t; θk
t+1 is the model

parameter for the kth client at moment t + 1; L(, ) is defined as the distance between the
two sets of parameters; αk is the attention weight used to measure the similarity between
the client and the server.
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Combining Formulas (7)–(9) and the method of calculating attention weight α, the
corresponding specific attention weight calculation steps are as follows:

First, given the server model parameter as θt, and the model parameter of the kth
client as θk

t , here, the L2 norm is used to calculate the similarity between parameters, that is

sk =
∥∥∥θt − θk

t

∥∥∥
2

(11)

Secondly, so f tmax is used as a function to normalize the similarity and define the
attention weight as

αk = so f tmax(sk) =
esk

∑m
k=1 esk

(12)

Then, combined with Equation (10), the gradient of the server model parameter θt can
be calculated as

∇J(θt) =
m

∑
k=1

αk(θt − θk
t+1) (13)

Among them, m represents the number of clients selected in this global update round.
Finally, the global parameters output by the server after attention weight aggregation can
be calculated as

θt+1 = θt − λ
m

∑
k=1

αk(θt − θk
t+1) (14)

Among them, λ represents the step size. It is not difficult to see that the method of
calculating the global model parameters here is different from the aggregation algorithm
in Equation (6), which directly weights and averages the parameters of each client based
on the number of client samples. Instead, it minimizes the distance between the global
parameters and the client parameters, and adds attention weights to measure the similarity
between the client parameters and the server parameters.

3.3.2. Local PAdam Update

In 2014, two scholars, Kingma and Ba [41], proposed the Adam optimizer, which
combines the advantages of two optimization algorithms, AdaGrad and RMSProp. The
update step size is calculated by comprehensively considering the first-order moment
estimate of the gradient (i.e., the mean value of the gradient) and the second-order moment
estimate (i.e., the uncentered variance of the gradient). The basic formula is as follows:

gt = ∇θ J(θt−1) (15)

mt = β1mt−1 + (1 − β1)gt (16)

vt = β2vt−1 + (1 − β2)g2
t (17)

m̂t = mt/(1 − βt
1) (18)

v̂t = vt/(1 − βt
2) (19)

θt = θt−1 − η · m̂t/(
√

v̂t + ε) (20)

First, as shown in Formula (15), the gradient of the time step t is calculated; as shown
in Formula (16), secondly, the exponential moving average of the gradient is calculated and
m0 is initialized to 0. Similar to the momentum algorithm, this step combines the gradient
momentum of historical time steps, where the coefficient β1 is the exponential decay rate
controlling the weight distribution (momentum and current gradient); usually, the default
value is 0.9. Then, as shown in Formula (17), the exponential moving average of the
gradient square is calculated, v0 is initialized to 0, and the coefficient β2 is the exponential
decay rate. The default value which controls the influence of the historical gradient square
is usually 0.999. Similar to the RMSProp algorithm, a weighted average of the squared
gradients is performed. Because m0 is initialized to 0, this leads to mt being biased towards
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0, especially in the early stages of training. Therefore, as in Formula (18), it is necessary to
correct the bias of the average gradient mt. The calculation of v̂t in Formula (19) is based
on the same principle. Finally, as shown in Formula (20), the initialized learning rate η is
multiplied by the ratio of the gradient mean to the square root of the gradient variance to
obtain the updated parameters. Similar to the RMSProp algorithm, generally set ε = 10−8

and the learning rate η = 0.001. ε = 10∧(−8).
Combined with previous research on federated optimization algorithms, federated

local optimization is usually based on the SGD algorithm. However, problems such as
low training accuracy, slow convergence of the loss value, and large fluctuations in deep
learning language modeling often occur [46]. Therefore, this paper is inspired by Li
et al. [38] and proposes a PAdam local update algorithm based on the idea of embedding
disturbance terms in SGD local update and the advantages of the Adam optimizer. The
details are as follows:

The general local client SGD gradient update is shown in Equation (5), that is, the local
objective function to be updated is Fk(θ

k
t ).

This article considers adding disturbance terms locally and embedding the idea of
Adam optimizer, that is:

H(θk
t , θt) = Fk(θ

k
t ) + µ/2

∥∥∥θk
t − θt

∥∥∥2
(21)

gt+1 = ∇H(θk
t , θt) = Fk(θ

k
t ) + µ(θk

t − θt) (22)

mt+1 = β1mt + (1 − β1)gt+1 (23)

vt+1 = β2vt + (1 − β2)g2
t+1 (24)

m̂t+1 = mt+1/(1 − βt+1
1 ) (25)

v̂t+1 = vt+1/(1 − βt+1
2 ) (26)

θk
t+1 = θk

t − η · m̂t+!/(
√

v̂t+1 + ε) (27)

In this context, θk
t+1 represents the updated model parameters of the client k at time

t + 1, θk
t is the model parameter of the client k at time t, θt is the global model parameters

at time t, H(θk
t , θt) is the objective function that includes the added perturbation term,

µ/2
∥∥∥θk

t − θt

∥∥∥2
is the added perturbation term, and µ is a hyperparameter that constrains

the difference between the local model and the global model. The remaining parameters
and the corresponding default values are no different from the general settings of the
Adam optimizer.

The FedPAP algorithm proposed in this article combines a model aggregation part
based on the attention mechanism with a local update part, which adds disturbance terms
and incorporates Adam optimization ideas. That is, the client local update parameters ob-
tained from Equation (27) are substituted into Formula (14), and the global model parameter
is finally output, completing the construction of the entire federated optimization algorithm.

3.4. Datasets and Preprocessing
3.4.1. Definition and Characteristics of Chinese Medical Text Datasets

Chinese medical text datasets are one category of medical and health big data, encom-
passing a variety of text information written in Chinese within the medical field. Medical
and health big data refer to the large amounts of data generated in the medical field, with
both narrow and broad interpretations. Narrowly, the term refers to big data produced
by medical institutions, mainly originating from routine clinical diagnosis and treatment,
research, and management processes in hospitals, including various outpatient and emer-
gency records, hospitalization records, imaging records, diagnostic records, and medical
insurance data [47]. Broadly, medical and health big data cover internet big data, regional
health service platform data, disease monitoring big data, self-quantification big data,
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and bioinformatics data [48]. In this paper, Chinese medical text datasets are defined
as symptom diagnosis records data consisting of doctor–patient dialogues, existing in
an unstructured form within fields such as diagnostic results and patient complaints in
doctor–patient dialogues, and these fields contain a large number of professional medi-
cal terms.

With the popularization of medical informatization and electronic medical records in
our country, medical data are structured and stored in Chinese Electronic Medical Records
(CEMRs), improving the readability and usability of medical information. However, in clin-
ical practice, a large amount of electronic medical documentation is stored in unstructured
and semi-structured forms, and these texts may play an important role in predicting pa-
tient risk, discovering potential disease patterns, and optimizing clinical decision-making.
Domestic research on the structuring and semantic analysis of medical text data still faces
challenges, mainly because, firstly, domestic research on medical informatization started
late, and for a long time, there was a lack of medical text corpora. Secondly, in addition to
the characteristics of traditional big data, such as volume, variety, and velocity, Chinese
medical texts also possess linguistic complexity, preciseness, medical privacy security,
heterogeneity, and closedness. From the perspective of textual language features, they can
be summarized as follows [49]:

Word-level named entity recognition: When performing word-based named entity
recognition in Chinese medical texts, the influence of segmentation may lead to changes in
word properties or loss of entity information. For example, “diabetic retinopathy” might
be incorrectly recognized as two entities, “diabetes” and “retinopathy”, leading to errors in
named entity recognition.

Character-level named entity recognition: Although this avoids the impact of word
segmentation, it does not consider word boundary information, which could potentially
improve entity recognition performance. For instance, negative symptoms in medical
symptom diagnosis, i.e., symptoms that do not exist or are not manifested, are significant
for assessing the urgency of the condition, such as “throat pain, no itchiness in the throat”
where “no itchiness in the throat” is important.

Specialty of professional terms and phrases: Chinese medical texts use a large number
of professional terms and phrases with industry-specific meanings and standards; for
example, in traditional Chinese medicine diagnosis, “red” corresponds to “red tongue
coating” but also to “red tongue substance”. These terms and phrases may be difficult for
non-medical professionals to understand.

Use of abbreviations and acronyms: In Chinese medical texts, abbreviations and
acronyms are often used to replace complex Chinese names or terms when writing elec-
tronic medical records, using English acronyms instead of complex Chinese names, such
as CTA (Computed Tomography Angiography), “MRI” (Magnetic Resonance Imaging),
etc. However, in different contexts, these abbreviations may have multiple meanings; for
instance, “CTA” might also refer to coronary angiography.

Existence of aliases and synonyms: There are many aliases and synonyms in Chinese
medical texts, and so far, there is no unified medical terminology dictionary in China as
a standard for writing electronic medical records. Different regions, hospitals, or doctors
may use different names for the same concept, such as “Ampicillin” and “Ambicillin” or
“Goji berry” and “Gouqi”.

3.4.2. Chinese Medical Text Datasets

Standard datasets and richly annotated corpora are key to advancing intelligent
medical development. In recent years, with the development of pre-trained language
models (PTLMs) and large language models (LLMs), the usability of unannotated Chinese
medical text data has greatly improved, achieving excellent training results on many
downstream tasks. This section introduces commonly used public Chinese medical text
datasets from recent research, summarized in the following Table 1.
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Table 1. Chinese medical text datasets.

Dataset Name Data Volume Data Tags Data Type

CMeEE [50] 23,000 9 types of entities Chinese medical text named
entity recognition

CMelE [50] 22,406 53 types of relations Chinese medical text entity
relationship extraction

CMedCausal [51] 3000 3 types of relations Medical causality relationship
extraction

CHIP-CDEE [51] 2485 4 types of attributes Clinical discovery event
extraction

CHIP-CDN [50] 18,000 2500 standardized Clinical terminology
normalization

CHIP-CTC [50] 40,644 44 categories Clinical trial screening criteria
short text classification

CHIP-MEDFNPC
[52] 8000 4 types of attributes

Medical dialogue clinical
findings polarity

determination

CHIP-STS [50] 30,000 2 categories
Ping An Healthcare and

Technology Disease Q&A
transfer learning

KUAKE-IR [53] 104,000 10 relevant data items Medical paragraph retrieval

KUAKE-QLC [54] 10,880 11 categories Medical search query intent
classification

KUAKE-QTR [52] 32,552 4 categories Medical search page title
relevance

KUAKE-QQR [52] 18,196 3 categories Medical search query relevance
MedDG [55] 22,162 160 types of entities Chinese medical dialogue

DiaKG [56]
22,050 entities,
6890 relation

triples

15 types of entities,
10 types of relations

Diabetes domain entities and
relations

IMCS [57] 4116
16 types of intents,
5 types of entities,

3 types of symptoms

Intelligent dialogue diagnosis
and treatment

TCMRelExtr [58] 16,150
summaries

4 types of entities,
5 types of relations

Traditional Chinese medicine
entity and relationship corpus

By exploring the existing medical text datasets, it can be found that there are often
two problems in categorizing Chinese medical text datasets in practical applications:

(1) Lack of normalization: Influenced by the colloquial expression of the text, the same
disease state may be expressed in multiple ways. For example, both “fever” and “heat”
could indicate the symptom of a fever.

(2) Unknown symptom–patient relationship: It is unclear whether the patient actually
has all the symptoms mentioned, as they do not necessarily possess every symptom listed
in the record.

In summary, challenges such as non-unified writing standards, the small scale of
annotated corpora, and the difficulty in sharing corpora still confront Chinese medical
text datasets. Therefore, subsequent researchers should promote corpus sharing and
improve the interpretability of unsupervised and semi-supervised learning methods while
protecting data privacy and security. These efforts are essential to further develop the field
of Chinese medical NLP research.

3.4.3. Intelligent Conversation Medical Dataset IMCS-V2

This paper selects the intelligent conversation medical dataset IMCS-V2 [57] for mul-
tiple NLP tasks as experimental data. This dataset collects real online doctor–patient
conversations and carries out multi-level manual annotation, including named entity
recognition, conversation intent, symptom labels, medical reports, etc. Compared with
the original IMCS21 (V1 version) dataset, the IMCS-V2 dataset has expanded the sample



Entropy 2024, 26, 871 18 of 37

size, including 4116 groups of doctor–patient dialogue case samples, covering 10 pediatric
diseases. The specific data statistics are as shown in Table 2 below.

Table 2. IMCS-V2 doctor–patient dialogue dataset statistics.

Statistical Indicators Accurate Value

Total number of diseases 10
Total conversations 4116

Total number of sentences 164,731
Average number of sentences per conversation 40
Average number of characters per conversation 523

Average number of characters per conversation (including patient self-report) 580

The specific content of the data consists of doctor–patient dialogue. Each sample
ID corresponds to a dialogue. Each dialogue contains multiple sentences, and a random
example is displayed in Table 3 below.

Table 3. IMCS-V2 doctor–patient dialogue data format.

Main Field Name Subfield Name Field Explanation Example Content

example_id none Conversation sample id 10001003

diagnosis none Patient disease category Indigestion in children

self-report none Patient reports

“My baby is 16 days old and her belly is
always very bloated. She still needs to feed,
and she farts very hard. How should I deal

with it?”

dialogue

sentence_id Dialogue turn number 1
speaker doctor or patient Doctor

sentence Current conversation text
content

“Hello, babies who are 16 days old usually
have a bigger belly after feeding. Is it good

for the baby to feed? Is the breast milk
enough? Is there any diarrhea?”

dialogue_act conversational intent Ask about symptoms
symptom_norm Symptom terms that appear Diarrhea
symptom_type Symptom Category 1

local_implicit_info Sentence symptoms and
category labels Diarrhea: 1

implicit_info Symptom Conversation symptoms and
category labels Diarrhea: 1; sleep disturbance: 1

explicit_info Symptom Self-reported symptoms and
category labels Diarrhea, fart

report none Diagnosis and treatment
report

Chief complaint: abdominal distension
History of current illness: “The 16-day-old
child suffers from abdominal distension,

crying easily, burping easily after feeding,
and having bowel movements 6–7 times

a day”.
Auxiliary inspection: none

Past history: none
Diagnosis: indigestion in children

Suggestion: “Keep warm, rub the child’s
belly clockwise; take an appropriate amount
of Mommy’s Love, half a pack at a time. . .”

It can be seen from the data form that the text data corresponding to the I MCS-V2
dataset mainly include a patient self-report, dialogue, diagnosis, and treatment report.
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Among them, the dialogue field contains multiple sentences, and the sentence sentences
corresponding to each dialogue sample example_id are different; each dialogue has dif-
ferent dialogue modes due to the different speaking characteristics of the patient and
the doctor. At the same time, each sentence corresponds to a binary classification label,
symptom_type, which indicates whether there is a symptom or not. In summary, this data
form provides an ideal heterogeneous federated learning scenario.

Therefore, this article targets the Chinese medical text classification task, extracts the
relevant fields in the IMCS-V2 dataset that are suitable for the symptom classification task,
including example_id, dialogue sentence, and symptom type, and preprocesses them into
the data shown in Figure 4 below, so as to transform them into an input format suitable for
federated learning.
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Sentences such as sentence _1 and sentence e_2 correspond to Chinese medical segmen-
tation texts processed by jieba. In order to ensure the accuracy of medical text segmentation,
this article adds medical symptom terms compiled by the Chinese Medical Information
Processing Challenge List CBLUE platform to the word segmentation database in advance.

At the same time, in order to convert Chinese medical text into sentence vectors
suitable for language model input, that is, text representation, this article plans to download
the Chinese-Word2vec-Medicine pre-trained word vector from Github. The medical word
vector is represented by the Word2vec method. Overall, the corpus includes medical
literature, doctor–patient conversations, Wikipedia, Baidu Knows, and other medical-
related corpora. The overall corpus totals 1.6 G, with a total of 7,052,948 sentences, and
professional medical vocabulary is used for word segmentation.

3.4.4. Synthetic Datasets

Research on federated learning heterogeneity can be divided into two aspects. One
is system heterogeneity, that is, there are differences or diversity between different client
devices participating in federated learning. Such differences may originate from differences
in device computing capabilities, differences in network environments, and differences
in device software and hardware configurations; on the other hand, there is statistical
heterogeneity, which is also the heterogeneity of data distribution, that is, the distribution
of data depends on the geographical location of the client, user characteristics, and data
distribution differences caused by different storage rules. In this paper, the heterogeneity of
data distribution is mainly studied. In order to simulate different degrees of heterogeneous
data distribution forms, this paper considers using synthenic datasets to conduct algorithm
evaluation experiments. synthenic datasets are mainly generated by the method proposed
by Shamir et al. [59] and are widely used in federated learning experiments. The dataset
consists of two parameters α and β to control the statistical heterogeneity of the generated
data. Parameter α is used to control the skewness of the label distribution, that is, the larger
the value of α, the greater the skewness of each client’s label distribution. Parameter β is
used to control the skewness of the feature distribution, that is, the larger the value of β,
the greater the skewness of the feature distribution of each client.

This article uses different α and β values to synthesize three sample datasets with
30 clients, 60 features, and 10 classes, respectively, represented as synthenic(0, 0),
synthenic(0.5, 0.5) and synthenic(1, 1), and additionally considers synthesizing dataset
synthenic I ID, which obeys independent and identical distribution for comparison analyze.
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Among them, the synthenic I ID dataset is generated based on the same distribution of each
client data feature and class. The final data distribution obtained is shown in Table 4 below.

Table 4. Dataset description.

Dataset Name Train Dataset Size Test Dataset Size Number of Clients

synthenic(0, 0) 7926 897 30
synthenic(0.5, 0.5) 8065 912 30

synthenic(1, 1) 9600 1084 30
synthenic I ID 7102 805 30

At the same time, the sample size and class distribution of each client’s training data
in the three types of heterogeneous datasets are visualized in Figures 5 and 6.
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As can be seen from Figure 5, as the value of α and β increases, the imbalance in
sample size also increases. For example, in the dataset synthenic(0.5, 0.5), the 14th client
with the largest sample size has 4185 samples, while the minimum sample size is only 45.
As can be seen from Figure 6, although the parameter value set in the dataset synthenic(0, 0)
is 0, that is, there is no manual control of the skewness of data categories and features, the
class imbalance in each client is also extremely large. We randomly selected Client 15 for
viewing and found that there are 1494 samples in category 5, while the number of samples
in category 9 is only 21.

4. Evaluation
4.1. Comparison Algorithms

The core experimental part in this section uses three federated learning algorithms for
comparison:

FedAvg [35]: This method implements model aggregation of federated learning
through the averaging of model parameters. After each client is trained locally, the model
will randomly select some clients and upload the updated model parameters to the server.
The server then aggregates the parameters according to the sample size weight and issues
them to each client.
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FedProx [38]: This method is an improved federated learning algorithm that balances
the differences between the local model and the global model by adding perturbation terms.
It introduces a disturbance term based on the FedAvgalgorithm, making the locally updated
model parameters closer to the global model, effectively improving the generalization
performance and convergence speed of the model.

FedAtt [37]: This method is a federated learning algorithm with good performance in
federated language modeling scenarios. It introduces a distance function to measure the
difference between the client and the server in the global update module and introduces an
attention weight to measure the client’s contribution during model aggregation, measuring
the importance of the client and accelerating the learning process.

FedPA: The federated learning algorithms proposed in this article.
It is worth noting that the local update modules of these four algorithms are imple-

mented by simple SGD. The local gradient update method used by the FedProx algorithm
and the FedPA algorithm is essentially perturbed gradient descent (PGD) and can be re-
garded as a version of SGD. variant. This type of optimization method has been shown
to perform poorly in the training of deep model language modeling [46]. Therefore,
this paper considers embedding the Adam optimizer in the local update module of the
four algorithms.

Among them, the FedAvg and FedAtt algorithms can directly call the Adam optimizer
(Tf-Adam) defined in the TensorFlow library when updating the local model, but the
FedProx algorithm and the FedPA algorithm proposed in this article have improved the
local update module, that is, it is necessary to customize the Adam optimizer for embedding
on the basis of improvement. Therefore, this article uses the TensorFlow library to customize
the local update algorithm of the federated learning client, which mainly includes the
custom Adam optimizer (Self-Adam) and the custom added perturbation term-constrained
Adam optimizer (PAdam).

At the same time, in order to verify the reliability and effectiveness of the custom Adam
optimizer, this section embeds the Tf-Adam and Self-Adam optimizers in the classic FedAvg
algorithm for comparative experiments. It is intended to verify the effectiveness of Self-
Adam local optimization in the experimental results, so that the comparative experiment
analysis of embedding the custom optimizer into other federated algorithms is more
scientific and reasonable. All federated algorithms participating in the experiment are
listed below (Tables 5 and 6).

Table 5. Description of SGD federation algorithms.

Algorithm Model Aggregation Methods Local Update Method

FedAvg weighted average aggregation SGD optimizer
FedProx weighted average aggregation PGD optimizer
FedAtt attention mechanism aggregation SGD optimizer
FedPA attention mechanism aggregation PGD optimizer

Table 6. Description of the Adam federated algorithm.

Algorithm Name Model Aggregation Methods Local Update Method

FedAvgS weighted average aggregation Self-Adam optimizer
FedAvgT weighted average aggregation Tf-Adam optimizer
FedProxP weighted average aggregation PAdam optimizer
FedAttS attention mechanism aggregation Self-Adam optimizer
FedPAP attention mechanism aggregation PAdam optimizer

Among them, FedPA and FedPAP are a perturbed federated learning algorithm based
on the attention mechanism and the perturbed Adam federated learning algorithm based
on the attention mechanism proposed in this article. The difference between the two mainly
lies in the type of local update optimizer.
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4.2. Experiment Details

All experiments in this paper were implemented using Python 3.8 and the TensorFlow
2.5.0 [60] library for machine learning. The experiments were performed on a processor
equipped with a 12-core/Xeon® Platinum 8255C processor and an RTX 3090 (24 GB) GPU.
The floating-point arithmetic power was 35.58 TFLOPS in single precision and 71 Tensor
TFLOPS in half precision.

In order to better evaluate the performance of the algorithm from a federated per-
spective, such as by adding disturbance terms and attention mechanism aggregation, the
experiments in this section will analyze the SGD algorithm and the Adam algorithm, respec-
tively, that is, we will compare the algorithms using the same optimizer. The same learning
rate is used for the SGD algorithm experiment, and the number of clients participating in
training is set to 10. The relevant hyperparameter settings are as shown in Table 7 below.

Table 7. Hyperparameter settings.

Hyperparameters Explain Default Value

learning_rate Optimizer learning rate 0.01
num_rounds Communication rounds 1 00

clients_per_round Number of clients per training round 1 0
num _epochs Number of local training rounds 1 0

num_iters Number of iterations per round 2 0
eval_every Evaluate every few rounds 1
batch_size Batch sample size 1 0

see random seed 0
mu Constraint difference parameters µ 1

stepsize(ss) Constrained attention aggregation
weight parameters λ

1.2

The settings of the above hyperparameters are all based on existing research on feder-
ated learning experiments conducted on the dataset synthenic as reported in studies [38,46].
The settings of these hyperparameters are based on existing research on federated learning
experiments conducted on the dataset as reported in studies [38,46]. The learning_rate = 0.01
is identified as an optimal performance value for experiments using the SGD optimizer
as determined by researchers, whereas for the Adam optimizer, it is often set to 0.001.
However, adjustments might be necessary depending on the specific dataset, learning
tasks, and training models involved. In this paper, to ensure fairness in the comparison
of federated algorithms, the hyperparameters are uniformly set to the aforementioned
optimal values.

Additionally, the setting of the constraint difference parameter mu primarily refer-
ences the experimental performance comparison of the FedProx algorithm. Researchers in
study [38] suggest that the optimal hyperparameter value of mu for experiments on the
dataset is set at 1. For the stepsize parameter, which constrains the attention aggregation
weight in the FedAtt algorithm [37], specific values were not provided. However, based on
the settings provided in the federated learning GitHub code for neural language modeling
shared by researchers, an initial value of 1.2 can be determined. It should be noted, however,
that this value is not necessarily the optimal parameter for the dataset.

4.3. Evaluation Indicators

This article plans to use the accuracy Acc of the global model relative to each client’s
test set data to evaluate the accuracy of the algorithm and use the cross-entropy loss value
loss of model training to evaluate the convergence of the algorithm. Among them, Acc is
the average value of the accuracy measurement of the model in the client test set when
the server communicates the global model to the client and is obtained by the weighted
average of the number of samples in the client test set.
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5. Results
5.1. Discussion with Synthetic Datasets

As can be seen from the description of the synthetic dataset in 3.4.4, the dataset models
the various forms of data distribution suitable for federated learning well and takes into
account the extremes of data distribution, which provides credible support for the results
of the performance evaluation of the federated learning algorithm. Therefore, we prioritize
the evaluation experiments of the algorithm performance on the synthetic datasets before
evaluating it on the real dataset.

In order to evaluate the performance of the perturbed federated learning algorithm
FedPA based on the attention mechanism and the perturbed Adam algorithm FedPAP based
on the attention mechanism proposed in this article, this article plans to use a polynomial
logistic regression model to perform classification training on the dataset synthenic and
make a comprehensive algorithm evaluation. First, we perform hyperparameter analysis
for SGD algorithms, select the heterogeneous dataset synthenic(0.5, 0.5) for model training,
and determine the optimal hyperparameters suitable for FedPA and FedPAP. Secondly,
we perform heterogeneity analysis and select different SGD algorithms. The optimal
hyperparameters are trained on data with different degrees of heterogeneity, and the
performance of the algorithm under optimal parameter settings is compared. Finally,
a client-side local optimization analysis is performed for the Adam algorithm, mainly
analyzing the Adam optimizer embedded in the federated algorithm for its effectiveness
and performance.

5.1.1. Hyperparameter Analysis

Through previous presentations, we know that different values of the hyperparameters
mu (that is, µ in Formula (21)) and stepsize (that is, λ in Formula (14)) will greatly affect
the performance of the entire model, and they are also important parameters that highlight
the core of the FedPA algorithm. In addition, since the core parameter that affects the
different performance of the SGD algorithm and the Adam algorithm is the learning rate of
the optimizer, this section aims to explore the performance differences between different
algorithms, mainly focusing on the SGD algorithm, and to analyze the two hyperparameters.
The default values in Table 7 are used for experiments, and the results are shown in
Figure 7 below.
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It can be seen that in the evaluation of Acc (accuracy), the accuracy rate of the FedPA
algorithm in the later stage is higher than that of other comparison algorithms, but the
Acc values of the three types of algorithms—FedAvg, FedProx, and FedAtt—basically start
to rise steadily within five rounds. However, the oscillation of the FedPA algorithm is
obvious in the first 30 rounds, and the convergence speed of the loss value also lags behind
other algorithms. In contrast, the FedProx algorithm uses the optimal hyperparameter
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mu = 1 based on the dataset synthenic. Although the Acc value does not reach the optimal
value, the trend in the loss value is very stable, and the performance is optimal. There-
fore, this article intends to select different hyperparameter values to explore the optimal
hyperparameters of the FedPA algorithm.

1. Stepsize Hyperparameter Analysis

As previously described, the optimal hyperparameters of the FedAtt algorithm on
the dataset synthenic cannot be determined. Therefore, in order to ensure the fairness of
the comparison, priority is given to the hyperparameter analysis of the stepsize value of
the FedAtt algorithm. This is also aimed at exploring the expansion of the algorithm’s
performance on other datasets. This article sets the values of stepsize to 0.1, 1, 2, 3, 4, and
5, respectively, and the number of communication rounds is 30. The results are shown in
Figure 8 below.
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In the figure, the parameter stepsize is abbreviated as ss. It can be seen that the Acc
value of FedAtt increases with the increase in stepsize between 1 and 4. When stepsize = 5,
the Acc value fluctuates significantly, and it is not much improved compared to stepsize = 4,
with a similar convergence trend; when stepsize = 0.1, the performance is the worst.
Therefore, stepsize = 4 is selected as the optimal parameter for the dataset.

At the same time, in order to avoid the randomness of the experimental results and
reduce the sampling error of the experiment, this section plans to set different random
seeds and repeat the same experiment with stepsize = 4 mentioned above. Among them,
the parameter seed controls the sample results randomly assigned to each client when
synthesizing the dataset in this article. It can be understood as a dataset with the same
degree of heterogeneity and different data samples. Therefore, here, the values of seed are
set to 0, 1, 2, and 3, respectively, and the results are shown in Figure 9 below.

It can be seen that, on different datasets, the effect of Acc is pretty good, and the loss
value basically shows a unified trend. It only differs in the time points of the fluctuations of
different datasets, indicating that the dataset has a certain impact, and the loss value will
follow a certain convergence trend. Therefore, in order to observe the convergence trend
in loss, the number of communication rounds will be extended to 200 rounds (Figure 10)
(original: 30 rounds).

It can be seen that when the number of communication rounds num_rounds is about
25, even if the number of communication rounds is increased, the Acc performance and
loss value of the model do not significantly improve or decrease. At this time, the model
can be considered to have converged.

In summary, it is determined that the optimal hyperparameter stepsize of FedAtt in
the dataset is 4.
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2. mu Hyperparameter Analysis

As seen in Table 5, the FedPA algorithm is essentially a combination of FedProx and
FedAtt. In federated learning model aggregation, the FedPA algorithm uses an attention
mechanism similar to the FedAtt algorithm. Therefore, here, we first assume that the
optimal stepsize hyperparameter of FedPA on synthenic the dataset is 4, and analyze the
impact of different values of the Mu hyperparameter. Researchers such as Li [38] used
different values as references when exploring the influence of the value of mu and set the
values to 0.001, 0.01, 0.1, and 1. The results are shown in Figure 11a below.

As seen in Figure 11a, mu = 0.01 and mu = 0.001 perform better. When the mu value
is large, both the accuracy performance and loss have large oscillations. However, when
the mu value is too small, the advantages of the disturbance term cannot be fully utilized.
When mu = 0.1, it shows a relatively excellent effect on loss, but the Acc performance is
not satisfactory, so we continue to use mu = 0.01~0.1 to make more precise values, which
are 0.01, 0.03, 0.05, 0.08. It can be seen from the result in Figure 11b that mu = 0.08 is no
different from mu = 0.1, and the effect of mu = 0.03 or mu = 0.01 is better. As can be seen
from Figure 11c, whether looking at Acc or loss, it can be determined that mu = 0.03 has
the best effect, so the optimal parameter mu = 0.03.

As can be seen in Figure 10, and a stepsize value experiment of the FedPA algorithm
under the optimal parameter mu was carried out. In summary, it was determined that, for
the FedPA algorithm on the dataset, the optimal stepsize = 4 and the optimal mu = 0.03.
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5.1.2. Heterogeneity Analysis

This section discusses the performance of the four SGD algorithms on data with
different degrees of heterogeneity, prioritizes the selection of optimal parameters for the
four algorithms for model training, and makes comparative experimental results as shown
in Figure 12 below.
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Through the comparison of four algorithms, it is found that FedPA performs best in
terms of both Acc and loss. In terms of a specific analysis, the performance of the FedAtt
algorithm and the FedPA algorithm in Acc is similar, but the FedPA algorithm shows a
better trend in terms of the stability of loss convergence. At the same time, only experiments
comparing the performance of the FedAtt algorithm compared to the FedAvg algorithm
have been conducted in the field of language modeling before. This section will also further
expand the research on the heterogeneous performance of the FedAtt algorithm.

Next, this section conducts comparative experiments of four algorithms on synthenic
I ID, synthenic(0, 0), synthenic(0.5, 0.5), and synthenic(1, 1), four types of datasets with
different degrees of heterogeneity. The results are shown in Figure 13 below.
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Through the comparison of four algorithms, it was found that on the independent and
identically distributed synthenicI ID dataset, FedProx performed the worst, and the other
three algorithms performed similarly. Unexpectedly, it was found that the performance of
the FedAtt algorithm was slightly better, while the performance of the FedPA algorithm
was similar. It was slightly better than that of the classic FedAvg algorithm. Observing the
algorithms’ performance of the heterogeneous datasets synthenic(0, 0), synthenic(0.5, 0.5),
and synthenic(1, 1), it was found that the FedPA algorithm performed best on moderately
heterogeneous datasets, and its loss convergence was more stable than that of the FedAtt
algorithm. On extremely heterogeneous datasets, the oscillations of the algorithm are
relatively obvious. Overall, FedPA performs best on moderately heterogeneous datasets.

5.1.3. Client Local Optimization Analysis

This section focuses on exploring the effectiveness and performance of the Adam
optimizer embedded into the federated learning framework and also lays the foundation
for subsequent training of federated language models with guaranteed performance in
Chinese medical texts. There are three types of Adam optimizers involved in the experiment:
Self-Adam, Tf-Adam, and PAdam. The principles of Self-Adam and Tf-Adam are the same.
The only difference is that Tf-Adam is directly provided by the TensorFlow library. Self-
Adam is the optimizer customized in this article. The comparison between the two aims to
verify the Self-Adam optimization. The effectiveness of the optimizer also paves the way
for the perturbation PAdam optimizer based on the Self-Adam improvement.

1. Effectiveness analysis

In order to explore the effectiveness of the Adam optimizer embedded in federated
learning, this article intends to conduct a comparative analysis on the Adam-type algorithm
and the SGD-type algorithm on the heterogeneous dataset synthenic(0.5, 0.5), that is, to
explore FedAvg vs. FedAvgS vs. FedAvgT, FedProx vs. FedProxP, FedAtt vs. FedAttS, and
FedPA vs. FedPAP.

It is important to note here that the learning rate of the optimizer is uniformly set to 0.001
because of the previously mentioned optimal learning rate of Adam, learning rate = 0.001.
The experimental results are shown in Figure 14 below.
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Among them, the indicators for comparing different algorithms in the figure are still
the Acc value and loss value (the horizontal axis represents the number of communication
rounds num_rounds and the vertical axis represents the Acc value and loss value). It can
be seen that the local model based on the experiments in this chapter is a relatively simple
logistic regression model, and the performance improvement derived from embedding the
Adam optimizer is not significant. However, when observing Figure 14a, it is found that
FedAvgS has a significantly superior performance in loss convergence, which proves the
effectiveness of the Self-Adam optimizer. At the same time, by observing the FedAtt class
algorithm and the FedPA class algorithm, it can be found that the Self-Adam optimizer and
the embedding of the PAdam show good loss convergence stability while ensuring Acc
performance. This is also consistent with the advantage of the parameter updates in the
Adam optimizer proposed by Kingma and Ba [41], which are not affected by the scaling
transformation of the gradient and can significantly reduce oscillations.

In summary, the effectiveness of this article’s customized Self-Adam optimizer and
PAdam optimizer is proven.

2. Performance analysis

This section mainly compares different Adam-type algorithms to explore the differ-
ences in the performance of various Adam-type algorithms. The results are shown in
Figure 15 below.
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It is not difficult to see that the federated learning algorithms FedPAP and FedAttS
that embed the attention mechanism into model aggregation have shown outstanding
advantages. The accuracy value, Acc, is significantly improved compared to other algo-
rithms. For better comparison, the maximum Acc value and minimum loss value of various
algorithms are listed in Table 8 below.

Table 8. Comparison of maximum Acc and minimum loss of Adam-type algorithms.

Algorithm Name Maximum Acc Value Minimum Loss Value

FedAvgS 0.72 0.81
FedAvgT 0.71 1.1
FedProxP 0.74 0.70
FedAttS 0.79 0.47
FedPAP 0.79 0.48

It can be seen that the best loss value can be reduced by 0.63 compared with the worst
loss value. At the same time, given that the mu parameter setting of FedPAP is small, the
disturbance term has little effect, and the classification model used is relatively simple, the
Acc performance and loss convergence are basically consistent with the performance of
FedAttS. Subsequent studies will be carried out on real datasets and further observe the
performance difference between the two in deep learning models.

5.2. Discussion of Chinese Medical Text Datasets

This section proposes to construct a joint learning framework for real-world Chinese
medical texts, aiming to solve the existing problems of data privacy, data silos, and data
heterogeneity in the medical field and to fill the research gaps in the application of joint
learning for Chinese medical texts. This section further explores the generalization ability
of the joint algorithm on real-world datasets (i.e., Chinese medical text dataset) and deep
learning language models.

The experimental results and analysis presented in this article are divided into three
parts. First, due to variations in datasets, the optimal hyperparameters for the FedPA
algorithm and the FedPAP algorithm require further discussion. Secondly, to assess the
performance of the SGD and Adam algorithms on the Chinese medical text dataset, a logistic
regression model is employed for experimental analysis. Finally, LSTM text classification
experiments are conducted using the federated learning approach, thereby verifying the
federated learning Chinese medical text classification approach proposed in this article.

5.2.1. Hyperparameter Analysis

The hyperparameter experimental procedure in this section is consistent with
Section 5.1.1, determining the optimal hyperparameter stepsize = 9, while the experimental
results regarding the optimal hyperparameter mu are shown below.

Based on the experimental results in Figure 16, the optimal hyperparameter
mu = 0.03 for FedPAP is finally determined. Meanwhile, we further analyze the opti-
mal hyperparameters of FedAtt and FedProx on the IMCS-V2 dataset and find that the
optimal hyperparameter of FedAtt is stepize = 4, while the optimal hyperparameter of
FedProx is mu = 0.03. The experimental results on finding the optimal hyperparameters of
FedAtt are shown below.

As can be seen from Figure 17, the experimental effect is significantly improved at
stepsize = 4, and as can be seen from Figure 18, when stepsize = 4, the performance is
basically the same on different randomized datasets, indicating that the trend is not a small
probability event.
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5.2.2. Logistic Regression Model Analysis

This section extends the number of training rounds to 200 and shows the classification
accuracy of different federated algorithms as follows (Figure 19):
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It can be seen that in the comparison of SGD algorithms, the Acc performance of the
FedPA algorithm is the best, followed by the FedAtt algorithm, while the performance
effects of the FedProx algorithm and the Fed A vg algorithm are basically the same; among
the algorithms, in the Adam class, the FedPAP algorithm proposed in this article still has
the best performance, followed by the FedProxP algorithm. The Acc value of the FedAttS
algorithm has a downward trend in the later period, which shows that the performance
is not stable. The maximum Acc value of the two types of algorithms is compared and
expressed in Table 9.

Table 9. Logistic regression model algorithm performance comparison.

Algorithm Name SGD Class Maximum
Acc Value

Adam Class Maximum
Acc Value

FedAvg vs. FedAvgS 0.73 0.76
FedProx vs. FedProxP 0.73 0.78

FedAtt vs. FedAttS 0.75 0.79
FedPA vs. FedPAP 0.78 0.82

5.2.3. Deep Learning LSTM Model Analysis

In previous experiments, this paper built a logistic regression classification model for
testing and verified the performance of the proposed federated algorithm on the Chinese
medical text dataset. Next, this article plans to build a federated learning Chinese medical
text classification framework that guarantees performance and conducts comparative
analyses of SGD-like algorithms, Adam-like algorithms, and communication efficiency.

1. SGD Algorithm Analysis

In this section, learning rate = 0.01, stepsize = 9, and mu = 0.03 are set. The remain-
ing hyperparameter settings are consistent with Table 7. The test results are shown in
Figure 20 below.

As can be seen in the above figure, the performance of the FedAvg algorithm and the
FedProx algorithm, as well as that of the FedAtt algorithm and the FedPA algorithm, is
basically the same, indicating that in the deep learning model, there is little difference in
the performance of SGD local optimization based on adding perturbation terms. At the
same time, it can be observed that the Acc value fluctuates between 0.55 and 0.65, and the
loss value fluctuates between 0.7 and 1.3. That is, the Acc performance is not as good as
the results of the simple logistic regression model, and the loss is not presented. There
is a convergence trend. This does not rule out the fact that the SGD optimizer is highly
sensitive to the initial learning rate and is prone to falling into the local optimal solution,
but it also shows that the applicability of SGD local optimization in federated language
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modeling is not high, which is also verified in the analysis of federated experimental results
by Palihawadana et al. [46].
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2. Adam Algorithm Analysis

In view of the problem of poor results of SGD algorithms applied in federal LSTM
text classification, this section considers using the Adam type algorithm in Chapter 4 to
comparatively analyze its performance in the Chinese medical text classification task. The
results obtained are shown in Figure 21 below.
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At the same time, the maximum Acc value and minimum loss value of various
algorithms are organized as shown in Table 10 below.

Table 10. Performance comparison of LSTM model + Adam algorithm.

Algorithm Name Maximum Acc Value Minimum Loss Value

FedAvgS 0.8308 0.0684
FedProxP 0.8692 0.0010
FedAttS 0.8692 0.0184
FedPAP 0.8769 0.0005

The FedPAP algorithm proposed in this article is the superior algorithm in terms
of Acc performance and loss convergence. At the same time, the FedProxP algorithm
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improved by Adam embedding shows good performance, second only to the FedPAP
algorithm. This is in great contrast to the modeling results of the logistic regression model.
That is, the federated learning architecture with the deep learning model and the Adam
optimizer significantly improve the performance of Chinese medical text classification. At
the same time, this also proves the good generalization ability of the FedPAP algorithm to
deep learning language models.

5.2.4. Communication Efficiency Analysis

The communication efficiency problem is another major difficulty in federated learn-
ing, in addition to the heterogeneity problem. Especially with the rapid development
of large language models, many researchers in the field of federated language modeling
focus on the issue of efficiency improvement, such as introducing knowledge distillation
technology into federated learning [40]. However, performance and efficiency often cannot
be optimized at the same time, which is the “impossible triangle” problem mentioned in
this article.

The focus of this article is to improve the performance of federated Chinese medical
text classification. However, in view of the high focus of federated language modeling on
communication efficiency, this article intends to draw on the communication efficiency
evaluation index proposed by researchers such as Caldas [61] and present the average
time (in milliseconds) used for one round of communication by the Adam-type federated
algorithm on the IMCS-V2 dataset as follows (Table 11).

Table 11. Comparison of communication efficiency of Adam-type federated algorithms.

Algorithm Name Average Communication Time

FedAvgS 5816.91
FedProxP 8993.86
FedAttS 5762.10
FedPAP 8627.51

It can be seen that the federated algorithm that adds disturbance terms to the client’s
local update module overcomes the performance degradation problem caused by hetero-
geneity to a certain extent, but it also sacrifices communication efficiency and increases
communication time. However, it can still be seen that the federated algorithms FedAttS
and FedPAP, which increase the attention aggregation weight, learn the optimal global
model through good generalization on each client model, reducing the number of lo-
cal training rounds. This accelerates the learning process and shows superior commu-
nication efficiency than ordinary weighted aggregation federated algorithms FedAvgS
and FedProxP.

6. Discussion

Due to the constraints of publicly available Chinese medical text datasets, this study
only performs empirical analysis on the IMCS-V2 type Chinese medical text dataset, over-
looking the discussion on generalization across other datasets. Future research could
consider expanding to other Chinese medical text datasets to validate the algorithm’s
effectiveness and robustness in broader contexts. In this study, we focused only on text
data. In practice, medical data are often multimodal. They could also include medical
images such as X-rays and CT scans, physiologic readings such as ECG, or patient records
in a structured form. Future research could further explore multimodal federated learning
approaches, thus providing a more comprehensive framework for medical diagnosis.

Although federated learning keeps data on local nodes and avoids centralization,
the information from model updates may still reveal sensitive individual data. Future
research could consider incorporating differential privacy techniques to further enhance
privacy protection. Differential privacy, by adding noise during model updates, effectively
prevents sensitive information leakage. The trade-off between model accuracy and privacy



Entropy 2024, 26, 871 34 of 37

is an important issue mentioned by Lee J et al. [29]. Noising to preserve privacy can
potentially affect the federated model performance. In addition, adding differential privacy
in large-scale and real-time medical systems will increase the computational load, and this
side effect will reduce the overall efficiency of the system. Future studies could explore
optimizing noise addition strategies to maintain high levels of privacy protection without
significantly compromising model performance.

Another possible future research direction is to introduce interpretability and realize
interpretable federated learning. In traditional federated learning, multiple participants
jointly train models, but the decision-making process of the model is often opaque. Inter-
pretable federated learning aims to solve this problem by introducing interpretability to
make the decision-making process of the federated learning model more transparent and
understandable. This is of great significance in the medical field.

While pre-training and fine-tuning techniques dominate most NLP tasks, pre-trained
language models like BERT and GPT significantly enhance downstream model performance.
However, in a federated learning setting, it is often impractical to deploy large models
like GPT on local clients. Techniques such as knowledge distillation may offer potential
solutions, but whether the simplified models can maintain performance remains an open
question. Future work could further explore the integration of light-weight models with
federated learning to ensure good model performance on resource-constrained clients.

7. Conclusions

The rapid advancement of medical informatization presents significant challenges in
data privacy protection and the deployment of intelligent precision medicine. Concurrently,
traditional research on medical texts is hampered by critical issues including data privacy,
data silos, and heterogeneity, with the spread of data across various institutions and regions
complicating their effective sharing and utilization. In response, federated learning has
emerged as a promising solution. This approach involves training models on centralized
servers or cloud platforms and transmitting model parameters to distributed local clients,
thus ensuring data privacy while fostering the rapid development of medical treatments.
This research makes several contributions, which are detailed below.

This article first provides a comprehensive review of Chinese medical text datasets,
text classification methods, and cutting-edge federated learning technology in recent years,
summarizing the shortcomings of existing research. Secondly, it focuses on the field of
Chinese medical text privacy protection and data sharing, analyzing the more prominent
problem of data heterogeneity in federated learning. Further exploration led to the pro-
posal of the perturbed federated learning algorithm, FedPA, based on the self-attention
mechanism, and the FedPAP algorithm, which also utilizes the self-attention mechanism
and integrates the perturbed PAdam optimizer. In the model aggregation module, we
consider combining the self-attention mechanism to assign weights to client contributions,
adding perturbation terms to the local update module, and integrating the custom PAdam
optimizer. This represents the first attempt to combine the attention mechanism, perturba-
tion terms, and the Adam optimizer into a federated learning algorithm. Then, to fairly
compare the performance of the proposed algorithm, the existing federated algorithm was
enhanced by embedding the custom Adam optimizer. After an experimental analysis of
hyperparameters, heterogeneity, effectiveness, and other factors, the federated learning
algorithm proposed in this article was found to have better classification performance and
convergence stability. Finally, based on the proposed algorithm, the federated learning ap-
proach for Chinese medicinal text classification was verified, and performance comparison
and communication efficiency analyses of the algorithm were conducted. These analyses
demonstrated that the proposed algorithm effectively improves the generalization ability
of deep learning models in Chinese medical texts, further contributing to domestic research
on federated Chinese medical text classification. Potential future work includes expanding
Chinese medical text datasets, exploring multimodal federated learning, introducing differ-
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ential privacy techniques, introducing interpretable federated learning, and exploring the
combination of lightweight models and federated learning, etc.
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