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Abstract: Immune checkpoint inhibitors (ICIs), such as durvalumab, tremelimumab, and ate-
zolizumab, have emerged as a significant therapeutic option for the treatment of hepatocellular
carcinoma (HCC). In fact, the efficacy of ICIs as single agents or as part of combination therapies
has been demonstrated in practice-changing phase III clinical trials. However, ICIs confront several
difficulties, including the lack of predictive biomarkers, primary and secondary drug resistance, and
treatment-related side effects. Herein, we provide an overview of current issues and future challenges
in this setting.
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1. Introduction

Hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (iCCA), mixed
HCC–iCCA, and other forms of primary liver cancer (PLC) are among the sixth most
common cancers and the third cause of cancer-related deaths globally [1–3]. Among PLCs,
HCC is the most common type, accounting for approximately 75–80% of cases [4–6]. Most
HCC patients are diagnosed when the disease is in an advanced stage, and less than 20%
of cases survive for five years [7–9]. Cancer immunotherapy includes several different
therapeutic strategies, ranging from adoptive immunotherapy to cancer vaccines and
immune checkpoint inhibitors (ICIs) [10–17], and the use of several ICIs, either singly or in
combination, has increased the efficacy of HCC systemic treatment, although there are still
many issues to be faced [18–20].

ICIs, such as cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitors, programmed
death ligand-1 (PD-L1) inhibitors, and programmed death-1 (PD-1) inhibitors are frequently
used, as monotherapy or in combination—such as durvalumab plus tremelimumab and
atezolizumab plus bevacizumab [21]. From a biological point of view, PD-L1 binds PD-1
and can inhibit T-cell proliferation and cytokine secretion function. The co-stimulatory
molecule PD-1, also referred to as CD279, belongs to the CD28 family and is expressed on
the surface of T cells, B cells, and natural killer (NK) cells [22]. Two B7 family members,
PD-L1 and programmed death ligand-2 (PD-L2), are ligands for PD-1, and while PD-L2
is primarily expressed on macrophages and dendritic cells (DCs), PD-L1 is expressed on
the surface of tumor cells as well as on certain immune cells like macrophages, T cells,
and DCs [23,24]. In a physiological setting, PD-1 and PD-L1 together can protect the
body’s immune balance, prevent excessive immune responses, and maintain autoimmune
tolerance by sending inhibitory signals to activated T cells [25,26]. Nonetheless, through the
expression of high levels of PD-L1 and its combination with PD-1 on the surface of T cells,
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tumor cells may prevent T cell activation and trigger tumor cell immune escape [27,28].
Exosomal PD-L1 is a substance that tumor cells have been demonstrated to secrete to
suppress T cell activity [29]. Owing to the critical roles that PD-1 and PD-L2 play in tumor
immune escape, antibodies that block this pathway restore T cells’ ability to kill tumor cells
through immune-killing [30]. Another significant ICI with a strong binding affinity for the
B7 family of co-stimulatory receptors is CTLA-4. Consequently, CTLA-4 inhibits second
co-stimulatory T cell signaling by binding to these receptors more easily than CD28 [31].
Normal circumstances allow CTLA-4 to inhibit non-essential T cell activation, which in
turn regulates hyperactive T cell immune responses. On the other hand, increased CTLA-4
expression in tumors prevents T cell activation, proliferation, and effector function [32]. As
a result, targeting CTLA-4 and utilizing T cells’ antitumor killing ability has emerged as a
successful tumor treatment strategy.

Based on these premises, this review explores current challenges of HCC immunother-
apy, discussing the role of emerging biomarkers and mechanisms of resistance and toxicity
in ICIs clinical trials.

2. The Immunological Milieu of Hepatocellular Carcinoma

As a key organ involved in immune regulation, the liver maintains a dynamic bal-
ance between inducing immune tolerance to prevent immune damage and triggering an
immune response to eliminate antigens [33]. This property protects against the potential
harm caused by autoimmunity and chronic inflammation under normal circumstances.
Nevertheless, this process results in immune escape from the tumor and impairs the im-
mune response to tumor antigens [34]. Owing to the physiological features of HCC, tumor,
immune, and stromal cells form a unique tumor microenvironment (TME) in the liver
(Figure 1) [35].
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In addition to stimulating the growth of tumor cells, TME has several important
immune-suppressive effects, including preventing immune cells from activating, killing,
or slowing down immune cell division, and encouraging the development of regulatory
T cells (Treg) [36]. The TME of HCC involves several cells: hepatic macrophages known
as Kupffer cells play a crucial scavenger role in the innate immune system and create
an immunosuppressive milieu and induce immune tolerance [37]. Kupffer cells in HCC
overexpress PD-L1, which attaches to PD-1 on CD8+ T cells to prevent T cells from killing
other T cells. In the meantime, Treg cells in HCC can secrete inhibitory cytokines, cause
effector lymphocytes to undergo apoptosis, and impair the activity of DCs [38]. Further-
more, several signaling pathways exist within the TME. For example, cell cycle-associated
kinases can trigger the hepatic EZH2-NF-kB pathway, which in turn promotes the de-
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velopment of HCC and immune escape by accumulating myeloid-derived suppressor
cells (MDSCs) [39,40]. Consequently, the unique physio-pathological traits of HCC make
treatments more challenging.

3. Biomarkers of Response to Hepatocellular Carcinoma Immunotherapy

The development of ICIs has completely changed the treatment landscape for HCC,
improving the efficacy of systemic treatments and extending overall survival (Figure 2) [41–43].
However, many HCC patients do not get any benefit from ICIs such as durvalumab plus
tremelimumab and atezolizumab, and finding reliable predictive biomarkers to screen
the most suitable candidates to ICIs and increase the effectiveness of immunotherapy
represents an important clinical and research task [44–46].
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According to mounting evidence, patients with high expression of PD-L1 are more
likely to respond better and longer to ICIs, since PD-L1 is considered an important target
for ICIs and a marker for predicting the efficacy of immunotherapy and immune-based
combinations. In the KEYNOTE-224 trial, the investigators evaluated PD-L1 expression
by utilizing the combined positive score (CPS) and tumor proportion score (TPS) [47–49].
According to the results of this study, TPS did not correlate with patients’ response to the
PD-1 inhibitor pembrolizumab, whereas CPS did. In CheckMate-040, the authors observed
that the effectiveness of nivolumab was unrelated to TPS; however, median overall survival
(OS) of patients with PD-L1 ≥1% and <1% was 28.1 and 16.6 months, respectively (p = 0.03),
in a later analysis exploring the relationship between PD-L1 expression in tumor tissue
and OS in the CheckMate-040 study [50–52]. At the same time, it is worth noting that the
study was retrospective, and the sample size was relatively small; to validate these findings,
more information is required. Among the several variables that have been suggested to
affect PD-L1 as a biomarker for ICIs, the heterogeneity of PD-L1 expression itself is an issue.
Pinato and colleagues highlighted a significant heterogeneity in the expression of PD-L1
in tumor tissues, immune cells infiltrating the tumor, and non-tumor cirrhotic tissues [53].
This heterogeneity may have an impact and play a role on the accuracy and consistency
of PD-L1 as a predictor of the effectiveness of ICIs. The positive expression of PD-L1
ranged from 2% to 10% in HCC tissues, from 6% to 22% in tumor-infiltrating immune cells,
and from 2% to 19% in non-tumor cirrhotic tissues, according to the authors’ analysis of
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100 HCC specimens from three centers. Meanwhile, different ICIs are based on different
antibodies because of variations in detection platforms, and there is no common evaluation
standard. Of note, PD-L1 expression is a dynamic process, while PD-L1 is typically assessed
at a single moment in time, and thus, more research is needed in this setting.

The most assessed serologic marker of HCC, α-Fetoprotein (AFP), is highly expressed
in about 70% of patients and is used for prognostic evaluations in addition to HCC screening
and diagnosis. Patients with pretreatment AFP levels higher than 20 ng/mL had their
response assessed in a retrospective analysis involving 60 advanced HCC patients receiving
ICIs [54]. Within the first four weeks of starting treatment, a patient’s AFP level should
drop by more than 20% in comparison of starting treatment; of these patients, 43 could be
evaluated for early AFP response, and these findings indicated that early AFP responders
had a longer median OS (28.0 months vs. 11.2 months, p = 0.048) and median progression-
free survival (PFS) (15.2 months vs. 2.7 months, p = 0.002), as well as higher overall
response rate (ORR) (73% vs. 14%, p < 0.001). In another retrospective study, researchers
observed that AFP reduction >10% (within 4 weeks) was an independent predictor of ORR
(OR = 7.259, p = 0.001) [55]. When comparing patients with baseline AFP ≥ 10 ng/mL, those
with early AFP reduction had significantly higher ORR (63.6% vs. 10.2%, p < 0.001) and
disease control rate (DCR) (81.8% vs. 14.3%, p < 0.001) than those without it. These findings
imply that improved ICI outcomes could be linked to an early AFP response [54,55]. More
research is required to validate these studies, as they are retrospective and have limited
strength and quality of evidence. However, there are certain patients who do not have
elevated AFP, and using this indicator as a biomarker has some limitations because it
cannot be evaluated prior to treatment and must be applied based on post-treatment data.

Tumor-infiltrating lymphocytes (TILs) include cells with immunosuppressive activity
and cells with anticancer activity, and are intimately linked to the effectiveness of immune
checkpoint inhibitors [56–58]. In fresh and archived tumor tissues from the CheckMate-040
study, the relationship between CD3+ T cells and CD8+ T cells on OS was explored [52].
There was a trend towards longer OS, despite the fact that the increase in CD3+ and CD8+
T cells was not statistically significant (p = 0.08 and p = 0.08, respectively) in relation to
OS. More recently, a noteworthy rise in CD8+ T cells was noted in the clinically beneficial
population in a study assessing tremelimumab in combination with tumor ablation for
the treatment of HCC. More thorough research is necessary to determine whether TIL is a
useful biomarker for HCC.

About one-third of patients with HCC have activating mutations in CTNNB1, a gene
that encourages immune evasion and ICI resistance. The WNT/β-catenin pathway, which
is activated by mutations in the CTNNB1 gene, was found to be associated with a lower
disease control rate (DCR) (0% vs. 53%), a shorter median PFS (2.0 months vs. 7.4 months),
and lower median OS in 31 patients treated with ICIs, as compared to WNT wild-type
(9.1 months vs. 15.2 months) [59–61]. Consequently, CTNNB1 is under evaluation as a
potentially useful biomarker to guide the use of ICIs in HCC.

Tumor mutational burden (TMB) is a significant independent indicator of the effective-
ness of ICIs [62,63]. According to multiple studies, patients who have more TMB (greater
than 10 mutations per million bases) after receiving ICIs have better response rates and
longer survival times [64]. The KEYNOTE-158 study assessed the relationship between
TMB and prognosis in patients receiving pembrolizumab treatment for advanced solid
tumors [65–67]. The study examined 790 patients whose TMB status could be determined;
102 (13%) of these patients had a high expression status of tissue TMB (tTMB), and 688
(87%) patients did not. As compared to the non-tTMB high expression group, which had
an ORR of 6% (95% confidence interval, CI: 5–8%), the results of the tTMB high expression
group showed an ORR of 29% (95% CI: 21–39%), indicating a stronger tumor response to
pembrolizumab. However, Yarchoan and colleagues suggested that HCC had a low number
of somatic mutations encoded per megabase [68]. In this study, only six tumors (0.8%)
out of 755 patients with unresectable HCC that underwent whole genome sequencing
analysis had high TMB. Furthermore, to date, no clinical trial has confirmed that using
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TMB to evaluate the effectiveness of ICIs in HCC is effective. The predictive value of TMB
in HCC should be further investigated, however, as it has demonstrated strong predictive
qualities in other tumor types. Another frequently used biomarker to evaluate the efficacy
of ICIs is mismatch repair (MMR) status [69–71]; for example, a phase II study evaluated
the response of colorectal cancer to pembrolizumab, with or without MMR deficiency
(dMMR) [72]. The ORR and PFS rates with dMMR were 40% and 78%, respectively, while
the rates without dMMR were 0% and 11%, respectively. However, few data are available
regarding HCC, and dMMR is only present in 2 to 3% of all cases [73].

The microbes known as gut microbiota are long-term residents of the digestive system
that interact with the human body and have a significant effect on tumors and anticancer
treatments [74–76]. According to recent research, the gut microbiota may play a major
role in modifying the effectiveness of ICIs [77–79]. In a report published by Vétizou
and colleagues, ICIs were ineffective in mice receiving antibiotic treatment or kept in an
aseptic environment [80]. However, the efficacy of immunotherapy was higher when gut
microbiota was added, something that suggested that the microbiome could play a key role
in modifying the response to ICIs. In particular, fecal samples from ICI responders may
exhibit greater counts of genes and higher taxa than non-responders, according to a study by
Zheng et al. [81]. In fact, the gut microbiota of ICI responders and non-responders changed
dramatically and showed notable differences during immunotherapy. The effectiveness
itself of ICIs may be predicted by examining these variations in gut microbiota, making the
microbiome a potential biomarker as well. Given the extreme heterogeneity of HCC, using
a single biomarker to direct systemic treatments may not be appropriate [44,82–84]; instead,
combining multiple biomarkers could represent a more beneficial strategy. In addition, the
fact that entirely different outcomes were obtained for subgroup analysis due to the use
of distinct biomarkers highlights the significance of tumor biomarkers in drug use. Lastly,
the study of biomarkers for HCC immunotherapy would need the further development of
high-throughput sequencing, gene editing, and artificial intelligence technologies.

4. Current and Future Challenges

The introduction of ICIs has marked a fundamental moment in the treatment scenario
for advanced HCC [85]. However, several issues still need to be faced, including—as
previously stated—the identification of reliable predictive biomarkers, the safety profile,
and drug resistance to ICIs and immune-based combinations. Resolving these issues is
crucial to enhance the efficacy of HCC immunotherapy.

Drug resistance is due to several mechanisms in HCC. Tumor antigens are produced in
low quantities in this liver tumor, and HCC is a disease whose somatic cells typically contain
few mutations [86]. Moreover, liver has an extremely immune-tolerant environment, and
loss of signaling pathways also contributes to HCC drug resistance. For example, deletion
of PTEN reduces T-cell translocation to the tumor and inhibits T-cell-mediated tumor killing,
while activation of the beta-catenin signaling pathway increases tumor immune escape and
resistance to ICIs and immune-based combinations [87]. Taken all together, these factors are
significant contributors to ICI primary resistance. Conversely, when an immunotherapeutic
agent is effective at first but eventually loses its effectiveness, this is referred to as acquired
resistance [88,89]. The two main causes of this are T cell depletion and the lack of neoantigen
production. T cells are crucial immune cells that fight tumors, but as tumors grow larger or
as long-term immunotherapy is administered, T cells gradually lose some of their anticancer
properties and several “negative” immune checkpoints, including PD-1, TIM-3, LAG-3,
and others, start to appear [90,91]. Another major factor contributing to acquired resistance
is the decreased production of tumor neoantigens [92,93]. Following the administration of
ICIs, clonal selection takes place within the tumor, allowing cells with low immunogenicity
or low neoantigen expression levels to survive and complicating the induction of antitumor
immunity in vivo.

Moreover, novel resistance mechanisms are constantly being discovered as research
advances. For example, a recent study published by Tan and colleagues highlighted
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an isoform of PD-1 known as ∆42PD-1 [94]. In this report, the authors observed that
up to 71% of untreated HCC patients expressed ∆42PD-1, which was correlated with
a more aggressive clinical course. Compared to PD-1-positive cells, the study reported
that ∆42PD-1-positive T cells had a greater deficit in antitumor function. Patients with
HCC who received ICI treatment demonstrated effective PD-1 treatment; however, over
time, and especially in those whose disease progressed, the frequency of ∆42PD-1-positive
T cells rose. The authors also showed that ∆42PD-1 blockade enhanced intratumor T
cell antitumor killing activity and suppressed tumor growth in murine models. This
research not only suggested some mechanisms behind the ineffectiveness of ICIs in some
patients, but it also revealed ∆42PD-1 as a new target for HCC immunotherapy. Several
strategies have been tested and are under assessment to overcome drug resistance in HCC
immunotherapy [95,96]. For instance, combining radiation and systemic treatments can
increase the presentation function of DCs, stimulate the ICD response, and encourage the
expression of tumor antigens [97–100]. Additionally, the combination of anti-angiogenic
medications can enhance drug distribution and encourage T-cell penetration [100–103].

Another key issue in HCC immunotherapy is the presence of immune-related side
effects [104–109]. As a result, treatment-related adverse events (TRAEs) play a crucial role
in the pharmacologic management of these medications. According to available evidence,
TRAEs are reported in over 90% of HCC patients receiving anti-CTLA-4 antibodies and
70% of patients treated with PD-1 and PD-L1 inhibitors, with the most common types
being gastrointestinal, endocrine, and cutaneous [110–113]. The majority of TRAEs are
less than or equal to grade 3, and they can be better managed with appropriate care.
However, certain toxic reactions, including myocarditis, pneumonia, and neurotoxicity, are
rare but dangerous and even life-threatening. Combination therapy with ICIs is currently
gaining traction as a treatment strategy for HCC, but it also coincides with an increase in
the incidence of TRAEs [114]. According to recent evidence, more than half of patients
receiving durvalumab plus tremelimumab may develop grade 3–4 TRAEs, compared to
37.1% of patients in the durvalumab monotherapy group. However, when compared to
other tumors, the incidence of TRAEs in HCC patients is not significantly different, and
these TRAEs can be successfully treated [115]. Meanwhile, liver dysfunction brought on
by cirrhosis as well as extrahepatic manifestations may coincide with the symptoms due
to TRAEs, since many HCCs are typically linked to a history of cirrhosis. Consequently,
it is important to distinguish between them by looking at the patient’s medical history,
symptoms, and signs.

If randomized controlled trials are widely accepted by researchers and clinicians to
explore the safety and efficacy of anticancer drugs, the inclusion and exclusion criteria of
these studies are extremely stringent and do not accurately represent the complex reality of
clinical practice. Thus, to manage potential adverse reactions and to guarantee the efficacy
of HCC immunotherapy, it is imperative to pay close attention to the underlying conditions
of patients in the real world.

5. Conclusions

ICIs, as monotherapy or in combination with other anticancer agents, have gained
importance in the treatment of HCC. However, the efficacy of ICIs in the general population
is still insufficient, so efforts should be directed toward overcoming ICI resistance and
addressing several issues, including TRAEs. Choosing the best course of action for each pa-
tient is a crucial aspect of treating HCC because patients differ in their physio-pathological
conditions, tolerance, and response to various medications. To improve clinical outcomes
and survival for HCC patients, it is critical to identify the most suitable biomarkers for
the use of ICIs, to efficiently manage TRAEs, and implement tailored interventions for
individual patients.
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