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Epistasis can profoundly influence evolutionary dynamics. Tem-
poral genetic data, consisting of sequences sampled repeatedly
from a population over time, provides a unique resource to un-
derstand how epistasis shapes evolution. However, detecting
epistatic interactions from sequence data is technically challeng-
ing. Existing methods for identifying epistasis are computation-
ally demanding, limiting their applicability to real-world data.
Here, we present a novel computational method for inferring
epistasis that significantly reduces computational costs without
sacrificing accuracy. We validated our approach in simulations
and applied it to study HIV-1 evolution over multiple years in
a data set of 16 individuals. There we observed a strong excess
of negative epistatic interactions between beneficial mutations,
especially mutations involved in immune escape. Our method
is general and could be used to characterize epistasis in other
large data sets.

Introduction

Epistasis is common in nature and plays an important role in
evolution1,2. In the presence of epistasis, the fitness effects of
mutations are contingent on the genetic background in which
they appear, making the relationship between sequence and
function complex3–5. More accurate estimates of epistasis
could improve our ability to predict evolution, both at the
level of genetic sequences and phenotypes6–8.

Enormous amounts of time-resolved sequence data have
been generated in recent years, opening up the possibility of
inferring epistasis from observations of evolution. Naively,
we anticipate that sets of mutations that improve fitness will
be found together in the same genetic sequence more often
than expected by chance, while sets of deleterious mutations
will be observed less frequently. However, phenomena such
as genetic hitchhiking9 and clonal interference10 can also
generate correlations between mutations that are unrelated to
function. At present, a few methods exist to estimate pair-
wise epistatic interactions from temporal data, but computa-
tional constraints limit their applicability to small numbers of
loci11–13.

Here we propose an efficient method for inferring epistatic
fitness that extends and vastly improves the computational
efficiency of an approach developed by Sohail and collab-
orators13. With this new approach, the required memory
and computational complexity scale only quadratically with
the number of loci. These improvements are due to an ef-
ficient higher-order covariance matrix factorization (HCMF)
method, which allows us to analyze much larger data sets
than in previous analyses.

After validating our method in simulations, we apply it to
study epistasis in within-host human immunodeficiency virus
(HIV)-1 evolution in a cohort of 16 individuals. Several past
studies have highlighted the role of epistasis in viral evolu-
tion. Early experimental work found evidence for both syn-
ergistic14 and negative15 epistasis in different viruses. Epis-
tasis has been observed in influenza and in SARS-CoV-2, es-
pecially in the context of immune evasion16–21. In HIV-1,
epistasis has been observed between mutations involved in
drug resistance22–24 and immune escape25,26. Here we found
a consistent pattern of negative epistasis in HIV-1, with an
interaction strength that typically scales along with the fit-
ness effects of the individual mutations. Overall, our HCMF
method enables the estimation of epistasis in large data sets,
and our analysis contributes to the quantification of epistasis
in viral evolution.

Epistasis inference framework

As in related work13,27, our modeling framework is based
on the Wright-Fisher (WF) model28–30. We write the num-
ber of haploid individuals with genotype α at time t in
a population as nα(t). Given a total population size of
N , we write the genotype frequency as zα(t) = nα(t)/N .
The state of the population is described by frequencies z =
(z1,z2, . . . ,zM ) = (zα(t))α for each of the M possible geno-
types. Its evolution is influenced by several factors, including
mutation, recombination, and the fitness of each genotype.
To model the fitness effects of individual mutations and pair-
wise epistasis, we assume a fitness function

fα = f(gα) = 1+
∑

i

sig
α
i +

∑
i<j

sijgα
i gα

j . (1)

In the expression above, each locus i has a corresponding se-
lection coefficient si that quantifies the fitness effect of the
mutant allele at that locus and epistatic interactions sij with
mutant alleles at all other loci j. For simplicity, we’ve used
a binary model where each allele is either wild-type (WT) or
mutant, but this can easily be extended to realistic sequence
models (see Methods). Following this binary assumption,
there are M = 2L possible genotypes for sequences with L
loci. The gα

i above are indicator functions, with a value equal
to one if genotype α has a mutant allele at locus i and zero
otherwise. Ultimately, our goal will be to infer the under-
lying fitness parameters (si)L

i=1 and (sij)i<j from temporal
genetic data.

Under the WF model, the probability of obtaining a certain
distribution of genotype frequencies in the next generation
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z(t+1), given the current distribution z(t), is multinomial:

P (z(t+1)|z(t);N,θ) = N !
M∏

α=1

pα(z(t))Nzα(t+1)

[Nzα(t+1)]! . (2)

We use θ as a shorthand for all evolutionary parameters, in-
cluding parameters describing selection and rates of mutation
and recombination (Methods).

While inferring fitness parameters directly from (2) is chal-
lenging, when generation-to-generation changes in genotype
frequencies are small, we can apply the simplified diffusion
approximation of the WF model31,32. Through the diffu-
sion approximation, we can obtain an analytically tractable
expression for the probability of an evolutionary trajectory
L((z(tk))K

k=1), which we refer to as the path likelihood13,27

(Methods). This allows us to compute the fitness parameters
(including individual selection coefficients si and pairwise
epistatic interactions sij) that best fit a data set of sequences
collected over time.

To express the results, it’s useful to define a new vec-
tor s = (s1,s2, . . . ,sL,s1,2,s1,3, . . . ,sL−1,L) = (se)e. This
vector combines both selection coefficients for individual
mutations and pairwise epistatic interactions, with a gener-
alized index e that runs over both single loci (1,2, . . . ,L)
and pairs of loci ((1,2),(1,3), . . . ,(L − 1,L)). Simi-
larly, we can define a mutant allele frequency vector x =
(x1, . . . ,xL,x1,2, . . . ,xL−1,L), where

xi =
∑

a

gα
i zα

xi,j =
∑

a

gα
i gα

j zα .
(3)

Higher order mutant allele frequencies (e.g., xi,j,k) are de-
fined similarly.

The fitness parameters ŝ that maximize the path likelihood,
together with a Gaussian prior distribution (or equivalently,
ridge regression penalty) for the selection coefficients and
epistatic interactions, are then given by13,27

ŝ = (Cint +γI)−1 (
∆xint−uint−vint) . (4)

In this expression, the observed net allele frequency change
over the observation period is

∆xint =
K−1∑
k=0

∆x(tk) =
K−1∑
k=0

(x(tk+1)−x(tk))

= x(tK)−x(t0) ,

while uint and vint represent expected cumulative frequency
changes due to mutation and recombination, respectively.
Explicit derivations and definitions for these terms are given
in Methods. Cint is the allele frequency covariance matrix
integrated over time, and γ quantifies the width of the prior
distribution for the selection coefficients and epistatic inter-
actions.

Although (4) is complicated, it can be interpreted intu-
itively. Essentially, (4) states that allele frequency change that

Fig. 1. HCMF substantially reduces the required memory size and computa-
tional time. a, Required memory size versus number of loci L (measured in 100
bp). The required memory size of the naive method scales as O(L4), while our
method reduces it to O(L2). For the naive method, we did not consider L > 400
due to computational constraints. b, Required computational time (in seconds) ver-
sus number of loci. As anticipated, the computational time of the naive method and
HCMF scale by O(L6) and O(L2), respectively.

is not explained by the forces of mutation or recombination
is evidence of selection. The sign and magnitude of inferred
selection depend on the net change in allele frequencies (how
much, quantified by ∆xint, and how fast, quantified by the
diagonal part of Cint) as well as the effects of genetic back-
ground (quantified by the off-diagonal terms of Cint).

Results

Factorization of higher-order integrated covariance
matrix and efficient inference framework
While (4) provides a powerful expression to simultaneously
estimate the fitness effects of mutations and pairwise epistasis
from temporal genetic data, it faces a serious computational
limitation. The covariance matrix Cint is D = qL(qL+1)/2-
dimensional, where q is the number of alleles at each lo-
cus. The computational complexity of inverting the covari-
ance matrix thus scales as O

(
(qL)6)

, with memory costs re-
lated to the storage of covariance matrix entries scaling as
O

(
(qL)4)

. For data sets with hundreds or thousands of loci,
simply storing the covariance matrix in memory becomes
challenging.

We developed an efficient and generic method to resolve
the major computational bottleneck hindering the application
of this approach to larger data sets. The key idea of our ap-
proach is to exploit the regular structure of the covariance
matrix, allowing us to factorize the matrix and perform cal-
culations in a lower-dimensional space without any loss of
information. Specifically, we can write the integrated covari-
ance matrix in terms of a rectangular matrix with dimensions
D×d, which depends on the number of unique sequences in
the data set. Writing the number of unique sequences in the
data set at time tk as dk, we have d =

∑K
k=0 dk +K−1. As

we will show below, d may be multiple orders of magnitude
smaller than D for relevant data sets of interest, allowing this
factorization to dramatically speed up analyses.

In our analysis, we integrate the covariance matrix over the
evolution using linear interpolation between sampling times,
which mitigates periods of sparse sampling13,27. The inte-
grated covariance matrix with linear interpolation can be fac-

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2024. ; https://doi.org/10.1101/2024.10.14.618287doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.14.618287
http://creativecommons.org/licenses/by/4.0/


torized as follows (see Methods for details):

Cint =
K−1∑
k=0

∆tk
C(tk)+C(tk+1)

2

+
K−1∑
k=1

∆tk
∆x(tk)∆x(tk)⊤

6

=
K∑

k=0

∑
α

ξα(tk)ξα(tk)⊤ +
K−1∑
k=1

ξ(tk)ξ(tk)⊤

=: ΞΞ⊤ .

(5)

The ξ vectors are defined as

ξα(tk) =



√
zα(t0)∆t0

2

(
σα−x(t0)

)
k = 0√

zα(tk)(∆tk+∆tk−1)
2

(
σα−x(tk)

)
0 < k < K√

zα(tK)∆tK−1
2

(
σα−x(tK)

)
k = K ,

ξ(tk) =
√

∆tk

6 ∆x(tk) ,

(6)

where ∆tk = tk+1− tk, zα(tk) is the frequency of genotype
α in the data at time tk, and σα is a D-dimensional vector
with entries

σα
e =

{
gα

i for e≤ L

gα
i gα

j for e > L.
(7)

More complex covariance interpolation using spline curves33

can also be expressed in a form similar to (5).
Using the factorized Ξ matrix (5), we can rewrite the equa-

tion for the estimated selection coefficients and epistatic in-
teractions (4) as

ŝ = γ−1(∆x̃int−Ξ∆η) , (8)

with

∆x̃int = ∆xint−uint−vint ,

∆η =
(

Ξ⊤Ξ+γI
)−1 (

Ξ⊤∆x̃int
)

.
(9)

Critically, computing (8) is far less computationally inten-
sive than (4) when D ≫ d, as the matrix to be inverted in
(8) is only d×d. In total, the computational complexities of
calculations in (8) are: matrix-vector products of Ξ∆η and
Ξ⊤∆x̃int take O(dD); matrix-matrix product of Ξ⊤Ξ re-
quiresO(d2D); solving the equation for ∆η without directly
solving its inverse is smaller than O(d2+ω), with ω a small
positive number 0 < ω ≤ 1, depending on linear optimization
solvers.

This substantial computational reduction was achieved by
implicitly computing the integrated covariance matrix with-
out ever storing the covariance matrix itself. Therefore, our
epistasis inference scheme is more efficient and scalable as
the computational complexity scales only linearly with D

(and thus quadratically with L). In comparison, even naive
selection inference without epistasis scales as D3. The ex-
pression for the selection coefficients in (8) uses no approxi-
mations. Thus, its solution is exact in the diffusion limit13.

For simplicity, we initially assumed the same regulariza-
tion γ for selection and epistasis. However, we have also
generalized our approach so that the regularization values
γe can differ and implemented this in our code (Methods).
While our analysis considers only pairwise epistatic interac-
tions, one could further extend the fitness function to consider
even higher-order interactions. For p-way epistatic interac-
tions, the computational complexity would become O(dD)
with D =

∑p
l=1 ql

(L
l

)
.

HCMF substantially reduces computational costs
To assess the efficiency of HCMF, we simulated population
evolution under the WF model using different numbers of
loci, ranging from L = 50 to 1600. We used a constant pop-
ulation size of N = 103, a mutation rate of µ = 10−3, and a
recombination rate of r = 10−4 per site per generation. Our
simulations ranged over 2000 generations, with virtual sam-
ples collected for inference every 10 generations. We used
a fitness landscape in which 25% of mutations were benefi-
cial (si = 0.03), 25% were deleterious (si =−0.03), and 50%
were neutral (si = 0). Similarly, 25% of all pairs of sites were
randomly selected to have positive/negative epistatic interac-
tions (sij = 0.03 or −0.03, respectively), with the remaining
50% of the possible epistatic interactions set to zero. To en-
sure sufficient sampling to measure typical results, we per-
formed 500 simulations for each condition.

Since the size of the covariance matrix increases quadrat-
ically with sequence length, the required memory size of
the naive approach increases as O(L4). However, memory
requirements only scale as O(L2) for the HCMF method
(Fig. 1a). HCMF also dramatically reduces the run time of
the inference, scaling as O(L2) compared to O(L6) for the
naive approach (Fig. 1b). For example, for L = 400, HCMF
is 104 times faster than the naive approach. This computa-
tional advantage should further increase for larger sequence
lengths. As noted above, since the HCMF approach involves
no approximations, the selection coefficients and epistatic in-
teractions inferred by this approach match the ones from the
naive method exactly within machine precision.

Importance of higher-order covariance information for
inferring epistasis
One of the main barriers to inferring epistatic interactions via
(4) is computing and inverting the integrated covariance ma-
trix. The HCMF approach we have developed offers one so-
lution to this problem. However, one could also simplify (4)
by neglecting the off-diagonal terms of the covariance ma-
trix. This greatly reduces the computational burden of the
problem, but neglects important information about linkage
disequilibrium that could inform the inference of selection
coefficients and epistatic interactions. We refer to this ap-
proximation as the independent model (analogous to the sin-
gle locus model of ref.27).
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Fig. 2. Higher-order covariance information improves the inference of epista-
sis. Distribution of inferred epistasis using the full model inferred via HCMF (a),
which includes higher-order covariance information, and using the independent
model (b), in which off-diagonal terms of the covariance matrix are set to zero.
c, Receiver operating characteristic (ROC) curve for identifying positive epistasis.
The area under the curve (AUC) value is 0.90 for the full model, while it drops to
0.81 for the independent model. d, Analogous ROC and AUC values for identifying
negative epistasis. The AUC values are 0.90 and 0.69 for full and independent
models, respectively.

We performed additional simulations to compare the ac-
curacy of the HCMF method, which includes higher-order
covariance information, and the independent model, which
does not. These simulations were performed with the same
parameters as in the previous section, using L = 50 loci and
sparser epistatic interactions. Here we chose a random set
of L/2 = 25 pairs of sites to have positive epistatic inter-
actions (sij = 0.03), L/2 pairs with negative interactions
(sij = −0.03), and set the remaining epistatic interactions
to zero.

The inferred epistatic interactions using the full model
with HCMF are much closer to the true ones than those in-
ferred with the independent model (Fig. 2a-b). For the full
model, the distribution of inferred positive/neutral/negative
epistatic interactions is roughly normal, with peaks that can
easily be distinguished from one another. In contrast, the
epistatic coefficients inferred using the independent model
are distributed much more broadly and irregularly. While
positive and negative interactions can, on average, still be
distinguished from one another using the independent model,
it is more difficult to do so. To quantify this difference, we
computed the receiver operating characteristic (ROC) curve
and area under the curve (AUC) for identifying positive
(Fig. 2c) and negative (Fig. 2d) epistatic interactions using
the full and independent models. Thus, by all metrics we find
that the inclusion of higher-order covariance information im-
proves the ability to identify epistatic interactions from data.

Fig. 3. Modeling epistasis improves the inference of additive selection coef-
ficients. Distribution of selection coefficients inferred with the full model via HCMF
(a) and a simpler model with no epistatic interactions (b). When epistasis is present,
including it in the model also improves estimates of selection coefficients. c, ROC
curves and their AUC values for identifying positive selection coefficients. The AUC
value of the full model is 0.94, while the AUC value of the model without epista-
sis drops to 0.87. d, Analogous ROC and AUC values for identifying deleterious
selection coefficients. The AUC values are 0.88 and 0.74 for the full model and
the model without epistasis, respectively. Simulation parameters are the same as
in Fig. 2.

Modeling epistasis improves the inference of selection
coefficients
An alternative approach to reducing the computational costs
of (4) is to use a simpler fitness landscape, such as a purely
additive one with all sij = 0. This assumption may be es-
pecially appropriate for analyzing highly similar sequences.
However, in models with substantial, strong epistatic in-
teractions, omitting epistasis could skew fitness estimates
(Fig. 3a-b). In these conditions, inference using models with
epistasis yields more accurate estimates of individual selec-
tion coefficients and improves the detection of beneficial and
deleterious mutations (Fig. 3c-d).

Joint inference from multiple replicates
Some evolution experiments, such as deep mutational scan-
ning studies34,35, have multiple independent replicates col-
lected under the same conditions. Using our approach, we
can estimate selection coefficients and epistatic interactions
that best explain the data across all replicates, as shown in
prior work13,36,37. To demonstrate this phenomenon in a
challenging setting for inference, we increased the density
of epistatic interactions to 50%, with half set to be positive
(sij = 3%) and half negative (sij = −3%). In this case,
epistatic effects dominate the fitness function. With a single
replicate, the AUC values were 0.82 (0.81) for identifying
beneficial (deleterious) selection coefficients and 0.74 (0.72)
for positive (negative) epistasis. Combining data from two
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Fig. 4. Predominance of negative epistasis between beneficial HIV-1 muta-
tions. a, Comparison of inferred epistatic interactions, ŝij , and the corresponding
sum of individual selection coefficients, ŝi + ŝj , in a typical case (700010077-3; see
Supplementary Fig. 2 for all individuals). Generically, we find negative correlations
between inferred epistatic interactions and selection coefficients. CTL escape muta-
tions are typically found to be both strongly beneficial and to have negative epistatic
interactions with other escape mutations. b, Distribution of inferred epistatic interac-
tions across all individuals. Most terms are near zero, but a few epistatic interactions
are significantly negative.

replicates raised the AUC to 0.93 (0.89) for selection coef-
ficients and 0.86 (0.85) for epistasis, with further improve-
ments as the number of replicates increases (Supplementary
Fig. 1).

Epistasis in intrahost HIV-1 evolution

As a practical application of our approach, we studied within-
host HIV-1 evolution in 16 individuals who were not treated
with antiretroviral drugs during the sampling time. This
data set included individuals enrolled in the CHAVI 001 and
CAPRISA 002 studies in the United States, Malawi, and
South Africa38,39. Each individual was identified shortly af-
ter HIV-1 infection, and the viral population within each in-
dividual was sampled frequently for several months to years
afterward. For most individuals, the 3′ and 5′ halves of
the HIV-1 genome were sequenced separately using single
genome amplification methods, preserving information about
linkage disequilibrium between mutations even at long dis-
tances. For two individuals, denoted CH505 and CAP256,
only the HIV-1 surface protein Env was sequenced. Most
data sets consisted of around 50-100 HIV-1 sequences in to-
tal for each sequencing region, collected over 5-8 time points,
with several hundred polymorphic loci (see Supplementary
Table 1). However, the viral population was also sequenced
more deeply in a few individuals, featuring as many as 1205
HIV-1 sequences collected at 31 time points over roughly 5
years.

Using this data, we inferred selection coefficients and
epistatic interactions between HIV-1 mutations for each in-
dividual and sampling region. We used prior estimates to set
the mutation40 and effective recombination rates41 in (8). By
convention, we set the selection coefficients and epistatic in-
teractions for the transmitted/founder (TF) sequence, the nat-
ural analog of WT, to zero (Methods). Thus, fitness effects
are expressed relative to the strain of the virus that originally
infected each individual. In general, the ability to transform
the model parameters (i.e., selection coefficients and epistatic
interactions) without affecting the dynamics of the model is
referred to as a gauge freedom. Choosing a specific conven-

Fig. 5. Consistency of inferred selection coefficients in models with and
without epistasis. a, Comparison of inferred selection coefficients in models with
and without epistasis in a typical case (700010077-3; see Supplementary Fig. 3 for
all individuals). While the exact values differ, there is excellent general agreement
between the mutations that are inferred to strongly affect fitness and those that
are inferred to be nearly neutral. b, Distribution of selection coefficients across all
individuals. Both distributions are peaked near zero, but the tails of the distributions
in the full model are longer.

tion for the parameters is important for comparing fitness ef-
fects in different contexts and for improving the interpretabil-
ity of the model37,42–44.

Here we focused specifically on epistatic interactions be-
tween nearby sites (separated by <50 bp), with distant
epistatic interactions suppressed by strong regularization.
There were two reasons for our focus on short-range inter-
actions. First, due to the high effective recombination rate
in HIV-1, the size of the sequencing region, and some large
time gaps between samples, the expected change in correla-
tions between mutant alleles due to recombination may vio-
late the mathematical assumptions of the diffusion approxi-
mation, biasing our inferences for these sites. Second, short-
range epistatic interactions may be of particular biological
interest in HIV-1 evolution.

The accumulation of mutations within cytotoxic T lym-
phocyte (CTL) epitopes – linear peptides roughly 10 amino
acids in length that are recognized by cytotoxic T cells – al-
lows mutant viruses to escape from the immune system. Past
work has shown that T cells are especially important in con-
trolling HIV-1 replication45, and that the virus faces signifi-
cant selective pressure to escape from CTLs27,39,45–47. How-
ever, because the recognition of CTL epitopes is highly spe-
cific, even one nonsynonymous mutation within the epitope
can be sufficient to confer escape48–50. We anticipate that this
phenomenon could lead to negative epistasis between CTL
escape mutations, as the fitness benefit of multiple mutations
within the epitope should be lower than expected based on
the beneficial effect of each individual escape mutation.

While most of the epistatic interactions we inferred were
very close to zero, a few were significantly negative (Fig. 4).
We observed a general trend where negative epistatic interac-
tions were more common between beneficial mutations, es-
pecially CTL escape mutations (Fig. 4). This pattern of neg-
ative epistasis between beneficial mutations, including CTL
escape mutations, was robustly observed across all individu-
als and sequencing regions that we studied (Supplementary
Fig. 2).
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Consistency with prior estimates of selection in HIV-1
Past work has studied HIV-1 evolution in part of this data
set with different modeling choices, including a model with
purely additive selection27 and one that includes specific
terms for CTL escape51. Neither of these models includes
pairwise epistatic interactions. Thus, we compared the se-
lection coefficients inferred in our analysis with those from
previous models to understand how the inclusion of pairwise
epistasis affects the interpretation of the fitness effects of in-
dividual mutations.

Figure 5a shows a typical example of the inferred se-
lection coefficients, ŝi, with and without the inclusion of
epistasis. Overall, we find that the inferred selection coef-
ficients are similar to those in past models (mean Pearson’s
R = 0.94). In particular, all models find very strong selec-
tion for CTL escape mutations27,51. As in previous work, the
great majority of inferred selection coefficients are very close
to zero (Fig. 5b). However, the model without epistasis also
features heavier tails in the distribution of inferred selection
coefficients, with more mutations inferred to have either very
beneficial or very deleterious individual effects.

Discussion
Epistasis is prevalent in nature, and has been observed to in-
fluence viral evolution1,15,52–54. However, inferring epista-
sis from data is technically and computationally challenging.
Here, we developed a new approach for the path likelihood
inference framework13,27,37,51,55 that greatly reduces compu-
tational costs for many data sets of interest, especially for in-
ferring epistasis. Our key innovation was the efficient factor-
ization of the higher-order covariance matrix, which allows
us to analytically estimate selection coefficients and epistatic
interactions from data without ever explicitly computing the
covariance matrix or its inverse. For this reason, we referred
to our method as higher-order matrix factorization (HCMF).
The HCMF approach is general and can be applied under
different assumptions about the structure of the fitness land-
scape. HCMF does not introduce any new approximations, so
it suffers no loss in accuracy compared to prior approaches.

After validating our approach in simulations, we applied
HCMF to study HIV-1 evolution within 16 individuals. The
fitness effects of mutations that we inferred were consistent
with past computational results27,36,47,51 and with experimen-
tal findings. In particular, we found strong selection for mu-
tations that allow the virus to escape from the host immune
system, in agreement with a large body of experimental work
and clinical observations25,39,45,46,56.

In this HIV-1 data set, the distribution of epistatic interac-
tions that we inferred was peaked near zero, but with a sub-
stantial tail of strong negative epistasis. Patterns of negative
epistasis have also been observed in other viruses15. Nega-
tive epistasis was especially common between CTL escape
mutations, consistent with the finding that single mutations
within an epitope typically already disrupt T cell recogni-
tion48–50. We also observed negative epistasis between pairs
of beneficial mutations more generally. This finding is con-
sistent with more general studies that have observed decreas-

ing effect sizes of beneficial mutations over time6,57–59.
Our approach to inferring epistasis from temporal data dif-

fers from some prior methods, which used statistical models
to explain correlations in protein sequences collected from
many individuals or species22,23,26,60–64. These models treat
sequence data as samples from a static, equilibrium distribu-
tion, and interpret correlations between mutations as possible
evidence for epistasis. Only a handful of methods allow for
the possibility that linkage disequilibrium may arise from an
underlying phylogenetic structure to the sequence data65,66,
or simply by chance. Nonetheless, these approaches have
also been successful at tasks such as predicting the fitness
effects of HIV-1 mutations in experiments62,63 and the dy-
namics of immune escape within individual patients26. In
contrast to the present work, these models offer a “global”
view of epistasis averaged across many related sequences.

The HCMF approach that we have developed is general.
While our study focused on HIV-1, future work could be ap-
plied to other populations, including viruses like influenza
and SARS-CoV-2 (ref.55), experimental evolution37, or bac-
teria67,68. As one example, recent studies have suggested
that epistasis plays an important role in maintaining fitness
among SARS-CoV-2 Spike mutations that escape from an-
tibodies and control receptor binding19,20. More systematic
studies could reveal the importance of epistasis in different
aspects of SARS-CoV-2 evolution. More generally, a deeper
understanding of epistasis may also improve our ability to
understand and predict viral evolution.
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Supplementary Information

Methods

HIV sequences

We retrieved HIV-1 sequences for individuals in this study from the Los Alamos National Laboratory (LANL) HIV Sequence
Database69 (see Supplementary Table 1). We processed the sequence data as described in ref.70 to minimize the influence
of sampling noise. Processing steps included 1) removing the sequences with large deletions, 2) removing sites with high gap
frequencies (indicating rare insertions or potential alignment errors), and 3) eliminating time points with <4 sequences or ones
that were obtained >200 days after the prior sampling time. In addition, we imputed ambiguous nucleotides using the most
common nucleotides in the data at the same site within that individual.

Model

We model the evolution of a population of N individuals subject to mutation, recombination, natural selection, and genetic
drift (finite population size), following the Wright-Fisher (WF) model71–73. We assume that all individuals are haploids. Each
genotype g ∈ AL is a sequence of L alleles, with the alleles considered to be categorical variables A = {A, T, G, C, -} for
DNA or A= {A, C, . . . ,W, Y, -} for amino acids, including a gap character to represent deletions. We write the fitness of each
genotype as

fα = f(gα) = 1+
∑

i

si(gi)+
∑
i<j

sij(gi,gj) . (S1)

The si(a) are additive fitness parameters acting on each site and allele individually, while the sij(a,b) are epistatic interactions
between pairs of alleles a and b at sites i and j. We assume the underlying fitness parameters are constant in time, with
the population’s adaptation speed much faster than the rate of environmental changes. We define the probability of mutation
from allele a to b as µab per site per generation, which we assume is the same for all sites. Here we used a simple model
of recombination, in which there is a probability r per site per generation for a recombination breakpoint to occur at that
site. A recombinant sequence derived from two sequences gα and gβ with recombination breakpoint i then has the form
(gα

1 , . . . ,gα
i ,gβ

i+1, . . . ,gβ
L). We assume that the partner sequence β is always chosen randomly from the population with a

probability proportional to the frequency of that genotype.
Let z ∈ [0,1]M be the genotype frequency with the number of genotypes being M . The WF model under the fixed population

size N is defined as the following multinomial process:

P (z(tk +1)|z(tk);N) = N !
M∏

α=1

pα(z(tk))Nzα(tk+1)

[Nzα(tk +1)]! , (S2)

where pα is given by

pα(z) =
fαzα +

∑
β(µβαzβ−µαβzα)+

∑
γ

∑
β zγ [R(α | β,γ)zβ−R(β | α,γ)zα]∑

β fβzβ
. (S3)

R(α|β,γ) is the probability that the recombination of genotypes β and γ results in a genotype α.
In simulations, we used µab = µ = 10−3 and r = 10−4 per site per generation. For HIV-1 data analysis, we used mutation

rates estimated from a longitudinal virus evolution study74, along with a constant recombination rate of r = 10−5 per site per
generation, in line with past estimates of the effective recombination rate75–79. This choice for representing recombination in
HIV-1 is a simplification. In reality, HIV-1 recombination occurs in multiple steps: first, two different viruses must coinfect
the same cell. Then, genetic material from each virus can be packaged together in the same virion. When such a virion
infects a new cell, recombination can occur as the viral reverse transcriptase switches between templates. Thus, the effective
HIV-1 recombination rate involves both coinfection and template switching probabilities. Recent work has also shown that the
effective recombination rate can increase when viral load is higher, due to increased rates of coinfection80. Here we applied
only the simple recombination model in which probabilities of coinfection and template switching are combined into a single
effective recombination rate. Future work could relax this assumption and consider the effects of time-varying recombination
rates due to fluctuations in viral load.
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Diffusion limit

The properties of multinomial processes lead to the following genotype average and covariance values:∑
z′

z′
αP (z′

α | z;N) = pα(z)∑
z′

(z′
α−pα(z))(z′

β−pβ(z))P (z′
α | z;N) = Cαβ(z)/N ,

(S4)

with

Cαβ =
{
−pαpβ α ̸= β

(1−pα)pα α = β
. (S5)

Assuming that the rates of mutation and recombination and the fitness effects of mutations are small (formally, O(1/N)),
changes in genotype frequencies are not abrupt, and we can employ the diffusion approximation81 to simplify the WF model.
This results in the following Kimura’s diffusion equation (Fokker-Planck equation or Kolmogorov forward equation82):

∂tP (z; t) = 1
2

∑
α,β

∂α∂βCαβ(z)P (z; t)−
∑

α

∂αpα(z)P (z) . (S6)

The above equation leads to the Gaussian process with average drift and diffusion matrix (Eq. (S4)). To be more explicit,
assuming 1≪N and collecting the only O(1/N) terms in the stochastic process, we get the following tractable expression

P (z(t+∆t) | z(t))∝ exp
(
− N

2∆t
(∆z(t)−∆td(z(t)))⊤ C(z)−1 (∆z(t)−∆td(z(t)))

)
dα(z(t)) = Cααsα +

∑
β( ̸=α)

Cαβsβ +
∑

β

(µβαzβ−µαβzα)+
∑

γ

∑
β

zγ [R(α | β,γ)zβ−R(β | α,γ)zα] ,
(S7)

Here the covariance is also taking only the O(1/N) terms and scaled by N , therefore, Cαα = zα(1− zα) and Cαβ =−zαzβ .
In the main text, we gave the optimal selection coefficients ŝi and epistatic interactions ŝij maximizing a posterior distribution
over the above diffusion processes (Eq. (4)).

So far, we have discussed the diffusion process in the genotype distribution space. To make the expressions more transparent,
we can project the genotype frequency dynamics onto the allele frequency space (Eq. (3)), which we describe below.

Expected frequency change due to mutation

Assuming the WF process, we can analytically estimate the expected frequency change due to mutation and recombination
effects and integrate them over the generations. Define the indicator function gα

i,a that gives one if genotype α has allele a at
site i, otherwise zero, and xi,a is the allele frequency obtained by

∑
α gα

i,azα = xi,a.
Since the mutation rate is small, effectively, no more than one mutation occurs per generation for individual sequences.

Therefore, possible mutations between genotypes α and β are formally constrained by their distance such that dα,β = L−∑
i,a δ

gα
i,a

,g
β
i,a

= 1, with δx,y being Kronecker’s delta. Therefore, the expected additive frequency change in allele a at site i

due to mutation is:

ui,a =
∑

α

∑
β|dα,β=1

∑
b

gα
i,agβ

i,b(µβαzβ−µαβzα)

=
∑

b|b ̸=a

(µbaxi,a−µabxi,b) .
(S8)

Similarly, for pairwise frequencies we obtain

uij,ab =
∑

α

∑
β|dα,β=1

gα
i,agα

j,b(µβαzβ−µαβzα)

 ∑
c|c ̸=a

gβ
i,cgβ

j,b +
∑

c|c̸=b

gβ
i,agβ

j,c


=

∑
c

(
[µbcxij,ac +µacxij,cb]− [µcb +µca]xij,ab

)
.

(S9)
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Expected frequency change due to recombination

By symmetry, one can show that recombination has no effect on the expected change in individual allele frequencies70. How-
ever, correlations between mutations are naturally diluted by recombination. For pairwise frequencies, recombination decreases
correlations between mutations until they become independent. One can show that the expected change in pairwise allele fre-
quencies due to recombination is83

vij,ab =−r|i− j|(xij,ab−xi,axj,b) . (S10)

A detailed derivation is included in ref.83.

Maximum a posteriori solution over the path
Leveraging the analytically tractable transition probability under the diffusion limit (Eq. (S7)), the maximum a posteriori
estimate of the selection coefficients and epistatic interactions is83

ŝ = argmax
s

P (s|γ)
K∏

k=0
P (z(tk+1) | z(tk);s,(µab)a,b, r)

= (C int +diag(γ))−1 (
x(tK+1)−x(t0)−uint−vint) .

(S11)

Here diag(γ) is a matrix with γ on the diagonal and zeros elsewhere. P (s | γ) represents a prior distribution for the selection
and epistatic coefficients, given by the normal distribution

P (s | γ)∝ exp
(
−1

2s⊤diag(γ)s
)

. (S12)

The expected net frequency change due to mutation and recombination, denoted by uint and vint, are defined in the equation
Eq. (S8), Eq. (S9) and Eq. (S10), respectively. Further reduction based on the HCMF method is explained in the main text. We
provide the expression of the factorized covariance matrix in the following section.

Representing the integrated covariance matrix with linear interpolation by a low-rank matrix
In this section, we show the expression of the integrated covariance matrix with piece-wise linear interpolation is given as the
integration of covariance with a piece-wise constant interpolation and a sum of rank-one matrices.

By integrating them over the time t, we get the (time-) integrated covariance matrix. More specifically, we consider the
following linear interpolation, such that

Cint =
K−1∑
k=0

∆tk

∫ 1

0
dτC[k,k+1](τ)

C
[k,k+1]
e,f (τ) = x

[k,k+1]
ef (τ)−x

[k,k+1]
e (τ) x

[k,k+1]
f (τ)

x
[k,k+1]
e (τ) = (1− τ)xe(tk)+ τxe(tk+1) .

(S13)

It is straightforward to check that the following expression is identical to the diagonal of the integrated covariance matrix with
the piece-wise linear interpolation given in ref.70:

∆t0
2 Cii(t0)+ ∆tK−1

2 Cii(tK)+
K−1∑
k=1

∆tk +∆tk−1
2 Cii(tk)+

K−1∑
k=1

∆tk

6 (∆x(tk))2

=
K−1∑
k=0

∆tk

2

(
xi(tk)(1−xi(tk))+xi(tk+1)(1−xi(tk+1))

)
+

K−1∑
k=1

∆tk

6 (xi(tk+1)−xi(tk))2

=
K−1∑
k=0

∆tk

(
xi(tk)+xi(tk+1)

2 − xi(tk+1)(xi(tk)+xi(tk+1))
3 − xi(tk)2

3

)

=
K−1∑
k=0

∆tk

(
(3−2xi(tk))(xi(tk)+xi(tk+1))

6 − xi(tk)2

3

)
= (Cint)ii .

(S14)

For the off-diagonal case, the pairwise-frequency term xij(tk) is linear in time, and the result of the integral with the linear
interpolation is the same as the integral with the piecewise-constant interpolation. Therefore, we explicitly write only the
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integrals that are non-linear in time:

∆t0
2 xi(t0)xj(t0)+ ∆tK−1

2 xi(tK)xj(tK)+
K−1∑
k=1

∆tk +∆tk−1
2 xi(tk)xj(tk)−

K−1∑
k=1

∆tk

6 ∆xi(tk)∆xj(tk)

=
K−1∑
k=0

∆tk

(
xi(tk)xj(tk)+xi(tk+1)xj(tk+1)

2 −
(xi(tk+1)−xi(tk))(xj(tk+1)−xj(tk))

6

)

=
K−1∑
k=0

∆tk

(
xi(tk)xj(tk)+xi(tk+1)xj(tk+1)

3 + xi(tk)xj(tk+1)+xi(tk+1)xj(tk)
6

)
=−(Cint)ij +(integrated pairwise frequency matrix) .

(S15)

By summarizing these equations, we represent the integrated covariance matrix as:

Cint = ∆t0
2 C(t0)+ ∆tK−1

2 C(tK)+
K−1∑
k=1

tk+1− tk−1
2 C(tk)+

K−1∑
k=1

∆tk

6 ∆x(tk)∆x(tk)⊤ , (S16)

which we can readily factorize by a matrix Ξ such that Cint = ΞΞ⊤. The size of the matrix Ξ is D×d, where d =
∑K

k=0 d(tk)+
K−1 with d(tk) denoted as a rank of C(tk). In most of the evolutionary data, the size of the higher-order covariance matrix
is much larger than the effective matrix rank size; hence, typically d≪D.

Inferring fitness parameters from multiple replicate trajectories
In cases where multiple ensembles of trajectories evolve under similar conditions, it is natural to extend the path likelihood
to multiple ensembles. Suppose there are Q replicates, let q be the index of the qth replicate, (tk)Kq

k=1 be a set of sampling
time-steps for the qth replicate, and xq(tk) be the set of single and pairwise frequencies for the qth replicate.

The maximum path likelihood solution using Q replicates can be expressed as83

s = γ−1(∆x−Ξr)

r =
(

ΞΞ⊤ +γI
)−1

Ξ⊤∆x ,
(S17)

where

∆x =
Q∑

q=1
∆xq

Ξ⊤ =
(

Ξ1⊤
, . . . ,ΞQ⊤

)
∈ RD×B .

(S18)

B is the total number of samples across replicates over the evolution, formally, B =
∑Q

q Bq , where Bq is the total number of
samples of the q-th replicate over its evolution. Intuitively, the likelihood of multiple independent trajectories is equal to the
product of each of their likelihoods individually.

Gauge transformation
The effects of natural selection are determined by differences in fitness values, such as the difference between the fitness of
the wild type and a mutant. Shifting the fitness values globally by adding a constant, F (g)← F (g) + const., has no effect
on fitness differences. In the additive fitness model, it is easy to see that shifting the selection coefficient at any locus by
an arbitrary constant Ki does not alter the relative fitness landscape:

∑
i

∑
a(si(a)−Ki)δgi,a =

∑
i si(gi) + const. In other

words, the effective fitness parameters can be reduced to (q−1)L, and the degrees of freedom that can be arbitrarily adjusted
without changing the overall fitness picture are L parameters. More systematic arguments under general situations exist and are
known as gauge theory in physics and mathematical physics. These concepts have been applied to many genetic sequence-based
inference problems84–86, with recent reviews for gauge theory in more complex cases87,88. In our study, mutation effects of the
wild type or TF’s allele serve as reference values; therefore, considering any effects involved with TF’s alleles being zeros is a
reasonable choice and makes the inference results more interpretable, as inferred parameters become sparser. To fix the gauge,
we employed the following gauge transformation, which is commonly used in statistical inference for genetic sequences89,90,

si(a)← si(a)−si(aWT)+
∑

j (>i)

(
sij(a,bWT)−sij(aWT, bWT)

)
+

∑
j (<i)

(
sji(bWT,a)−sji(bWT,aWT)

)
sij(a,b)← sij(a,b)−sij(aWT, b)−sij(a,bWT)+sij(aWT, bWT) ,

(S19)
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where aWT, bWT are WT (i.e., TF) alleles at locus i and j, respectively. This choice of gauge ensures si(aWT) = sij(aWT, b) =
sij(a,bWT) = 0 for all a,b.

Further compression of Ξ
Although the size of the matrix Ξ∈RD×d is much smaller than the size of the full covariance matrix ∈RD×D with d≪D, still
keeping Ξ can be the major bottleneck. An example is HIV-1 CH848 data, where >1200 sequences were collected sequencing
more than half of the HIV-1 genome. When we naively compute Ξ storing float variables, that requires more than a terabyte
of memory. To further reduce the memory usage, we only consider alleles with nonzero frequency changes

∑
k |∆xi(tk)|> 0.

This modification is straightforwardly implemented in our program.

Heterogeneous regularization
Instead of applying constant regularization across all parameters, we use a generalized heterogeneous regularization approach
with the HCMF method: γ → γ = (γe)D

e=1. By denoting Λγ as a diagonal matrix with (Λγ)ef = γeδef , then the optimal
fitness parameter becomes ŝ = (C +Λγ)−1∆x . Consequently, the expression for the efficient expression becomes:

ŝ = Λ−1
γ (∆x−Ξ∆η)

∆η =
(

Ξ⊤Λ−1
γ Ξ+ I

)−1
(Λ−1

γ Ξ)⊤∆x .
(S20)

Theoretical error bars
The posterior distribution is given by the Bayes’ rule,

P (s|(x(tk))K
k=0)∝ exp

(
−1

2(s− ŝ)⊤Σ−1(s− ŝ)
)

, (S21)

which is a normal distribution for the fitness parameters s with mean ŝ and a precision matrix Σ−1 = (Cint +γI). In a Bayesian
inference framework, the uncertainty in the inferred fitness parameters is characterized by (Cint + γI)−1. More specifically,
considering the diagonal of the covariance matrix as the theoretical “error bar,” the standard deviation for se can be given by
((Cint + γI)−1)ee. Let ξ̃e ∈ Rd for e ∈ {1, . . . ,D} be row vectors for Ξ, then by exploiting the structure of the integrated
covariance matrix Cint = ΞΞ⊤, one can get

Var(se) = (γN)−1
(

1− ξ̃
⊤
e

(
ΞΞ⊤ +γI

)−1
ξ̃e

)
. (S22)

As the inverse in (Eq. (S22)) is easier to obtain, once the inverse is obtained, the variance of each se should be straightforwardly
obtained.

Data and code
Data and code used in our analysis is available in the GitHub repository located at https://github.com/bartonlab/
paper-hcmf. This repository also contains scripts that can be run to reproduce our figures and analysis.
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Supplementary Fig. 1. Combining evolutionary replicates improves inference accuracy. a, AUC values for identifying selection
coefficients as a function of the number of replicates. When using a single trajectory, the AUC values for beneficial and deleterious
coefficients are 0.82 and 0.81, respectively. The AUC values for the inferred selection coefficients increase to 0.93 and 0.89, respec-
tively, when combining two replicates. AUC values continue to increase as the number of replicates grows, reaching 0.98 and 0.95
for beneficial and deleterious coefficients with a set of 10 replicates. b, AUC values for identifying epistasic interactions from a single
replicate are 0.74 for positive and 0.72 for negative epistasis. Similar to the case for selection coefficients, inference accuracy steadily
improves with the addition of more replicates.
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Supplementary Fig. 2. Comparison of inferred epistatic coefficients and the sum of selection coefficients. These figures
are analogous to Fig. 4a in the main text, but for all individuals and sequencing regions that we analyzed. The tendency of strong
anticorrelation between epistasis and the sum of selection coefficients is widely observed across multiple individuals. Relatively strong
negative epistatic coefficients are often seen among significantly beneficial mutations, many of which are involved in CTL escape.
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Supplementary Fig. 3. Comparison of inferred selection coefficients in models with and without epistasis. This figure is
analogous to Fig. 5a in the main text, but across other individuals and sequencing regions that we analyzed. The inferred selection
coefficients learned with epistasis are globally consistent with those learned without epistasis. Relatively strong positive selection
coefficients are often involved in mutations in CTL epitopes.

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2024. ; https://doi.org/10.1101/2024.10.14.618287doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.14.618287
http://creativecommons.org/licenses/by/4.0/


ID Length, L Dimension, D # of time points, K # of sequences, N Time (sec) Memory (GB)
700010040-3 303 1.4×105 8 82 6.2 2.6
700010040-5 146 3.2×104 8 74 3.5 0.7
700010058-3 90 1.2×104 4 25 2.6 0.3
700010058-5 96 1.3×105 8 52 2.4 0.4
700010077-3 203 6.5×104 5 44 3.7 0.8
700010077-5 48 3.4×103 4 32 2.3 0.3
700010470-3 367 2.2×105 6 113 10.8 4.8
700010470-5 193 5.7×104 7 104 5.9 1.4
700010607-3 239 8.5×104 4 73 5.2 1.5
700010607-5 78 9.1×103 4 76 2.3 0.4
703010131-3 744 8.7×104 9 114 50.8 19.4
703010131-5 261 9.9×104 9 76 5.0 1.9
703010159-3 477 3.5×105 8 98 15.8 7.0
703010159-5 216 7.0×104 8 93 5.5 1.6
703010256-3 463 3.5×105 6 99 14.7 6.6
703010256-5 402 2.4×105 6 110 14.1 5.5
704010042-3 875 1.3×106 6 93 51.1 21.6
704010042-5 266 1.1×105 6 85 5.1 2.1
705010162-3 508 4.0×105 5 69 12.6 5.7
705010162-5 254 9.6×104 5 60 4.9 1.4
705010185-3 292 1.3×105 5 97 7.3 2.7
705010185-5 85 1.1×104 3 49 2.3 0.4
705010198-3 204 6.3×104 3 48 4.1 0.9
705010198-5 72 7.8×103 3 47 2.2 0.3
706010164-3 485 3.7×105 6 102 19.1 7.4
706010164-5 204 6.2×104 6 98 5.1 1.5

cap256-3 204 1.3×106 6 98 5.1 1.5
703010505 1,131 2.5×106 23 578 319.1 215.3
703010848 2,694 1.4×107 31 1,205 1,736.0 395.5

Supplementary Table 1. Computational time and required memory for inferring epistatic and selection coefficients. The table
summarizes the number of polymorphic sites (length L), the effective matrix dimension to be inverted (D), the number of time points
(K), as well as the required computational time and memory size for each individual. IDs consist of the patient identifier and sequencing
region (5′ or 3′ end of the genome), separated by a dash. Computations were performed using a single CPU core with a single thread.
For comparison, lengths of around L ∼ 200 are already near computational limits even using a high-performance computing system.
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