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Abstract20

Epigenetic clocks that quantify rates of aging from DNA methylation patterns across the21

genome have emerged as a potential biomarker for risk of age-related diseases, like Alzheimer’s22

disease (AD), and environmental and social stressors. However, methylation clocks have not23

been validated in genetically diverse cohorts. Here we evaluate a set of methylation clocks24

in 621 AD patients and matched controls from African American, Hispanic, and white co-25

horts. The clocks are less accurate at predicting age in genetically admixed individuals,26

especially those with substantial African ancestry, than in the white cohort. The clocks also27

do not consistently identify age acceleration in admixed AD cases compared to controls.28

Methylation QTL (meQTL) commonly influence CpGs in clocks, and these meQTL have29

significantly higher frequencies in African genetic ancestries. Our results demonstrate that30

methylation clocks often fail to predict age and AD risk beyond their training populations31

and suggest avenues for improving their portability.32

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.16.618588doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.16.618588
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction33

Biological aging is the progressive accumulation of cellular damage leading to degeneration34

and organismal death (Aunan et al., 2016). DNA methylation patterns at CpG sites across35

the genome correlate strongly with the aging process, an effect that has been quantified using36

statistical models called “methylation clocks” (Jones, Goodman, and Kobor, 2015). The first-37

generation of methylation clocks were trained to predict chronological age from methylation38

levels at selected CpGs from across the genome (Hannum et al., 2013; Horvath, 2013; Zhang39

et al., 2019). A second-generation of clocks were trained to use methylation levels to predict40

mortality risk as proxied by a combination of biomarkers of frailty and physiological decline41

(Morgan E. Levine et al., 2018; Lu et al., 2019). Finally, a third-generation of clocks have42

been trained to predict the rate of aging based cohorts with longitudinal data on biomarkers of43

frailty (Belsky et al., 2022).44

Greater predicted DNA methylation age compared to an individual’s chronological age,45

known as epigenetic age acceleration, has been associated with an increased risk of many46

age-related diseases, including coronary heart disease, white matter hyperintensities, Type 247

diabetes mellitus, Parkinson’s disease, and Alzheimer’s disease (AD) (Hodgson et al., 2017;48

Horvath, Gurven, et al., 2016; Horvath and Ritz, 2015; Morgan E Levine et al., 2015, 2018;49

Lu et al., 2019; Raina et al., 2017). As such, methylation clocks show potential as predictive50

biomarkers of the aging process and age-related health outcomes, and may capture relevant51

biological signals associated with aging. The clocks are also increasingly being used in social52

epidemiology research to quantify associations of epigenetic aging with exposure to adverse so-53

cial and environmental factors that often differ across groups (Aiello et al., 2024; Chiu et al.,54

2024; Krieger et al., 2024; Non, 2021).55

While methylation is shaped by the environment of an individual, it is also strongly influ-56

enced by genetic variation (Kader and Ghai, 2017). Millions of methylation quantitative trait57

loci (meQTLs)—genetic variants that associate with the methylation level of a CpG site across58

individuals—have been identified (Smith et al., 2014). MeQTL influence methylation levels via59

many mechanisms, including disruption of CpGs and effects on transcription factor binding,60

gene expression, and other gene regulatory processes (Banovich et al., 2014; Oliva et al., 2023).61

Methylation patterns also vary between human groups, and approximately 75% of variance in62

methylation between human groups associates with genetic ancestry (Galanter et al., 2017).63

This suggests that meQTLs often vary in frequency in different genetic ancestries.64

Despite these factors that lead to differential methylation levels in different genetic ances-65

tries, methylation clocks have been developed and evaluated primarily individuals of European66

genetic ancestry due to biases in available genomic data. We hypothesized that lack of genetic67

diversity in the training data of methylation clocks could limit their generalizability across global68

and admixed populations. Similar factors have posed challenges for the application of polygenic69

risk scores (PRS) across human groups; PRS models often rapidly decrease in accuracy when70

applied to individuals not represented in the training set (Martin et al., 2019; Novembre et al.,71

2022; Privé et al., 2022).72

To quantify whether current methylation clocks are generalizable across global populations,73

we analyzed data from MAGENTA, a diverse AD study which has generated blood methylation74

and genotyping data for 621 individuals from the Americas, including genetically admixed75

individuals from African American, Puerto Rican, Cuban, and Peruvian cohorts. We evaluate76
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the accuracy of first-, second-, and third-generation methylation clocks at predicting age in these77

individuals, and evaluate whether age acceleration metrics from these clocks associate with AD78

risk, as they do in individuals of European ancestry. We also investigate the impact of genetic79

diversity on clock CpGs by intersecting clock CpG sites with variants from different human80

groups from gnomAD, and by comparing the frequencies of meQTL that influence clock CpG81

sites from three sets of independent meQTLs across different genetic ancestries. Our results82

highlight obstacles to the application of methylation clocks as biomarkers for precision medicine83

and epidemiology, but they also identify promising avenues for considering genetic diversity in84

the development, application, and interpretation of methylation clocks.85
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2 Results86

Our analyses are based on genotyping and blood DNA methylation data collected by the MA-87

GENTA study from 621 individuals from the Americas with AD and non-demented controls.88

The MAGENTA study is focused on late-onset Alzheimer’s and thus the average age of partici-89

pants is 76 years old. Reflecting AD prevalence, the study is 68% female. The individuals come90

from five cohorts, collected from the United States (white, African American, Cuban), Peru,91

and Puerto Rico (Table 1). As described in detail in the Methods, to facilitate comparisons92

relevant to understand global differences in our study, we opted to use a combination of geo-93

graphic and race-based identifiers that are likely to best reflect underlying differences in genetic94

ancestry and admixture components.95

We apply a range of first-, second-, and third-generation methylation-based epigenetic aging96

clocks to these individuals. We then evaluate their accuracy in predicting chronological age,97

quantify whether they identify accelerated aging in individuals with AD, and explore genetic98

factors that may influence clock performance (Figure 1).99

Hispanic

African 
American

White
Whole blood

Genotyping

DNA Methylation
Are methylation clocks 
accurate in genetically admixed 
individuals?

Do methylation clocks identify 
AD cases in diverse cohorts?

Do ancestry-specific genetic 
variants influence clock CpGs?621 Alzheimer’s disease patients 

and non-demented controls

Figure 1: Schematic of the workflow of the study. We analyzed genome-wide methylation and
genotyping data from blood samples from 621 AD and non-demented control individuals from the MAGENTA
study. We applied a set of first-, second-, and third-generation methylation clocks to the individuals and estimated
their genetic ancestry. This enabled us to explore the performance of methylation clocks in individuals with
different genetic ancestries.

Alzheimer’s (N=313) Control (N=308) Overall (N=621)

COHORT
African American 98 (31.3%) 107 (34.7%) 205 (33.0%)
Cuban 22 (7.0%) 21 (6.8%) 43 (6.9%)
White 68 (21.7%) 65 (21.1%) 133 (21.4%)
Peruvian 41 (13.1%) 41 (13.3%) 82 (13.2%)
Puerto Rican 84 (26.8%) 74 (24.0%) 158 (25.4%)

SEX
Female 206 (65.8%) 213 (69.2%) 419 (67.5%)
Male 107 (34.2%) 95 (30.8%) 202 (32.5%)

Table 1: Demographics of the MAGENTA study cohorts.
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2.1 Methylation clock accuracy is lower in cohorts with substantial African100

ancestry101

To test whether current methylation clocks are able to predict age accurately in diverse, geneti-102

cally admixed groups, we evaluated age predictions for the control individuals in the MAGENTA103

study. We first analyzed the widely used Horvath clock, which was trained on data from several104

tissues and cell types to accurately predict age across the lifespan using methylation levels at105

353 CpG sites.106

Age predicted from DNA methylation (DNAm age) using the Horvath clock was strongly107

correlated with chronological age (Pearson r = 0.72) (Figure 2A). While this correlation is108

lower than reported in the original study (>0.9), it is consistent with previous studies of older109

individuals (Horvath, 2013; Marioni et al., 2015).110

In contrast to the white cohort, the correlation between DNAm age and chronological age111

were significantly lower for Puerto Ricans (r = 0.45, p = 0.007) and African Americans (r =112

0.51, p = 0.016) (Figure 2B). The correlations for Cubans (r = 0.68, p = 0.385) and Peruvians113

(r = 0.72, p = 0.52) were similar in magnitude to the white cohort.114

We noticed that the two cohorts with low correlation come from regions where individuals115

often have substantial amounts of African ancestry. To explore how admixture levels associated116

with the accuracy of the Horvath clock in predicting age, we estimated the global proportions117

of African (YRI), European (CEU), and American (PEL) ancestries in each individual from the118

MAGENTA cohort using reference groups from the 1000 Genomes Project (The 1000 Genomes119

Project Consortium et al., 2015).120

Methylation clock accuracy was lowest for the cohorts with substantial African ancestry:121

African Americans (median 85% African) and Puerto Ricans (median 15% African). In contrast,122

the clocks performed similarly to the white cohort in groups lacking substantial African ancestry:123

Cubans (6% African) and Peruvians (2% African).124

2.2 Accuracy of age prediction on admixed individuals varies across methy-125

lation clocks126

To investigate the performance of other methylation clocks at predicting chronological age in127

admixed individuals, we selected several additional publicly available open-source clocks. We128

considered two other “first-generation” clocks that were trained to predict chronological age:129

the Hannum clock (Hannum et al., 2013) and a model developed by Zhang et al., 2019 that130

used large datasets for training and achieved substantially higher performance than previous131

age predictors. We hereafter refer to this elastic net model as “Zhang2019 EN”.132

Both models achieved higher correlations with chronological age than the Horvath clock133

across the cohorts in the MAGENTA study. For example, Hannum has a correlation of 0.74 in134

the white cohort, and consistent with previous evaluations, Zhang2019 EN has a correlation of135

0.88. These relative performance trends held across cohorts, but again, the African Americans136

and Puerto Ricans, the cohorts with substantial African ancestry, had the lowest age correlations137

for each clock (Figure 2C).138

Next, we evaluated the PhenoAge clock, a “second-generation” clock that is trained on139

biomarkers of frailty and physiological deterioration (Morgan E. Levine et al., 2018). The140

correlation between DNAm age and chronological age was lower for this clock in comparison to141

the other methylation clocks (r = 0.53 in the white cohort). This is likely due to the fact that142
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Figure 2: Methylation clock accuracy is lower in cohorts with substantial African
genetic ancestry. A: Pearson correlation between chronological age and DNAm age predicted by the
Horvath clock for controls in the white MAGENTA cohort. The correlation of 0.72 is similar to previous studies
of older cohorts. B: Pearson correlation between chronological age and DNAm age predicted by the Horvath clock
for the genetically admixed cohorts in MAGENTA. The right plot in each pair shows the proportion of European
(CEU), African (YRI), and American (PEL) global ancestry for each individual in each cohort. The two cohorts
with substantial African ancestry—African Americans and Puerto Ricans—have significantly lower correlations
than the other cohorts. C: Difference in correlation between chronological and predicted DNAm age for controls
in each cohort compared to the white cohort controls for four methylation clocks. The baseline correlation for
the white cohort controls is given in each panel; asterisks indicate a statistically significant difference from the
baseline. * p < 0.05.
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this clock was not trained to predict age directly, but rather markers of aging. This clock did143

not show as substantial a difference in performance between cohorts as seen for the Horvath144

clock, but the African American and Puerto Rican populations again had the lowest correlation145

of all cohorts.146

Overall, these results demonstrate that current methylation clocks vary in the correlation of147

their predicted DNAm age with chronological age in genetically admixed cohorts. The clocks148

are also consistently the least accurate in predicting age cohorts with substantial proportions149

of African ancestry.150

2.3 Most methylation clocks do not identify accelerated aging in admixed151

Alzheimer’s cohorts152

DNAm age has been proposed as a promising biomarker and predictive tool for age-related153

disease risk, particularly because of associations between accelerated DNAm age (compared to154

chronological age) and the presence of diseases such as coronary heart disease, Parkinson’s dis-155

ease, and AD. However, these results have largely been observed in European-ancestry cohorts.156

To evaluate the ability of methylation clocks to identify accelerated aging and risk for age-157

related disease in diverse, genetically admixed individuals, we quantified the association of158

methylation age acceleration with AD status in cohorts from the MAGENTA study. In addi-159

tion to the clocks tested in the previous section, we also included a “third generation” clock,160

DunedinPACE, that aims to predict the pace of aging as measured by change in biomarkers161

over time from methylation data, rather than age itself (Belsky et al., 2022).162

The cell type composition in blood is known to change with age, which if not accounted163

for, can confound age acceleration estimates (Jaiswal and Ebert, 2019). Thus, we focused on164

intrinsic age acceleration estimates computed using established algorithms to correct for cell165

type composition.166

To establish a baseline for this analysis, we tested whether individuals with AD in the white167

cohort show significantly greater age acceleration than non-demented controls. As expected from168

previous studies (Morgan E Levine et al., 2015, 2018), AD cases have modest but significantly169

greater age acceleration as measured by the Horvath clock than controls (Supplementary170

Figure 1; median 1.7 vs. 1.5 years, p = 0.041). For each of the other clocks, AD cases had171

higher median age acceleration than controls (Figure 3B), though due to the relatively small172

sample size, the differences only reached statistical significance for the DunedinPACE clock173

(median 1.09 vs. 1.07, p = 0.044).174

Having established that previously reported age acceleration in AD was detectable in our175

framework, we evaluated whether the clocks found accelerated aging in the admixed AD co-176

horts. Focusing first on the Horvath clock, we observed inconsistent relationships between177

age acceleration and AD status. None of the admixed cohorts showed a significant difference,178

and controls even had higher median age acceleration in Peruvians and Cubans (Figure 3A).179

Across the other clocks, none consistently identified greater age acceleration in AD cases across180

all populations (Figure 3B). Among the first- and second-generation clocks, only PhenoAge181

demonstrated a significant ability to differentiate AD cases from controls in any of the non-182

European ancestry groups, specifically in African American individuals (p = 0.008), which were183

included in its training set. Cubans consistently showed greater age acceleration in controls184

rather than cases, while none of the other admixed cohorts even had consistent directions of185
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Figure 3: Methylation clocks rarely identify accelerated aging in admixed
Alzheimer’s cohorts. A: Comparison of the distributions of Horvath intrinsic age acceleration for AD
patients and non-demented controls for each of the admixed cohorts in MAGENTA. AD patients do not show
significantly higher age acceleration in any of the admixed cohorts. In contrast, the AD cases had significantly
greater acceleration than controls in the white cohort (Supplementary Figure 1). NS = Not significant. B:
Median differences in intrinsic age acceleration between AD patients and non-demented controls for five methyla-
tion clocks for each cohort in MAGENTA. The clocks do not consistently identfy accelerated aging in AD across
cohorts, and the results also vary within cohorts. * p < 0.05.

effect across methods.186

DunedinPACE stood out in the evaluation, as it identified significantly greater aging in AD187

cases compared to controls in the white (p = 0.044), African American (p = 0.0019), and Puerto188

Rican (p = 0.0090) cohorts using its “pace of aging” metric. However, no significant differences189

were found for Cubans (p = 0.26) or Peruvians (p = 0.81).190

2.4 Combining predictions across methylation clocks does not improve their191

performance192

Inspired by recent work on the ensembling of PRS to better predict disease risk from genetic vari-193

ation across populations (Monti et al., 2024), we evaluated whether combining age predictions194

would lead to greater accuracy in age prediction and AD risk prediction in the admixed cohorts.195

To investigate this, we averaged the age predictions for each individual in the MAGENTA study196

across five methylation clocks: Horvath, Hannum, Zhang2019 EN, Zhang2019 BLUP, and Phe-197

noAge clocks. (The Zheng2019 BLUP is a variation of the Zhang2019 EN clock that does not198

use strong regularization.)199

The ensemble method’s DNAm age prediction is more strongly correlated with chronological200

age in comparison to the Horvath and PhenoAge clocks, but it could not improve upon the best201

predictors (Zhang2019 clocks) across populations (Supplementary Figure 2A).202

We next evaluated whether the ensemble intrinsic age acceleration estimates would associate203

more strongly with AD disease status relative to the standalone methylation clocks. Following204

the same evaluation framework as for the individual clocks, we found only one significant differ-205

ence in age acceleration. Cuban control individuals had significantly lower age acceleration than206

AD cases (Supplementary Figure 2B). Thus, a simple ensemble does not lead to stronger207

performance at either task in admixed cohorts.208
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2.5 Many methylation clock CpGs are disrupted by genetic variants, but the209

variants are extremely low frequency210

Our results so far demonstrate that existing methylation clocks do not perform consistently211

across genetically admixed individuals with ancestries under-represented in clock training data.212

Thus, we sought to investigate potential mechanisms underlying the decreased performance of213

some clocks. We first quantified how often a genetic variant disrupted a CpG site included in214

a clock. This scenario could lead to inaccuracies across cohorts given the loss of potential for215

methylation and the ability of the site to contribute to the age prediction.216

Of the 353 CpG sites considered in the Horvath clock, 245 (69%) have at least one disruptive217

genetic variant observed in at least one individual in the gnomAD database of variants identified218

in a cohort of 76,156, including thousands of individuals of non-European ancestry. However,219

these variants are extremely rare (Figure 4); the average frequency is 0.0001, with the most220

common case being a variant observed in just one individual. Only one clock CpG disrupting221

variant had a frequency greater than 1%. Thus, genetic variation in clock CpG sites themselves222

is unlikely to be the main cause of lack of generalization of the Horvath clock.223
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Figure 4: Genetic variants that disrupt methylation clock CpG sites appear at
extremely low frequencies. The allele frequency distribution for single nucletide variants that disrupt
one of the 353 CpG sites considered by the Horvath clock. Allele frequencies were computed across 76,156
individuals from large-scale sequencing studies harmonized in gnomAD (version 3.0).

2.6 Common methylation QTL influence clock CpGs224

We next assessed the prevalence of meQTLs that affect clock CpG sites, another modifier of225

methylation levels that could lead to spurious DNAm age predictions across individuals. We226

gathered three sets of meQTLs from Europeans, South Asians, and African Americans. We227

intersected the affected CpGs for the meQTLs with the Horvath clock CpG sites.228

Out of the 353 CpGs included in the Horvath clock, 271 (77%) had at least one meQTL.229

Overall, a total of 29,033 unique variants associated with methylation levels at clock CpGs. The230

meQTL had an average allele frequency of 0.19, and 26,500 were common (≥1%; Figure 5A).231
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Figure 5: Common meQTLs affect most Horvath clock CpGs and vary in frequency
across ancestries. A: The allele frequency distribution of the 29,033 unique variants associated with
methylation levels at Horvath clock CpGs. Allele frequencies were computed over the 76,215 genomes in gnomAD
version 4.1. Inset: Out of the 353 CpGs in the Horvath clock, 271 (77%) have at least one meQTL, i.e., a genetic
variant that is associated with methylation level. B: Clock meQTL have significantly higher alelle frequency in
individuals with African genetic ancestry from gnomAD than all other ancestry groups (median 0.068 for African
vs. 0.004–0.046; p < 3.85× 10−25). C: Clock meQTL have significantly higher allele frequency on African local
ancestry genomic segments in 7,612 Latino admixed individuals with varying proportions of European, American,
and African ancestry from gnomAD. Inset: The distribution of difference in frequencies for each meQTL for each
pair of populations.
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2.7 Clock CpG methylation QTLs vary in frequency across ancestries232

Differences in the presence or frequency of meQTL that influence clock CpGs between genetic233

ancestries could lead to decreased DNAm age prediction accuracy (and therefore weaker asso-234

ciations with disease) in diverse and admixed cohorts. For example, if a clock is trained on a235

cohort without an meQTL, the learned weights for the CpG will not have accounted for the236

effects of the meQTL.237

To quantify whether differences in meQTL across genetic ancestries could potentially in-238

fluence methylation clocks, we analyzed the gnomAD allele frequencies for the 29,033 Horvath239

clock meQTL tag variants in multiple global populations (Figure 5B). The meQTLs are at240

significantly higher frequencies in African ancestry populations (median 0.068) than in each of241

the eight other population groups considered (0.004–0.046; p < 3.85× 10−25). There were also242

2,328 meQTL that were only observed in African populations.243

To connect these results to individuals with recent admixture, like many in the MAGENTA244

study, we also tested whether the Horvath clock meQTL differed in frequency in local an-245

cestry blocks of different origins in genetically admixed individuals from gnomAD. We used246

pre-computed local ancestry calls for 7,612 Latino/Admixed American individuals to compare247

allele frequencies for each meQTL in three ancestral backgrounds: African, Amerindigenous,248

and European. The clock CpG-affecting meQTLs were at higher frequencies in African local249

ancestry backgrounds (Figure 5C), consistent with our finding that these meQTLs are most250

frequent in African ancestry individuals at the global population level.251

2.8 Susceptibility to meQTL varies across methylation clocks252

Given the strong potential for meQTL to influence the Horvath clock (76% of its CpGs have253

an meQTL), we expanded this analysis and quantified the number and proportion of clock254

CpGs that are affected by meQTL for all clocks considered here (Figure 6). The other first-255

generation clocks have lower proportions of their CpG sites affected by meQTLs (Hannum: 8%,256

Zhang2019 EN: 1%). PhenoAge is similarly low, with 7% of its CpGs affected by at least one257

meQTL. Finally, DunedinPACE had no meQTLs affecting its 173 clock CpG sites.258

Thus, the clock with the largest decrease in performance in admixed cohorts (in terms of259

predicting chronological age and identifying age acceleration in AD) has the most and largest260

fraction of meQTLs influencing its CpGs. On the opposite side of the spectrum, DunedinPACE,261

the best performing clock at identifying AD cases in the MAGENTA study, had no meQTLs.262

The three other clocks with intermediate performance in the admixed cohorts, all have meQTL263

for some CpGs, but much lower fraction than the Horvath clock.264
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Figure 6: Methylation clocks vary in the number and proportion of CpGs affected
by meQTLs. The proportion of clock CpGs for each clock that have at least one known meQTL. The number
of unique clock CpGs affected by meQTLs for each clock is given on top of each bar. The meQTL were taken
from three genome-wide studies in Europeans, South Asians, and African Americans.
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3 Discussion265

Methylation clocks are promising biomarkers of aging and social stress, and as tools for mech-266

anistic studies of diseases related to the aging process. Despite their widespread use in these267

applications, methylation clocks have not been comprehensively evaluated in diverse human268

groups. These groups are underrepresented in genetic and genomic databases and underserved269

in biomedical research in terms of access to healthcare and quality of healthcare.270

In this study, we sought to fill this gap by evaluating commonly used methylation clocks in271

genetically admixed individuals from the Americas. We found that most clocks did not predict272

age as accurately in admixed control individuals as in the white cohort, especially for individuals273

with substantial African genetic ancestry. We next found that most methylation clocks could274

not discern between AD patients and non-demented controls based on age acceleration metrics275

in cohorts with genetic ancestries distinct from their training populations.276

To evaluate potential genetic factors that could contribute to this decrease in performance,277

we hypothesized that two types of variants could reduce clock accuracy: 1) variants that disrupt278

clock CpG sites prevent methylation, and 2) meQTLs that influence clock CpG site methylation.279

Both scenarios could lead to over or under estimations of age, and therefore spurious associations280

with age-related disease, if they differ in frequency across genetic ancestries. While we discovered281

that 245 of the 353 CpG sites used by the Horvath clock are disrupted in at least one individual in282

gnomAD, these variants are extremely rare and thus unlikely to be a major driver of differences283

between the cohorts. In contrast, among meQTLs from multiple global populations, we found284

29,033 unique variants that affected the Horvath clock CpG sites. Many of these variants285

are common, and they are most frequent in African ancestry individuals from gnomAD. We286

also showed that they are most frequent in African local ancestry blocks in admixed Latino287

individuals from the Americas.288

Our findings demonstrate that methylation clocks—a widespread tool in aging, genomics,289

and social epidemiology research—perform inconsistently across individuals of different genetic290

ancestries. These results further underline the need for more diversity in the development and291

evaluation of genomic tools for precision medicine.292

We hope that these results also encourage researchers using these tools to study diseases293

of aging or social stressors in diverse groups to exercise caution when interpreting differences294

in age acceleration. We have shown that many methylation clocks differ significantly in their295

accuracy at predicting age between cohorts. Thus, what might appear to be a faster pace of296

aging, could simply be the result of a difference in genetic ancestry from the training cohort.297

Applying existing methylation clocks to diverse individuals could lead to grave consequences298

and exacerbate existing disparities in access to quality healthcare, as well as provide spurious299

conclusions about an individual’s health. Due to the increased potential for false positives and300

false negatives when applying the clocks as predictive biomarkers, individuals at risk might not301

receive the medical attention they need, and additional stress could unncessarily be placed on302

individuals in good health. These challenges must be addressed before methylation clock are303

adopted as biomarkers for precision medicine.304

The challenges we identify here for methylation clocks mirror the limitations of PRS, wherein305

phenotype prediction models decrease in accuracy on individuals genetically distant from the306

training population. While there are substantial biological differences in the processes modeled307

by methylation clocks and PRS, we are optimistic that recent progress on building PRS that308
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are more portable across cohorts will provide strategies for improving methylation clocks.309

Our results suggest two promising approaches for building more robust clocks. First, given310

the large number of meQTL in the human genome and their differences in frequency across311

human populations, we suggest training clocks only on CpG sites that do not have known312

meQTL. Given that the biological signatures driving methylation clock performance appear313

to influence large fractions of the genome, we do not anticipate that this will substantially314

limit overall performance. The strong and relatively consistent performance across cohorts315

of the DunedinPACE clock, which lacks CpGs with meQTL, supports this approach. It also316

suggests that methylation clocks that predict the pace of aging (rather than age itself) may317

be more robust, but further work is needed to validate this hypothesis. Second, we encourage318

including individuals from multiple genetic ancestries in the training cohorts. The ability of the319

PhenoAge clock, which included African Americans in the training cohort, to detect significant320

age acceleration in the African American AD cases suggests this may improve generalizability.321

There are caveats and limitations to our study that we hope future work will address. First,322

the impact of environment on methylation clock accuracy and differences in environmental323

factors for global populations that might lead to decreases in methylation clock accuracy are324

difficult to study with the data at hand. Given this, we focused on genetic influences on CpG325

sites that could lead to spurious associations in diverse populations. However, work is needed to326

investigate other factors that might cause methylation clocks to not generalize across individuals,327

such as the methods that account for cell type composition heterogeneity in blood that might328

not be as accurate across individuals of different populations. Second, while we attempted to329

evaluate a representative set of first-, second-, and third-generation clocks, we were not able to330

evaluate all methylation clocks. In particular, some with closed source that were only available331

as a web server could not be used due to data privacy restrictions for the MAGENTA samples.332

Another limitation is the use of blood samples to generate methylation data for the study of333

a neurodegenerative disease focused on the central nervous system. However, we note that334

all methylation clocks tested in the present study were developed using blood samples, either335

exclusively (Hannum, PhenoAge, Zheng2019 EN, Zheng2019 BLUP, and DunedinPACE) or as336

part of the tissues used in training (Horvath). In addition, these clocks and their association337

with age-related diseases such as AD have all been validated in multiple tissues, including blood.338

Multiple studies in the AD literature point to changes in blood such as gene expression changes,339

immune cell type composition, and disruption of the blood brain barrier in AD patients relative340

to non-demented controls, such that signals related to AD pathology can be identified from341

this peripheral tissue (Griswold et al., 2020; Shigemizu et al., 2022) and through epigenetic age342

acceleration (Hodgson et al., 2017; Marioni et al., 2015; Raina et al., 2017). Finally, while the343

MAGENTA study is an excellent resource for exploring methylation clocks and AD in admixed344

individuals, it is not representative of all genetic ancestries and combinations. Moreover, the345

sample sizes vary between the MAGENTA cohorts, with the Cuban and Peruvian cohorts346

being particularly small relative to the others. This limits our ability to find differences in the347

age accelerations between AD patients and controls as measured by the methylation clocks.348

However, we are reassured by the complementary findings in African cohorts on the decreased349

performance of methylation clocks at age prediction and the role of meQTL (Meeks et al., 2024).350

In conclusion, our results show that many existing methylation clocks have inconsistent351

performance and limited portability across genetically admixed cohorts. We encourage future352

efforts in the development of methylation clocks and other genomics-based aging biomarkers353

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.16.618588doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.16.618588
http://creativecommons.org/licenses/by-nc-nd/4.0/


to be genetics- and ancestry-aware to ensure the accuracy of these tools for all individuals,354

regardless of their genetic background.355
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4 Methods356

4.1 MAGENTA study357

Cohort Selection358

All participants in the MAGENTA study were recruited through previous studies of AD, in-359

cluding Feliciano-Astacio et al., 2019, Marca-Ysabel et al., 2021, and Griswold et al., 2020.360

Blood samples were taken for all individuals ascertained and processed at the following sites:361

the University of Miami Miller School of Medicine (Miami, FL, US), Wake Forest University362

(Winston-Salem, NC, US), Case Western Reserve University (Cleveland, OH, US), Universi-363

dad Central Del Caribe (Bayamón, PR), and the Instituto Nacional de Ciencias Neurologicas364

(Lima, PE). Ascertainment protocols were consistent across sites and capture cognitive func-365

tion, family history of AD/related dementias, sociodemographic factors, and dementia staging.366

All diagnoses were assigned by clinical experts following criteria for diagnosis and staging from367

the National Institute on Aging Alzheimer’s Association (NIA-AA).368

The MAGENTA study is based on pre-existing sample collections which vary in terms of369

the demographic information collected for each participant. Because the original ascertainment370

of MAGENTA study participants was international, different population descriptors were used371

across different ascertainment sites/cohorts. To facilitate comparisons relevant to understand372

the global differences noted in our study, we use a combination of geographic and race-based373

identifiers that are likely to best reflect underlying differences in genetic ancestry and admixture374

components. The label “white” is applied to legacy samples from North Carolina, Tennessee,375

and South Florida where participants either self-identified with this descriptor or were (in some376

legacy instances) administratively assigned as White race. The label “African American” is ap-377

plied to samples collected via ascertainment in North Carolina and South Florida using popula-378

tion descriptors that specifically targeted enrollment of self-identified Black/African American379

participants. “Puerto Rican”, “Cuban”, and “Peruvian” labels are applied to samples collected380

as part of ascertainment efforts in these geographic areas. While more precise descriptors of381

self-identity are preferred, the advanced age of study participants and the older dates of some382

sample collections make recontact to collect these data impossible. All participants or their383

consenting proxy provided written informed consent as part of the study protocols approved by384

the site-specific Institutional Review Boards.385

Genetic data and ancestry analysis386

Genome-wide SNP genotyping was previously performed as previously described for the MA-387

GENTA study cohorts. Briefly, samples were genotyped on the Illumina Infinium Global388

Screening Array using standard quality control filters on call rate, quality, missingness, and389

Hardy-Weinberg equilibrium.390

For our analyses, local ancestry calls were generated using the FLARE software (S. R.391

Browning, Waples, and B. L. Browning, 2023) with three reference panels from the 1000392

Genomes Project: Utah residents with Northern and Western European ancestry (CEU), Pe-393

ruvians in Lima (PEL), and Yoruba in Ibadan, Nigeria (YRI). To estimate global ancestry394

proportions, we summed the haplotype lengths for each ancestry in each individual and divided395

by the total number of sites considered.396
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Methylation profiles397

DNA methylation was quantified using the Illumina HumanMethylation EPICv2.0 according398

to the manufacturer’s instructions. All quality control and data normalization were performed399

using the the openSeSAMe pipeline from the SeSAMe (Wanding Zhou, 2018) tools for analyz-400

ing Illumina Infinium DNA methylation arrays. Probes of poor design were removed from the401

analysis as well as probes with signal detection P-value >0.05 in more than 5% of the sam-402

ples. Non-CG probes and probes located on the X, Y, and mitochondrial chromosomes were403

also removed. Samples with incomplete bisulfite conversion (GCT score >1.5) and principal404

component analysis outliers were excluded. Noob normalization was performed with SeSAMe,405

using a nonlinear dye-bias correction.406

4.2 Estimating epigenetic age and its correlation with chronological age in407

the MAGENTA study408

We applied multiple commonly used first-, second-, and third-generation methylation clocks409

to all individuals in the MAGENTA study with genome-wide methylation data. We used es-410

tablished implementations of the Horvath, Hannum, Zhang2019 EN, Zhang2019 BLUP, and411

PhenoAge clocks from the methylClock R library (Peleǵı-Sisó et al., 2021). We also applied412

DunedinPACE, a third-generation clock separately, because it was not included in the methyl-413

clock library (Belsky et al., 2022). Because this clock does not explicitly predict age, it is not414

included in the analyses of correlation with biological age. Unless otherwise specified, default415

options were used for all clocks.416

The methylation clocks considered analyze different numbers of CpG sites. For each clock,417

the sites considered were taken from the methylclock library or the original publication. In the418

case of missing data, the methylClock library imputes methylation status using the mpute.knn419

function from the impute R library. The MAGENTA cohort had low proportions of missing420

data for clock CpGs. Specifically, there were 3.7% missing for the Horvath clock, 12.7% for the421

Hannum clock, 4.5% for the Zhang2019 EN clock, 3.7% for the PhenoAge clock, and 17.9% for422

the DunedinPACE clock.423

We computed the Pearson correlation of estimated epigenetic age and chronological age424

for the controls in each cohort. To compare the strength of correlation between cohorts, we425

computed p-values for the observed differences using Fisher’s z test and the Zou method for426

computing confidence intervals as implemented in the cocor library (Diedenhofen and Musch,427

2015).428

4.3 Computing epigenetic age acceleration in Alzheimer’s disease patients429

and controls430

In order to quantify epigenetic age acceleration from blood methylation data, we estimated431

raw, intrinsic, and extrinsic age acceleration for all clocks, except DunedinPACE, from the432

methylClock library. Blood cell type composition differs between individuals and over the433

lifespan; thus, we report results in the main text using intrinsic age acceleration estimates,434

which capture age acceleration independently of blood cell proportions.435

Using the age acceleration estimates, we compared epigenetic age association between AD436

cases and matched controls using a Mann-Whitney U test, as implemented in the stats library437
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in R. We analyzed the study as a whole and stratified by cohort.438

4.4 Evaluating ensembles of age predictors439

We tested the performance of a simple ensemble of age prediction methods at both estimating440

chronological age and distinguishing AD cases and controls. The ensemble was computed as441

the average of the estimate of each method on each individual. The resulting predictions were442

evaluated as described for each clock itself.443

4.5 Analysis of genetic variation at clock CpG sites444

To test whether the CpG sites included in the methylation clocks are variable between indi-445

viduals, we intersected all the clock CpGs with variants identified in version 3.0 of gnomAD446

(Karczewski et al., 2020). This database covers 76,156 individuals with whole genome sequenc-447

ing harmonized from many large-scale sequencing studies. The intersection was performed using448

bedtools in hg38 coordinates (Quinlan and Hall, 2010).449

4.6 Analysis of meQTL affecting clock CpGs450

Identification of meQTL affecting clock CpGs451

We leveraged meQTL sets identified from blood samples by three independent studies. The first452

study identified 11,165,559 meQTLs from 3,799 Europeans and 3,195 South Asians (Hawe et453

al., 2022). The second study generated 4,565,687 meQTLs from 961 African Americans (Shang454

et al., 2023). The final study (EPIGEN) identified 249,710 meQTLs from 2,358 UK individuals455

(Villicaña et al., 2023). We filtered these sets separately on at a false discovery rate threshold of456

0.05, correcting for multiple tests using the Benjamini-Hochberg method. These meQTL studies457

published their results in hg19 coordinates. To integrate with genetic variation and clock CpG458

data, we mapped the meQTL positions to hg38 using the UCSC liftOver tool (Hinrichs, 2006).459

For each meQTL set, we intersected the target CpG site with the CpGs considered in each460

clock and then combined across meQTL sets to generate a set of clock CpGs with evidence of461

meQTL.462

Population-level allele frequencies of meQTL affecting clock CpGs463

We analyzed the frequency of clock CpG-affecting meQTLs within two different versions of464

gnomAD. We used version 4.1 to quantify the allele frequencies of these meQTLs in the follow-465

ing global populations: African, Middle Eastern, Admixed American, European (non-Finnish),466

South Asian, Ashkenazi Jewish, East Asian, European (Finnish), Amish, and a “Remaining”467

group defined by gnomAD as individuals that did not unambiguously cluster within these pre-468

vious groups in a principal component analysis. We then used gnomAD version 3.1 to gather469

allele frequencies for local ancestry blocks identified in 7,612 Latino admixed individuals with470

varying proportions of European, Amerindigenous, and African ancestry.471

4.7 Data availability472

Raw and normalized beta matrices, along with genotyping data used in this study will be473

made available at time of publication in the NIAGADS platform. Age predictions for all clocks474

18

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.16.618588doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.16.618588
http://creativecommons.org/licenses/by-nc-nd/4.0/


mentioned in this article will be made available in tab-delimited format in the same Github475

repository in which all code used for these analyses is available.476

4.8 Code availability477

The publicly available code for analysis are available in the following repository: https://478

github.com/seba2550/methyl-clocks-admixture479
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