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Abstract

The INO80 protein is the main catalytic subunit of the INO80-chromatin remodeling com-

plex, which is critical for DNA repair and transcription regulation in murine spermatocytes. In

this study, we explored the role of INO80 in silencing genes on meiotic sex chromosomes in

male mice. INO80 immunolocalization at the XY body in pachytene spermatocytes sug-

gested a role for INO80 in the meiotic sex body. Subsequent deletion of Ino80 resulted in

high expression of sex-linked genes. Furthermore, the active form of RNA polymerase II at

the sex chromosomes of Ino80-null pachytene spermatocytes indicates incomplete inactiva-

tion of sex-linked genes. A reduction in the recruitment of initiators of meiotic sex chromo-

some inhibition (MSCI) argues for INO80-facilitated recruitment of DNA repair factors

required for silencing sex-linked genes. This role of INO80 is independent of a common

INO80 target, H2A.Z. Instead, in the absence of INO80, a reduction in chromatin accessibil-

ity at DNA repair sites occurs on the sex chromosomes. These data suggest a role for

INO80 in DNA repair factor localization, thereby facilitating the silencing of sex-linked genes

during the onset of pachynema.

Author summary

Chromatin accessibility is required for many DNA-protein interactions. Chromatin

remodelers are the group of protein complexes that ensure the localized and timely

unpacking of DNA to ensure access of a protein to its target DNA regions. The chromatin

remodeler, INO80, has been implicated in many cellular processes, including transcrip-

tion and DNA repair. We report that INO80 regulates the suppression of gene expression

at the sex chromosomes in meiotic germ cells during mammalian spermatogenesis.

INO80 localizes at the sex chromosomes during the pachynema stage, and its absence

leads to a lack of suppression of gene expression at the sex chromosomes, which is known

to be detrimental to meiotic progression. These genes were actively transcribed during

pachynema in Ino80-mutant spermatocytes. DNA damage repair factors such as ATR and

MDC1, which are instrumental in suppressing gene expression at the sex chromosomes
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during pachynema, were not localized properly in Ino80-mutant spermatocytes. Chroma-

tin accessibility was also reduced at the DNA damage sites in sex chromosomes of the

Ino80mutants, which suggests a role for INO80 in the appropriate localization of DNA

damage factors at accessible target sites to aid in the silencing of sex-linked genes during

pachynema.

Introduction

Mammalian gametogenesis involves the meiotic division of diploid germ cells that undergo

homologous chromosome synapsis and recombination to generate haploid gametes. Extended

prophase I during meiosis ensures the faithful execution of recombination to shuffle genetic

material between homologous chromosomes by controlled introduction of DNA double-

strand breaks (DSB) at the DSB hotspots by SPO11 followed by their repair [1]. Synapsis

between homologous autosomes occurs during the zygotene stage of meiotic prophase I. In

contrast, non-homologous regions of the X and Y sex chromosomes in male germ cells do not

synapse with each other [2].

During pachynema, DNA double-strand break repair (DSBR) factors no longer localize to

autosomes, indicating the completion of DSBR. For the sex chromosomes, the DSBR factors

sequester at unpaired regions, forming a unique chromatin domain called the sex body [3,4].

The sex chromosomes in spermatocytes undergo modifications by several DNA damage repair

(DDR) factors such as BRCA1, ATR, and its activator TOPBP1 at the unpaired (asynapsed)

chromosome axes [5,6]. The sex chromosomes also undergo chromatin remodeling to induce

epigenetic silencing of sex-linked genes. This process is known as meiotic sex chromosome

inactivation (MSCI) [7]. Incomplete MSCI leads to germ cell death during pachynema, causing

male infertility [7].

MSCI is initiated by DNA double-strand breaks (DSB) at the asynapsed axes and the incor-

poration of DSBR proteins at these DSB sites [8,9]. ATR localizes to the DSBs along the chro-

mosome axes [10]. Serine-139 phosphorylation of H2A.X (γH2A.X) at the DSBs by ATR leads

to the recruitment of another DSB factor, MDC1 [6,10–12]. MDC1 localization amplifies

γH2A.X in the protruding chromatin loops along the axes, establishing the characteristic sex-

body and MSCI [6,13].

Chromatin remodelers regulate chromatin accessibility. They play roles in several cellular

processes, including DNA repair and transcription regulation. Chromatin remodeling

enzymes can hydrolyze ATP to change chromatin conformation by moving, evicting, or incor-

porating nucleosomes. They can also facilitate specific histone variant exchange to change

local chromatin accessibility. There are four major families of chromatin remodeling com-

plexes, all of which play critical functions in murine spermatogenesis [14–20]. INO80 is the

main ATPase subunit of the INO80 complex, which has broad effects on several cellular pro-

cesses. INO80 is important in various DNA metabolic processes, including DNA replication,

transcription, repair, and genome stability in several organisms [21]. The exchange and turn-

over of histone variant H2A.Z is regulated by INO80 [22–25]. INO80 facilitates the recruit-

ment of RNA polymerase II (RNAPII) to the promoters of pluripotency network genes in ES

cells [26,27]. In yeast, INO80 is also implicated in removing and degrading ubiquitinated

RNAPII from chromatin [28]. Like other chromatin remodelers, INO80 is expressed in several

mammalian tissues, including the testis [18], and was reported to facilitate development in a

context-dependent manner [18,27,29,30]. However, it is unclear whether the chromatin remo-

deler INO80 plays any role in the meiotic silencing of the sex chromosomes.
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Here, we explore the role of INO80 in silencing meiotic sex chromosomes. We show that

INO80 interacts with and regulates sex-linked gene silencing in pachytene spermatocytes. Fur-

ther, INO80 promotes the opening of the sex chromatin during the zygonema-to-pachynema

transition at the DSB regions. INO80 also facilitates the recruitment of DNA repair factors at

the DSB sites and interacts with DSBR factors to facilitate the silencing of sex chromosomes.

Results

INO80 localizes to the sex chromosomes in meiotic germ cells

Immunofluorescence localization of INO80 in pachytene spermatocytes revealed staining on

the sex chromosomes (Fig 1A and 1B). Chromatin immunoprecipitation followed by high

throughput sequencing (ChIP-seq) for INO80 (GEO Dataset GSE179584) [31] also showed

binding on the sex chromosomes (Fig 1C). INO80 binding occurred at the zygotene and

pachytene stages (GEO Dataset GSE190590) [32] on both autosomes and sex chromosomes.

INO80 localization on the sex chromosomes is more enriched at the postnatal day 18 (P18)

pachytene stage (Fig 1C). Additionally, INO80 binding sites on sex chromosomes were present

at the DSB sites identified by the meiotic DSB marker γH2A.X (GEO dataset GSE75221) [33]

Fig 1. INO80 localization in the germ cells. (A,B) INO80 immunolocalization in the pachytene spermatocyte spreads (A)

and the seminiferous tubule of the testis (B). SCP3 staining indicates the stage of the meiotic spermatocyte. Magenta: SCP3,

Green: INO80, Blue: DAPI. Arrowhead: Sex chromosomes. Scale bar = 10μM. C; Enrichment of INO80 obtained by ChIP-

seq on the autosomes and XY chromosomes during zygonema and at postnatal day 18 (P18), where most cells are in the

pachytene stage. Blue: P18, Red: Zygonema. (Analyzed from GEO Dataset GSE179584) [31].

https://doi.org/10.1371/journal.pgen.1011431.g001
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(S1A Fig). These binding sites include promoters, intergenic regions, and gene bodies (S1A

Fig). Moreover, INO80 and γH2A.X binding in the sex chromosomes were correlated (S1B

Fig), where INO80 binding is enriched at the γH2A.X binding sites (S1C Fig). These data sug-

gested a possible role of INO80 in DSB repair and silencing the expression of genes on the sex

chromosomes.

INO80 regulates sex chromosome silencing in pachytene spermatocytes

RNAseq analysis of changes in P18 transcription from autosomes in wild type (Ino80WT) and

germ cell-specific Ino80-null (Ino80cKO) spermatocytes (GEO Dataset GSE179584) [31]

revealed up-and down-regulated genes (padj< 0.05). However, the mean changes in expres-

sion remained close to zero (Fig 2A). In contrast, the differentially expressed genes (DEGs)

(padj< 0.05) from the X- and Y- chromosomes remained upregulated in Ino80cKO cells (Fig

2A). When plotted along the length of three representative autosomes and the sex chromo-

somes, like autosomal genes, DEGs from sex chromosomes occur along the length of the chro-

mosomes (Fig 2B). These data confirm that the lack of silencing of sex-linked genes is neither

limited to a specific region such as the pseudo-autosomal region and not due to any positional

effect. Quantitative RT-PCR analysis validated the upregulation of five representative sex-

linked genes (Ccnb3,Nxt2, Eda2r, Abcd1,Usp11) in Ino80cKO spermatocytes (Fig 2C), corrob-

orating the RNAseq data. To investigate further the sex-linked gene expression in pachytene

spermatocytes alone, we utilized meiotic germ cell synchronization to isolate homogeneous

pachytene spermatocyte population [34] from wild-type and mutant testes and quantified sex-

linked gene expression by qRT-PCR. We observed a similar pachytene spermatocyte popula-

tion in both wild-type and mutant testes (S2A Fig). Synchronized Ino80cKO pachytene sper-

matocytes also exhibited undetectable INO80 levels (S2B Fig). An upregulation of all five genes

(Ccnb3, Nxt2, Eda2r, Abcd1, Usp11) in the synchronized Ino80cKO pachytene spermatocytes

confirms the lack of suppression of X-linked gene expression during pachynema upon Ino80
deletion (S2C Fig). Consistent with transcriptional silencing, immunofluorescence analysis of

the active form of RNA polymerase II (pSer2) revealed its absence at the sex chromosomes in

Ino80WT pachytene spermatocytes (Fig 2D–2E). These data correlate with normal transcrip-

tional silencing. In contrast, continued RNA polymerase II (pSer2) immunofluorescence in

Ino80cKO pachytene spermatocytes indicates incomplete silencing of the sex-linked genes

(Fig 2F–2G). Overall, there was a significant increase in RNA polymerase II (pSer2) at the sex

chromosomes in pachytene spermatocytes in the absence of INO80 (Fig 2H).

INO80 is necessary for the localization of DSBR factors to sex

chromosomes

DSBR factors such as ATR, γH2A.X, and MDC1 are required to initiate meiotic sex chromo-

some inactivation in pachytene spermatocytes [6,10,35]. We explored the localization of these

DSBR proteins in P21 wild-type and mutant pachytene spermatocytes. Complete sequestration

of ATR occurred on early Ino80WT pachytene sex chromosomes (Fig 3A and 3C), where rela-

tively consistent ATR binding occurs along the axis at the unsynapsed part of sex chromo-

somes (Fig 3B and 3D). In contrast, ATR lacked uniform localization on the unsynapsed part

of sex chromosomes of early to mid-pachytene Ino80cKO spermatocytes (Fig 3E and 3G).

Instead, upon quantitation, patchy ATR localization was observed along the axis (Fig 3F and

3H). Further, the overall intensity of ATR at the sex chromosomes was moderately reduced

(p<0.05) (Fig 3J). Next, we tested the activity of ATR by immunostaining for the ATR sub-

strate phospho-CHK1 (S345) [36]. Although the localization of pCHK1 (S345) was limited to

the sex chromosomes in Ino80WT pachytene spermatocytes (S3A Fig), aberrant localization

PLOS GENETICS INO80 regulates sex-linked gene expression in mouse spermatocytes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011431 October 15, 2024 4 / 23

https://doi.org/10.1371/journal.pgen.1011431


Fig 2. INO80 required for transcriptional silencing of sex chromosomes during meiotic prophase. (A) Boxplots showing mean

differential gene expression from each chromosome in response to Ino80 deletion in spermatocytes. The yellow dotted line indicates

mean Log2FoldChange = 0. Chr: Chromosome. (n = 5) (Analyzed from GEO Dataset GSE179584) [31] (B) Location of the differentially

regulated genes along the length of three representative autosomes and the sex chromosomes. Dots above each chromosome indicate

the fold change of individual genes. Upregulated and downregulated genes are indicated by red and blue, respectively. (Analyzed from

GEO Dataset GSE179584) [31] (n = 5). (C) Quantitative RT-PCR analysis of representative sex-linked gene expression levels
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occurred in Ino80cKO spermatocytes (S3B–S3D Fig). These data indicate aberrant but active

DNA binding and kinase activity of ATR in the Ino80cKO spermatocytes.

During pachynema progression, the amplification of ATR-mediated phosphorylation of

H2A.X depends on MDC1 recruitment [6]. Next, we determined MDC1 localization in

Ino80cKO pachytene spermatocytes. MDC1 immunofluorescence was visible on early- to late-

pachynema Ino80WT sex chromosomes (Fig 4A–4C and 4G). Conversely, significantly

reduced staining (p<0.05) occurred at the same stages in Ino80cKO spermatocytes (Fig 4D–4F

and 4G). These results indicate that INO80 facilitates the localization of MDC1 at sex chromo-

some DSBs during pachynema [23].

To determine whether INO80 physically recruits DSB repair factors, we performed co-

immunoprecipitation for INO80 from P21 spermatocytes. The presence of ATR and MDC1

with the INO80-immunoprecipitated samples (Fig 4H) and the detection of INO80 in MDC1-

and ATR-immunoprecipitated samples (S4A Fig) supports the physical interaction between

INO80 and DSBR factors ATR and MDC1. Adding either ethidium bromide or DNase to the

spermatocyte lysate did not alter MDC1 or ATR detection in the immunoblot (Figs 4H and

normalized to Rplp2 in either Ino80WT or Ino80cKO testes. Bars represent mean ± s.e.m. *; p<0.05, as calculated by unpaired t-test

(n = 3). (D-G) Immunolocalization of SCP3 (magenta) and RNA Polymerase II (pSer2) (green) in spermatocytes either from Ino80WT

(D,E) or Ino80cKO (F,G) (Scale bar = 10μM) showing aberrant localization RNA Polymerase II (pSer2) (RNAPII) in Ino80cKO

spermatocytes that are indicative of incomplete sex-chromosome silencing. White arrowhead; sex chromosome. The white circle

denotes an approximate area of the sex chromosomes. (H) Relative quantification of the immunofluorescence signal intensity of

RNAPII quantified from Ino80WT (n = 50) and Ino80cKO (n = 50) spermatocytes from three biological replicates. *; p<0.05, as

calculated by Wilcoxon rank sum test.

https://doi.org/10.1371/journal.pgen.1011431.g002

Fig 3. Aberrant ATR recruitment at sex chromosomes without INO80. (A-H) Immunolocalization of SCP3 (magenta) and ATR (green)

in spermatocytes from Ino80WT (A,C) or Ino80cKO (E,G). DAPI is shown in blue. Scale bar = 10μM. White arrowhead; sex-chromosome.

Line tracing for the quantification of ATR signal along the Y and X chromosome axes in the respective left panels from Ino80WT (B,D) and

Ino80cKO (F,H) are displayed. (J) Relative fluorescent intensity measurement of ATR signal at the sex chromosomes from three biological

replicates: Ino80WT (n = 53) or Ino80cKO (n = 42) pachytene spermatocytes. *; p<0.05, as calculated by Wilcoxon rank sum test.

https://doi.org/10.1371/journal.pgen.1011431.g003
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S4B). This result indicates the interaction between MDC1 and INO80 is chromatin

independent.

Further, to determine MDC1 recruitment, we performed cleavage under targets and release

using nuclease (CUT&RUN) in synchronized Ino80WT and Ino80cKO pachytene spermato-

cytes. We observed robust MDC1 enrichment at INO80-binding sites only in the sex chromo-

somes in Ino80WT spermatocytes. In contrast, reduced MDC1 occupancy was present in

Ino80cKO spermatocytes (Figs 5A and S4C). Alternatively, in autosomes, MDC1 enrichment

was absent (Fig 5A). MDC1 occupancy was also substantially reduced at and around DSB sites

marked by γH2A.X (Fig 5B). Further, genomic annotation analysis of the MDC1 binding sites

(S1 Table) suggests majority of MDC1 occupancy was present in distal intergenic regions

(63.95%). In contrast, reduced occupancy was distributed among promoters (9.19%), exons

Fig 4. MDC1 recruitment at the sex chromosomes is facilitated by INO80. (A-F) Immunolocalization of SCP3 (magenta) and MDC1

(green) in spermatocytes from Ino80WT (A-C) or Ino80cKO (D-F). DAPI is shown in blue. Scale bar = 10μM. White arrowhead; sex-

chromosome. (G) Relative fluorescent intensity measurement of MDC1 signal at the sex chromosomes from either Ino80WT (early;

n = 30, mid/late; n = 39) or Ino80cKO (early; n = 23, mid/late; n = 17) pachytene spermatocytes from three biological replicates. *;
p<0.05, as calculated by Wilcoxon rank sum test. (H) Immunoblot images demonstrating the interaction of INO80 with ATR and MDC1

by the presence of MDC1 and ATR in INO80 immunoprecipitated Ino80WT spermatocyte homogenates and INO80 when

immunoprecipitated with MDC1 from Ino80WT spermatocyte homogenate.

https://doi.org/10.1371/journal.pgen.1011431.g004
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(6.08%), and introns (18.79%) (Fig 5C). The reduction in MDC1 occupancy in Ino80cKO cor-

roborates our previous observation by MDC1 immunofluorescence staining. Further, we also

observed the downregulation of MDC1 mRNA and protein in the Ino80cKO spermatocytes

(S4D and S4E Fig). In addition, the enrichment of INO80 at the promoter ofMdc1 suggests a

requirement for INO80 regulation of MDC1 expression (S4F Fig).

Because MDC1 is essential for amplifying γH2A.X, we determined whether perturbation of

γH2A.X distribution occurred in the Ino80cKO spermatocytes. γH2A.X staining was observed

in the Ino80WT pachytene spermatocytes (Fig 6A and 6C), spanning the entire sex body (Fig

6B and 6D). While γH2A.X staining was observed in the Ino80cKO spermatocytes (Fig 6E and

6G), its expansion throughout the sex chromosomes was perturbed and more concentrated

near the axis (Fig 6F and 6H). In addition, a moderate reduction in the overall γH2A.X signal

at the sex chromosomes occurred in Ino80cKO spermatocytes, suggesting a perturbed amplifi-

cation of γH2A.X (Fig 6J).

INO80 regulates chromatin accessibility at the sex chromosomes

INO80 is capable of histone exchange, most notably removing H2A.Z from chromatin [23,24].

To determine how INO80 changes chromatin dynamics on the sex chromosomes and whether

its regulation of sex-linked genes is H2A.Z-dependent, we compared H2A.Z occupancy (GEO

Fig 5. Genomic occupancy of MDC1. (A) Heatmap illustrating MDC1 occupancy at the INO80 binding sites in autosomes (left) and sex chromosomes (right). (B)

Metaplot illustrating MDC1 occupancy at the DSB sites marked by γH2A.X binding. (C) Genomic annotation of MDC1 peaks in Ino80WT spermatocytes.

https://doi.org/10.1371/journal.pgen.1011431.g005
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Dataset GSE179584) [31] at sex-linked gene promoters in P18 Ino80cKO and Ino80WT sper-

matocytes. There was little change in H2A.Z levels at the promoter and transcriptional start

sites (TSS) and INO80 binding sites on the sex chromosomes (S5A and S5B Fig). These results

suggest that H2A.Z does not mediate the sex-linked gene regulation by INO80. We also exam-

ined the occupancy of activating histone modification H3K4me3 and suppressive histone

modification H3K27me3 at the sex-linked promoters. Neither showed any change (S5C and

S5D Fig) and did not mediate INO80-dependent gene regulation in the sex body.

Chromatin accessibility can be another regulator of DNA-interacting protein binding at the

chromatin. A global change in chromatin accessibility occurs in developing spermatocytes

during the mitosis-to-meiosis transition and subsequent progression through meiosis [37].

We performed Assay for Transposase-Accessible Chromatin with high-throughput sequencing

(ATAC-seq) to determine accessible chromatin distribution in the developing Ino80WT sper-

matocytes at P12 (enriched at zygonema) and compared it with ATAC-seq data from P18

Ino80WT spermatocytes (enriched at pachynema) (GEO Dataset GSE179584) [31]. Chromatin

accessibility at promoter/TSS regions in autosomes at both P12 and P18 was higher than that

observed for the sex chromosomes (S6A Fig). Further, an increase in chromatin accessibility

occurred at these regions in both autosomes and sex chromosomes from P12 to P18 (S6A Fig).

This increase did not reverse in Ino80cKO spermatocytes at P18 (S6A Fig). These data indicate

a lack of requirement for INO80 in generating accessible chromatin at promoter/TSS during

Fig 6. Aberrant γH2A.X localization in Ino80cKO spermatocytes. (A-H) Immunolocalization of SCP3 (magenta) and γH2A.X (green) in

pachytene spermatocytes from Ino80WT (A,C) or Ino80cKO (E,G) (Scale bar = 10μM). DAPI is shown in blue. Scale bar = 10μM. White

arrowhead; sex-chromosome. Line tracing for the quantification of γH2A.X signal along the dotted arrow in the dotted circle (marking the

approximate sex body area) in the respective left panels from Ino80WT (B,D) and Ino80cKO (F,H) are displayed. (J) Relative fluorescent

intensity measurement of γH2A.X signal at the sex chromosomes from either Ino80WT (n = 58) or Ino80cKO (n = 29) pachytene

spermatocytes from three biological replicates. *; p<0.05, as calculated by Wilcoxon rank sum test.

https://doi.org/10.1371/journal.pgen.1011431.g006
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this transition. Next, we determined how the distribution of chromatin accessibility changed

during the zygonema to pachynema transition. Comparison of sex chromosome-specific

ATAC-peaks revealed a small portion of unique sites (1.34%) on P12 spermatocytes. Most P12

peaks are present at P18. The common peaks account for 20% of the P18 ATAC peaks from

sex chromosomes, while 80% of ATAC peaks at P18 were de novo in nature (S6B Fig). Com-

parison of ATAC-peaks on sex chromosomes from Ino80cKO and Ino80WT spermatocytes

(GEO Dataset GSE179584) [31] showed only 17% of these de novo peaks remain in Ino80cKO,

and 83% of de novo peaks are lost (S6B Fig). Overall, the increase in chromatin accessibility

across sex-chromosomes from P12 to P18 was reduced substantially both at all accessible sites

(S6C Fig) as well as INO80 binding sites (S6D Fig). Further, genomic annotation analysis of

these ATAC-peaks from sex chromosomes (S2 Table) suggested a significant increase in intro-

nic (9% to 19%) and distal intergenic (24% to 51%) accessible regions during the transition

from P12 to P18 (S6E Fig). This result is because 81% of the de novo gained peaks occurred in

intronic and distal intergenic regions, and only 7% were at promoter/TSS sites (S6E Fig). In

Ino80cKO spermatocytes, we observed a loss of a similar distribution of peaks. Most of the

binding occurred in intronic and intergenic regions, suggesting that INO80 regulates the gen-

eration of these peaks (S6E Fig).

Next, we performed a chromosome-specific comparison of accessible regions between P12

and P18 spermatocytes from Ino80WT testes at each peak. These experiments revealed a sig-

nificant increase in chromatin accessibility at various locations across autosomes and sex chro-

mosomes (Fig 7A). All autosomes showed an increase in chromatin accessibility at most of the

differentially accessible (DA) regions (FDR <0.05) (Fig 7A). However, sex chromosomes,

especially the X-chromosome, exhibited a greater degree of increase at all the DA regions

(FDR< 0.05) (Fig 7A). The genomic locations of the DA sites mainly occur at the intronic and

intergenic areas. A minor portion of them occur at promoter-proximal regions (Fig 7B). The

distribution of increased and decreased accessible areas (FDR< 0.05) was similar. In contrast,

the number of regions with reduced accessibility was minimal. These data indicate that a

genome-wide increase in chromatin accessibility occurs during the zygonema to pachynema

transition. The increase is more prevalent on the sex chromosomes (Fig 7A).

To determine the role of INO80 in regulating the transition in chromatin accessibility dur-

ing meiotic progression, we compared the accessible sites in P18 spermatocytes from either

Ino80WT or Ino80cKO spermatocytes (GEO Dataset GSE179584) [31]. We observed a mini-

mal change in accessible chromatin at the autosomes. In contrast, most of the DA regions

were located at the sex chromosomes, demonstrating a much larger and significant change in

accessibility (Fig 7C). Genomic annotation analyses suggested that these DA chromatin

regions mainly belong to intronic and intergenic regions (Fig 7D). To determine how these

DA sites were correlated to the change in transcription activity at the sex chromosomes, com-

parison of the nearest genes from the DA sites to the RNAseq data suggested significant

enrichment of these sex-linked genes among the upregulated genes in Ino80cKO (FDR <0.05)

(Fig 7E). These data indicate that INO80 plays a vital role in regulating the increased chroma-

tin accessibility on the sex chromosome during meiotic progression. We next compared

ATAC-signal from Ino80WT and Ino80cKO spermatocytes at the DSB regions marked by

γH2A.X binding (obtained from publicly available dataset GSE75221) [33]. A significant

decrease in chromatin accessibility in Ino80cKO suggests a less permissive environment for

DSBR factor recruitment at the DSB sites (Fig 7F). We have also observed a decreased enrich-

ment of MDC1 at the DA regions in Ino80cKO (Fig 7G). These data indicate an essential role

for INO80 in recruiting DNA damage repair factors to sex chromosome DSBs by regulating

chromatin accessibility.
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Fig 7. INO80 regulates chromatin accessibility in spermatocyte sex chromosomes. (A) Dot plot showing the relative

changes in accessibility on each chromosome at P18 pachytene spermatocytes (GSE179584) [31] compared to P12

zygotene spermatocytes. Red dot: FDR< 0.05; Black dot: FDR> 0.05. FDR was derived by Benjamini-Hochberg method

(n = 3) (B) Genomic annotation of the differentially accessible regions from (FDR< 0.05) as shown in (A). (C) Dot plot

showing relative changes in chromatin accessibility on each accessible site in each chromosome due to Ino80 deletion at

P18. Red dot: FDR< 0.05; Black dot: FDR> 0.05. FDR was derived by Benjamini-Hochberg method (n = 3) (D)

Genomic annotation of the differentially accessible regions from (FDR< 0.05) as shown in (C). (D); Genomic

annotation of the differentially accessible regions due to Ino80 deletion. (E) Gene set enrichment analysis with the
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Discussion

In this study, we demonstrated a unique role for INO80 in silencing sex-linked genes during

pachynema in spermatocytes. INO80 regulates chromatin accessibility at DSB regions of the

sex chromosomes. This regulation is independent of the histone variant H2A.Z, a major

INO80 effector. We also demonstrated that INO80 interacts with DSBR factors ATR and

MDC1, facilitating MDC1 recruitment at the sex chromosomes during pachynema.

An earlier report showed that male germ cell-specific deletion of Ino80 results in a meiotic

arrest phenotype in 8-week-old murine testes. A significant population of pachytene spermato-

cytes display defects in synapsis and DNA damage response, leading to the loss of spermato-

cytes in adult testes [18]. However, during the first wave of spermatogenesis in juvenile mice,

no significant cell death was observed in Ino80cKO testis up to P21. Moreover, unaltered gene

expression signatures for zygonema and pachynema stages in Ino80cKO spermatocytes at P18,

derived from RNAseq data comparing Ino80WT and Ino80cKo spermatocytes, suggest their

relative proportions remain similar, except for a reduced transition from pachynema to diplo-

nema in the absence of INO80 [31]. Utilizing this small window of time, we observed a lack of

downregulation of sex-linked differentially expressed genes in Ino80cKO spermatocytes,

which was also replicated by comparing homogeneous pachynema populations upon synchro-

nization of spermatogenesis. We also validated this overall aberrant sex-linked transcription

program in individual Ino80cKO pachytene spermatocytes by immunolocalizing active RNA

polymerase II at the sex chromosomes. This corroborates the observation of an incomplete

MSCI in pachytene Ino80cKO spermatocytes. Several other studies also reported similar char-

acteristics that described roles for MSCI-regulating factors [6,38–40].

Several studies have described a regulatory role for INO80 in DNA damage response in

somatic cells and meiosis [18,41,42]. The INO80 chromatin remodeling complex interacts

with DNA damage factors such as γH2A.X and MEC1 (ATR) at DSB repair sites in yeast

[43,44]. We also found that INO80 interacts with DNA repair factors ATR and MDC1 in mei-

otic spermatocytes. γH2A.X recruitment at DSB sites during zygonema remained intact in

Ino80cKO spermatocytes [18]. We propose that the initial deposition of γH2A.X at the synapse

axis of sex chromosomes initiates INO80-facilitated recruitment of MDC1. This recruitment

amplifies γH2A.X in chromatin loops in an INO80-facilitated ATR-dependent fashion.

INO80 is known to regulate transcription in several cell types. It facilitates the recruitment

of RNA polymerase II (RNAPII) and its cofactors to the promoters of pluripotency network

genes. This recruitment regulates embryonic stem cell pluripotency and reprogramming

[26,27]. It can also regulate gene expression by facilitating histone modifications and the

exchange of histone variants such as H2A.Z in different cell types [22,23,31,45]. INO80 also

regulates somatic gene silencing at the autosomes in spermatocytes by promoting H3K27me3

modification at promoters, while H3K4me3 remains unaffected [31]. However, INO80-depen-

dent silencing of sex-linked genes in meiotic spermatocytes is independent of INO80-me-

diated direct transcriptional regulation by enabling DNA binding factor recruitment at the

promoter-proximal areas.

We showed that INO80 regulates sex chromosome accessibility during meiotic progression.

Chromatin accessibility is a central regulator of DNA damage repair response. Less accessible

nearest sex-linked genes of the differentially accessible regions at sex chromosomes in Ino80cKO spermatocytes,

depicting enrichment of these genes among the upregulated genes in Ino80cKO, determined by RNAseq. NES;

Normalized enrichment score. FDR; False discovery rate. (F) Boxplot showing the mean change in ATAC-signal

(chromatin accessibility) at all the γH2A.X marked DSB sites [33] between Ino80WT and Ino80cKO in P18

spermatocytes. *; p<0.05, as calculated by Wilcoxon signed-rank test. (n = 3). (G) Metaplot illustrating the reduction in

the MDC1 occupancy at the differentially accessible regions in Ino80cKO sex chromosomes.

https://doi.org/10.1371/journal.pgen.1011431.g007
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DNA hinders successful and efficient DNA repair [46,47]. Chromatin accessibility is also

essential in transcription factor recruitment and efficient transcription regulation at the pro-

moter-proximal areas [48]. We observed an increase in overall chromatin accessibility at pro-

moter regions of autosomes and sex chromosomes during meiotic progression.

In contrast, a similar level of accessibility remains at the promoter-proximal areas of sex

chromosomes due to Ino80 deletion. Maezawa et al. previously reported that the accessibility at

the promoter/TSS during the pachynema transition remains relatively unchanged. At the same

time, gene expression changes occur [37]. It is possible that chromatin accessibility is dynamic,

and changes occur between stages during spermatogenesis. While the exact mechanism of

gene silencing by DSB factors is not clear, the de novo generation of accessible regions at the

non-promoter areas may provide the open chromatin structure necessary for DSB factors to

bind and, therefore, explain the resulting gene silencing by them during MSCI.

Further, recent studies have reported a mechanistic view of the role of INO80 in sliding

hexasomes and nucleosomes with different affinities to create accessible DNA [49,50]. It is

unclear whether hexasomes facilitate INO80-interaction at the meiotic sex chromosomes.

However, it is logical to predict INO80 as a central regulator of sex-linked gene silencing by

regulating this de novo accessibility generation, as most of these peaks are lost in Ino80cKO

spermatocytes. The loss of accessibility at the γH2A.X-binding DSB regions and reduced

MDC1 occupancy at the DA sites in sex chromosomes due to Ino80 deletion indicate a possible

INO80-dependent recruiting mechanism for DSBR factor MDC1.

Here, we propose that INO80 mediates the de novo opening of chromatin around the DSB

regions and facilitates recruitment of MDC1, whereby MDC1 initiates γH2A.X amplification

by enabling ATR recruitment (Fig 8).

Materials and methods

Ethics statement

All animal experiments were performed according to the protocol approved by the University

of North Carolina at Chapel Hill’s Institutional Animal Care and Use Committee.

Animals and genotyping

Ino80 homozygous floxed [18,31] female mice (Mus musculus), maintained on an outbred CD1

background, were crossed with Stra8-CreTg/0 males [51] to produce Ino80f/+; Stra8CreTg/0 males.

Male Ino80fl+ (Ino80WT) and Ino80Δ/f; Stra8CreTg/0 (Ino80cKO) littermates were obtained by

crossing Ino80f/f females with Ino80f/+; Stra8CreTg/0 males. S3 Table lists primers used for geno-

typing. Mice were maintained in an environment with controlled temperature and humidity

with 12 h light and 12 h dark cycles and fed ad libitum. Spermatocyte synchronization was per-

formed following a published protocol [34]. In brief, newborn pups were treated with retinoic

acid synthesis inhibitor WIN 18,446 (Cayman Chemical) (100μg/g), administered orally for 10

days (P1-P10). On P11, one bolus of retinoic acid (100ug per pup) was delivered subcutaneously

to initiate spermatogonia differentiation, and pachytene spermatocytes were isolated on P24.

RNA isolation and quantitative RT-PCR

Total RNA was isolated from Ino80WT and Ino80cKO spermatocytes using Trizol reagent

(Invitrogen) followed by the Direct-zol RNA kit (Zymo). Reverse transcription was performed

by the ProtoScript II reverse transcriptase (NEB) using random primers. Real-time PCR was

performed using Sso Fast EvaGreen supermix (Bio-Rad) on a thermocycler (Bio-Rad). Primers

used in this study are listed in S4 Table.
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Immunofluorescence staining

Spermatocyte nuclear spreads were prepared from freshly harvested testes following a pub-

lished protocol [52] with modifications [53]. Briefly, single-cell suspensions were prepared

from seminiferous tubules. 3ul were added to three volumes of 0.25% NP40 (9ul) on a clean

glass slide and incubated for 2 minutes at room temperature. Next, Fixative solution (36ul; 1%

paraformaldehyde, 10 mM sodium borate buffer (pH 9.2) was added to the sample, and the

slides were incubated in a moist chamber for 2 hours at room temperature. Lastly, slides were

dried under a hood, washed with 0.5% Kodak Photo-Flo 200 three times, 1 minute each, and

stored at -80˚C.

Freshly harvested testes were embedded and frozen in the Optimum Cutting Temperature

(OCT) embedding medium to make cryosections. Cryosections (7uM) on glass slides were

fixed in freshly made 4% paraformaldehyde solution in PBS for 10 mins at 4˚C. Following fixa-

tion, samples were washed in PBS 3 times, 5 minutes each, and permeabilized in PBST (PBS

+ 0.1% Triton-X 100) 3 times for 5 minutes each. Samples were incubated with blocking buffer

(10% goat/donkey serum, 2% bovine serum albumin, 0.1% Triton-X 100 in PBS) for 1 hour at

Fig 8. Schematic illustration of INO80-mediated regulation of meiotic sex-chromosome silencing. INO80

facilitates MDC1 recruitment at the DSB sites and regulates chromatin accessibility at these regions. MDC1

recruitment allows ATR-mediated amplification of γH2A.X at the chromatin loops. Ino80-deletion results in decreased

chromatin accessibility and a lack of MDC1 recruitment, which fails to initiate ATR-mediated amplification of γH2A.

X.

https://doi.org/10.1371/journal.pgen.1011431.g008
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RT before incubation with primary antibody (listed in S5 Table) in blocking buffer overnight

at 4˚C. The following day, samples were washed 3 times, 5 minutes each with PBST, and incu-

bated with Alexa Fluor-conjugated secondary antibody at room temperature for one hour.

Samples were washed once with PBST and counterstained with DAPI, followed by three

washes with PBST, 5 minutes each, and mounted in Prolong Gold anti-fade medium (P-

36931; Life Technologies). Relative signal intensity was measured by NIH ImageJ software (S6

Table), either at an area marked by a region of interest with assigning the lowest intensity a

value of 1 or along a single line transect as described previously [54]. Meiotic substages were

identified by either SCP1 and SCP3 immunostaining and/or the shape of the synapsed sex

chromosomes [55]. Plots were created in R using ggplot2 [56]

Isolation of male germ cells

The spermatogenic cells were isolated following a modified version of a previously published

protocol [57]. Experiments were performed twice or more with cells isolated from separate

mice. Briefly, freshly isolated testes were decapsulated, and seminiferous tubules were digested

with collagenase (1mg/ml) in HBSS for 15 minutes at 32˚C. Next, the tubules were precipitated

by gravity for 5 mins at room temperature and separated, followed by a second digestion with

collagenase (1 mg/ml) and trypsin (0.1%) in HBSS for 15 min at 32˚C. Trypsin was inactivated

by adding equal amounts of soybean trypsin inhibitor. The digested product was pipetted and

filtered through 70 uM and then by 40uM cell strainers to get spermatocyte suspension. The

spermatocytes were precipitated by centrifugation at 500xg for 10 mins, followed by two

washes with HBSS. The cells were finally precipitated and either used in a following experi-

ment or frozen at -80˚C for later use.

Nuclear lysate preparation

Nuclear lysate preparations occurred by isolating spermatogenic cells from P21 testes and

incubating the cells in a hypotonic buffer (buffer A:10mM HEPES-KOH pH7.9, 1.5mM

MgCl2, 10mM KCl, 0.1% NP-40, 5mM NaF, 1mM Na3VO4, 1mM PMSF, 1x Protease inhibi-

tor cocktail) using 10–20 times the volume of the precipitated cell volume (PCV). After incu-

bation on ice for 15 minutes, the cells were centrifuged at 1000xg for 10 minutes at 4˚C. The

cells were precipitated and resuspended in buffer A, using twice the PCV, and homogenized

with a Dounce ‘B’ pestle 5 times on ice. Cells were precipitated by centrifugation at 1000 x g at

4˚C. Precipitated nuclei were washed in buffer A and resuspended in equal volume lysis buffer

(Buffer C) (20mM HEPES-KOH pH7.9, 1.5mM MgCl2, 420mM NaCl, 10mM KCl, 25% glyc-

erol, 0.2mM EDTA, 5mM NaF, 1mM Na3VO4, 1mM PMSF, 1x Protease inhibitor cocktail)

for 30 minutes at 4˚C on a nutator. The homogenate was cleared by centrifugation at 12000 x g
for 10 mins at 4˚C, and the supernatant saved in a separate tube. The extraction was performed

again from the pellet, and the supernatant mixed with the previous one. The lysate was diluted

with 2.8 volume of dilution buffer (Buffer D) (20mM HEPES-KOH pH7.9, 20% glycerol,

0.2mM EDTA, 5mM NaF, 1mM Na3VO4, 1mM PMSF, 1x Protease inhibitor cocktail) to

reduce the salt concentration and DTT added as necessary to a final concentration of 1mM.

Some samples were treated with either ethidium bromide (50ug/ml) or DNase I (1μg/ml) to

inhibit DNA-protein interaction [58] and followed by centrifugation at 12000 x g for 10 min-

utes at 4˚C.

Co-Immunoprecipitation

Co-immunoprecipitation was performed using 1–1.5 mg proteins from nuclear extracts from

the spermatocytes. The lysate diluted with immunoprecipitation (IP) buffer (20mM HEPES-

PLOS GENETICS INO80 regulates sex-linked gene expression in mouse spermatocytes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011431 October 15, 2024 15 / 23

https://doi.org/10.1371/journal.pgen.1011431


KOH pH7.9, 0.15mM KCl, 10% glycerol, 0.2mM EDTA, 0.5mM PMSF, 1x Protease inhibitor

cocktail) to 1mg/ml concentration. For rabbit antibodies, Protein A conjugated Dynabeads

(Invitrogen), and for mouse antibodies, Protein G conjugated Dynabeads (Invitrogen) were

used (50ul per sample). Dynabeads were washed in PBS 3 times, 1 minute each, followed by

incubation in PBS + 0.5% BSA for 10 minutes. Next, the beads were washed in PBS and IP

buffer before use. Samples were precleared with dynabeads for 30 minutes at 4˚C, followed by

adding primary antibody (S5 Table) and incubating at 4˚C for 1 hour. Next, dynabeads were

added to the samples and incubated overnight at 4˚C. The next day, each sample was washed

once in high salt wash buffer (20mM HEPES-KOH pH7.9, 300mM KCl, 10% glycerol, 0.2mM

EDTA, 0.1% Tween-20, 1mM PMSF, Protease inhibitor cocktail), twice in IP wash buffer

(20mM HEPES-KOH pH7.9, 150mM KCl, 10% glycerol, 0.2mM EDTA, 0.1% Tween-20,

1mM PMSF, Protease inhibitor cocktail), and once in final wash buffer (20mM HEPES-KOH

pH7.9, 60mM KCl, 10% glycerol, 1mM PMSF, 1x Protease inhibitor cocktail). Protein elution

was performed using 1.3X Laemmli buffer and incubating at 65˚C for 15 minutes, followed by

magnetic removal of Dynabeads. The samples were finally heated at 95˚C for 5 minutes to

denature and stored at -20˚C until used.

Western blotting

Protein samples were subjected to polyacrylamide gel electrophoresis followed by overnight

wet transfer to polyvinylidene difluoride (PVDF) membranes for fluorescence detection. Blots

were blocked by Li-COR intercept blocking buffer followed by primary antibody (S5 Table)

incubation overnight in TBS with 0.1% Tween-20. Fluorescent Li-COR secondary antibodies

were used for visualization, and blots were scanned using a Li-COR scanner. Uncropped blots

are shown in S1 File.

CUT&RUN

Cleavage under targets and release using nuclease (CUT&RUN) was performed using 250,000

spermatocytes per sample from Ino80WT and Ino80cKO testes following a previously pub-

lished protocol [59]. Briefly, a single cell suspension of spermatocytes was prepared and imme-

diately washed three times, followed by attachment with concanavalin-A coated beads. These

cells were permeabilized using digitonin and incubated overnight at 4˚C with either IgG or

antigen-specific primary antibody (S5 Table). The next day, beads were washed twice, followed

by protein-A/G-MNase binding in a calcium-free environment. Following two more washes

to remove unbound Protein-A/G-MNase, calcium was introduced to start chromatin digestion

for 30 mins at 0˚C. Digested chromatin fragments were released for 30 mins at 37˚C. The

released chromatin was purified using DNA purification columns (Zymo ChIP DNA Clean &

Concentrator). The elute was quantitated, followed by library preparation and high through-

put sequencing by Novaseq X Plus.

ATAC-seq

ATAC-seq was performed following the omni-ATAC method described previously [60], using

Ino80WT spermatocytes from P12 testes. 50,000 cells from each sample were washed, and nuclei

were isolated. A transposition reaction was performed with these nuclei at 37˚C for 30 minutes in

a thermomixer at 1000 r.p.m. followed by a clean-up step using Zymo DNA Clean and Concen-

trator-5 columns. Libraries were amplified, size selected using 0.5X and 1.8X Kapa pure beads to

generate a size range of ~150bp to ~2kb and quantified using NEBNext kit for Illumina. Libraries

were pooled and sequenced on a Novaseq 6000 platform, generating 50bp paired-end reads.
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Data analysis

ChIP-sequencing data and CUT&RUN data were trimmed as necessary using trimmomatic

[61]. The reads were aligned to mouse reference genome mm10 using Bowtie2 [62] with sensi-

tive settings. Samtools [63] was used to de-duplicate and merge the alignments. Deeptools [64]

was used to make depth-normalized coverage tracks and metaplots after removing the mm10

blacklisted regions. Correlation analysis between ChIP-seq datasets were also performed using

deeptools multiBamSummary tool using mapping quality >30. MACS2 [65] was used to call

peaks using the options -extsize set to 147 and -nomodel.

RNAseq reads were aligned by Tophat2 [66] to mm10, and read counts were obtained by

HTseqCount [67]. DESeq2 [68] was used with recommended settings for differential expres-

sion analysis. Plots were prepared by ggplot2 [56] and chromoMap [69].

ATAC-seq reads were processed by nf-core/atacseq (ver 1.1.0) pipeline [70]. Briefly, reads

were trimmed by Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_

galore/) and aligned to mouse reference genome mm10 using BWA. Picard (https://

broadinstitute.github.io/picard/) was used to mark the duplicates, and normalized coverage

tracks scaled to 1 million mapped reads were prepared by BEDTools (https://bedtools.

readthedocs.io/en/latest/index.html). Differential accessibility analysis was performed by

CSAW [71] using region-based binned read count followed by TMM normalization using

genome-wide background estimation. Genomic annotation of peaks was performed by

Homer [72]. Plots were created in R using ggplot2 [56].

Statistical analysis

The signals from ATAC-seq, immunofluorescence, and qPCR experiments were compared

using the Wilcoxon signed rank test for paired observations, the Wilcoxon rank sum test, or

the unpaired t-test for unpaired observations. All the tests performed were two-tailed.

Supporting information

S1 Fig. INO80 binding at the DSB sites. (A) Genomic tracks illustrating INO80 binding at

the DSB sites marked by γH2A.X [34] in P18 [32] and zygotene [33] spermatocytes. Each sepa-

rate genomic location is denoted by alternating background coloring. IG-Up; Intergenic-

Upstream. (B) Correlation analysis of INO80 and γH2A.X binding at the X and Y chromo-

somes. The numbers in the box represent Pearson’s correlation coefficient calculated from

high confidence reads (mapping quality >30) mapped to either chromosome X or Y. (C)

Metaplot showing INO80 occupancy in Ino80WT spermatocytes at the sex chromosome DSB

sites marked by γH2A.X.

(TIF)

S2 Fig. Synchronized pachytene spermatocytes exhibit a similar lack of sex-linked gene

expression. (A) Comparison of spermatocyte population in synchronized P24 Ino80WT and

Ino80cKO testes. (B) Immunoblot for INO80 and alpha-actin in synchronized P24 Ino80WT

and Ino80cKO testes. (C) Quantitative RT-PCR analysis of representative sex-linked gene

expression levels normalized to Rplp2 in synchronized P24 Ino80WT and Ino80cKO testes.

Bars represent mean ± s.e.m. *; p<0.05, as calculated by unpaired t-test (n = 3)

(TIF)

S3 Fig. ATR activity demonstrated by phosphorylation of CHK1 remains intact in

Ino80cKO spermatocytes. (A-D) Immunolocalization of SCP3 (magenta) and pCHK1(S345)

(green) in Ino80WT (A) or Ino80cKO (B-D) spermatocytes. Autosomes demonstrate pCHK1

(S345) signal at sites with incomplete synapsis (B), while sex chromosomes at pachynema
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exhibit aberrant pCHK1 level in Ino80cKO spermatocytes (C-D). DAPI is shown in blue. Scale

bar = 10μM. White arrowhead; sex-chromosome.

(TIF)

S4 Fig. INO80 facilitates MDC1 recruitment and expression. (A) Immunoblot images dem-

onstrate the interaction between INO80 with ATR and MDC1 by the presence of INO80 in

both ATR and MDC1 immunoprecipitated samples. The top panel shows two brightness and

contrast levels from the same blot to visualize MDC1 in input and immunoprecipitation sam-

ples. Spliced sections in the bottom panel are part of the same blot. (B) Immunoblot images

demonstrate the presence of ATR and MDC1 in INO80-immunoprecipitated sample in the

presence of DNase I. (C) Genomic tracks depicting the normalized enrichment of MDC1 at

the representative sex-linked DEGs in Ino80WT and Ino80cKO pachytene spermatocytes. (D)

Boxplot showing the normalized count ofMdc1 transcripts from Ino80WT and Ino80cKO

spermatocytes. (n = 5) (Analyzed from GEO Dataset GSE179584) [32] (E) Immunoblot show-

ing MDC1 (top) and α-Actin (bottom) expression from Ino80WT and Ino80cKO spermato-

cytes on P18. (F) Genomic tracks illustrated the enrichment of INO80, H3K27me3, and

H3K4me3 at theMdc1 promoter-proximal area. (Analyzed from GEO Dataset GSE179584)

[32]

(TIF)

S5 Fig. Histone modifications at the sex chromosomes. Metaplot illustrating changes in

H2A.Z (A-B), H3K4me3 (C), and H3K27me3 (D) occupancy at either INO80 binding sites

(A) or promoter/TSS regions (B-D) in sex chromosomes (Analyzed from GEO Dataset

GSE179584) [32].

(TIF)

S6 Fig. Chromatin accessibility during meiotic progression. (A) Metaplot illustrating chro-

matin accessibility at the promoter/TSS regions of autosomes and sex chromosomes in either

P12 Ino80WT or P18 Ino80WT and Ino80cKO spermatocytes. (B) Comparison of ATAC

peaks at sex chromosomes during the transition from P12 spermatocyte to P18 spermatocyte

and in P18 Ino80WT vs. Ino80cKO spermatocytes. (C-D) Metaplot illustrating chromatin

accessibility at the sex chromosomes in P12 Ino80WT and P18 Ino80WT and Ino80cKO sper-

matocytes at all the ATAC peaks (C) and at the INO80 peaks (D). (E) Genomic annotation of

ATAC-peaks in P12 and P18 spermatocytes, as well as the de novo peaks generated during

pachynema transition during P18 and lost due to Ino80 deletion. P18 ATAC-seq data was ana-
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