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Abstract: The oral microbiome is crucial for human health. Although oral dysbiosis may contribute
to oral cancer (OC), the detailed relationships between the microbiome and OC remain unclear. In
this case-control study, we aimed to elucidate the connection between the oral microbiome and mech-
anisms potentially involved in oral cancer. The study analyzed 1022 oral saliva samples, including
157 from oral cancer patients and 865 from healthy controls, using 16S ribosomal RNA (16S rRNA)
sequencing and a Light Gradient Boosting Machine (LightGBM) model to identify four bacterial
genera significantly associated with oral cancer. In patients with oral cancer, the relative abundance
of Streptococcus and Parvimonas was higher; Corynebacterium and Prevotella showed decreased relative
abundance; and levels of fatty acid oxidation enzymes, including Carnitine palmitoyltransferase 1A
(CPT1A), long-chain acyl-CoA synthetase, acyl-CoA dehydrogenase, diacylglycerol choline phospho-
transferase, and H+-transporting ATPase, were significantly higher compared to controls. Conversely,
healthy controls exhibited increased levels of short-chain fatty acids (SCFAs) and CD4+T-helper cell
counts. Survival analysis revealed that higher abundance of Streptococcus and Parvimonas, which cor-
related positively with interleukin-6, tumor necrosis factor-alpha, and CPT1A, were linked to poorer
disease-free survival (DFS) and overall survival (OS) rates, while Prevotella and Corynebacterium were
associated with better outcomes. These findings suggest that changes in these bacterial genera are
associated with alterations in specific cytokines, CPT1A levels, SCFAs in oral cancer, with lower SCFA
levels in patients reinforcing this link. Overall, these microbiome changes, along with cytokine and
enzyme alterations, may serve as predictive markers, enhancing diagnostic accuracy for oral cancer.

Keywords: oral microbiota; oral cancer; machine learning; SCFAs; CPT1A; disease-free survival;
overall survival

1. Introduction

Oral cancer is common globally, with an estimated 377,713 cases reported in 2020 [1].
Established risk factors for oral cancer include smoking, alcohol use, human papillomavirus
infection, and sunlight exposure [2,3]. Associations between the oral microbiome and
oral cancer have increasingly attracted attention; however, numerous knowledge gaps
persist. Understanding the intricate process of oral cancer progression, identifying accurate
oncological biomarkers, and implementing targeted therapies at an early stage are essential
for effective oral cancer management [4,5].
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The oral cavity comprises different hard tissues and mucosal structures and has a
diversified microbial abundance; it is home to over 700 bacterial species, making it home to
a significant microbial community and second only to the gastrointestinal tract [6]. This vast
microbial community is vital for oral and systemic health, and dysbiosis is associated with
inflammation and diseases, including oral cancer [4,7]. Bacteria such as Streptococcus and
Fusobacterium nucleatum induce inflammation, suppress immunity, and alter cell signaling,
thereby promoting oral cancer [8–10]. Conversely, Lactobacillus plantarum elicits anticancer
effects via immune modulation and metabolite-driven tumor inhibition in oral cancer [11].
Therefore, oral-microbiome modulation represents a promising route for cancer prevention,
therapeutic interventions, and overall oral health.

Metabolites produced by the oral microbiome, such as short chain fatty acids (SCFAs)
and long-chain fatty acids, significantly influence cancer [12]. Some oral bacteria, such as
Streptococcus and Fusobacterium, may reduce levels of short-chain fatty acids (SCFAs) and
elevate tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), potentially promoting
cancer cell proliferation [13]. CD4+T-helper cells play a critical role in orchestrating im-
mune responses, and their downregulation has been observed in various cancers, including
colorectal [14] and pancreatic cancers [15]. In these contexts, the gut microbiota modulates
T cell trafficking and contributes to immune evasion and tumor progression. Similarly, the
downregulation of CD4+ T cells in oral cancer suggests a significant mechanism of immune
suppression, highlighting the potential for targeting both T cell pathways and microbiome
interactions in therapeutic interventions. Moreover, emerging evidence shows that specific
gut bacteria can profoundly affect the production of carnitine palmitoyltransferase 1 (CPT1),
an essential enzyme in mitochondrial fatty acid oxidation (FAO) that facilitates the genera-
tion of adenosine triphosphate (ATP), the primary energy source for cells [16]. Disruption
of FAO may promote the progression of oral cancer [17,18]. Certain oral bacteria, such as
Porphyromonas gingivalis, are potential cancer-causing agents that induce oxidative stress
via oxidative stress-responsive kinase 1 (OXSR1) and DNA damage, whereas other bacteria,
such as Lactobacillus, act as antioxidants that potentially suppress colon cancer [19,20].

Understanding the association between bacteria and oral cancer is hindered by vari-
ations in research methods and inconsistent findings across studies involving different
cancer subtypes and stages. We investigated whether a synergistic interaction between the
oral microbiome and underlying metabolic pathways, particularly involving enzymes such
as carnitine O-palmitoyltransferase 1 (CPT1A), plays a key role in oral cancer. Our study
also explored the plausible association of the oral microbiome with enzymes and cytokines
related to fatty acid metabolism, oxidative stress, and immune responses, all of which are
considered crucial for the initiation of oral cancer. Notably, survival analysis indicated
that elevated levels of Streptococcus and Parvimonas, which correlated positively with
interleukin-6, tumor necrosis factor-alpha, and CPT1A, were linked to poorer disease-free
and overall survival outcomes. Additionally, we found that specific metabolites, such as
short-chain fatty acids (SCFAs), were downregulated in oral cancer, suggesting a significant
impact of the oral microbiome on these metabolic processes and their potential influence
on patient survival.

2. Results
2.1. Demographic Characteristics of Oral Cancer Patients and Controls

A total of 1022 participants were included in the study, comprising 157 oral cancer
patients and 865 healthy controls. The study involved two datasets: the discovery dataset
with 637 participants (104 oral cancer cases and 533 controls) and the validation dataset
with 385 participants (53 oral cancer cases and 332 controls). Detailed demographic char-
acteristics of both the oral cancer-patient and control groups are presented in Table 1 and
Figure S1.
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Table 1. General characteristics of oral microbiota study subjects in discovery (n = 637), and validation
(n = 385) data set.

Discovery Data Set (n = 637) Validation Data Set (n = 385)

Variable OC
(N = 104)

Control
(N = 533) p Value OC

(N = 53)
Control

(N = 332) p Value

Gender Male 67 (64.4) 254 (47.7)
0.003

29 (54.7) 105 (31.6)
0.002Female 37 (35.6) 279 (52.3) 24 (45.3) 227 (68.4)

Age I (Age < 50) 16 (15.4) 91 (17.1)

0.000

5 (9.40) 40 (12.0)

0.000
II (Age 45–60) 28 (26.9) 241 (45.2) 5 (9.40) 142 (42.8)
III (Age 60–70) 19 (18.3) 168 (31.5) 17 (32.1) 140 (42.2)
IV (Age 70<) 41 (39.4) 33 (6.20) 26 (49.1) 10 (3.00)

BMI BMI < 18.5 17 (16.4) 16 (3.00)

0.000

2 (3.70) 7 (2.10)
BMI 18.5–23 30 (28.8) 190 (35.6) 11 (20.8) 127 (38.3)
BMI 23–25 19 (18.3) 137 (25.7) 16 (30.2) 90 (27.1) 0.118
BMI ≥ 25 38 (36.5) 186 (34.9) 23 (43.4) 106 (31.9)
Unknown 0 (0.00) 4 (0.80) 1 (1.90) 2 (0.60)

Smoking Non smoker 55 (52.9) 298 (55.9)

0.010

29 (54.7) 227 (68.4)

0.206
Currentsmoker 23 (22.1) 58 (10.9) 5 (9.40) 17 (5.10)

Ex-smoker 25 (24.0) 160 (30.0) 18 (34.0) 80 (24.1)
Unknown 1 (1.00) 17 (3.20) 1 (1.90) 8 (2.40)

Drinking Non drinker 42 (40.3) 119 (22.3)

0.000

35 (66.0) 97 (29.3)

<0.0001
Currentdrinker 35 (33.7) 318 (59.7) 17 (32.1) 186 (56.0)

Ex-drinker 26 (25.0) 69 (12.9) 0 (0.00) 35 (10.5)
Unknown 1 (1.00) 27 (5.10) 1 (1.90) 14 (4.20)

Tstage T1 16 (15.4)

0.000

14 (26.4)

0.0017
T2 21 (20.2) 16 (30.2)
T3 26 (25.0) 1 (1.90)
T4 34 (32.7) 16 (30.2)

Unknown 7 (6.70) 6 (11.3)

Nstage N0 62 (59.7)

0.000

36 (67.9)

<0.0001
N1 13 (12.5) 5 (9.40)
N2 12 (11.5) 7 (13.2)
N3 10 (9.60) 1 (1.90)

Unknown 7 (6.70) 4 (7.60)

Stage 1 17 (16.4)

0.000

13 (24.5)

0.002
2 11 (10.6) 13 (24.5)
3 25 (24.0) 3 (5.70)
4 46 (44.2) 19 (35.9)

Unknown 5 (4.80) 5 (9.40)

Grade Poor 14 (13.4)

0.000

0 (0.00)

<0.001
Moderate 43 (35.3) 4 (7.60)

Well 35 (30.7) 37 (69.8)
Unknown 12 (20.6) 12 (22.6)

Notes: Results of variables are presented as number (%). Smoking status was categorized into three groups:
non-smoker, current smoker and ex-smoker (the unknown category was used to exclude individuals with missing
smoking-status information). Drinking status was also categorized into three groups: non-drinker, current drinker
and ex-drinker (the unknown category was used to exclude samples with missing drinking-status information).
All Stage and Grade information was collected from oral cancer patients except for those in the control group.
Body mass index (BMI) was split into four groups: underweight < 18.5, normal range 18.5–23, overweight 23–25,
and obese ≥ 25. Samples with missing BMI status information were excluded. OC, oral cancer.

2.2. Contrasting Oral Microbiome Compositions in Oral Cancer Patient and Control Groups:
Taxonomic Analyses and Identification of Cancer-Associated Genera

We identified 48 phyla and 1704 genera across all study subjects. The dominant
phyla were (relative abundance > 1%) Proteobacteria, Bacteroidetes, and Firmicutes, which
accounted for over 90% of the bacterial population (Supplementary Figure S2A). The
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average number of reads per sample was 40,000, with a minimum threshold of 20,000 reads
per sample. Patients with oral cancer exhibited significantly higher alpha diversity, as
demonstrated by Observed OTU, Chao1, and Shannon indices, compared to the controls.
In contrast, beta diversity, assessed through PCoA, was based on weighted and unweighted
UniFrac distances, and patients with oral cancer showed a significantly higher alpha
bacterial diversity compared to the controls. However, beta diversity analysis did not
reveal any significant differences between the groups. This analysis does not assess the
risk for cancer; rather, it provides information on associations with cancer versus control
(Figure S2B–D). To examine fluctuations in oral microbiota between cancer patients and
controls, we performed a linear discriminant analysis at the genus level. The analysis
revealed that Streptococcus and Parvimonas were associated with an increased risk of oral
cancer, while Corynebacterium and Prevotella were significantly associated with a reduced
risk (Figure S2E). Furthermore, using Venn diagram analysis, we assessed oral microbiota
in oral cancer patients and control participants, which revealed 740 distinct overlapping
bacterial genera (Figure S2F).

2.3. Machine-Learning Analysis Identified Microbial Biomarkers for Oral Cancer Risk: LightGBM
Model Accuracy and Microbiome Associations

Machine-learning techniques can identify microbial taxa that may serve as oral cancer
biomarkers. Utilizing the LightGBM model, we achieved a high accuracy level in predicting
oral cancer, with an F1 score of 0.90, a sensitivity of 0.96, a precision of 0.98, an AUC of
0.98, and an overall accuracy of 0.97 (Table S1). The performance was evaluated using a
five-fold cross-validation approach. Top-feature importance analysis of the model revealed
significant contributors to cancer prediction performance via ROC analysis (Figure 1A–E,
Figure S3). The analysis of 20 selected microbial taxa revealed that higher abundances of
Streptococcus (fold-change = 1.964, p = 2.01 × 10−16) and Parvimonas (fold-change = 1.951,
p = 2.01 × 10−14) were linked to an increased cancer risk, whereas Corynebacterium (fold-
change = 0.543, p = 2.91 × 10−3) and Prevotella (fold-change = 0.590, p = 3.86 × 10−11) were
linked to a reduced cancer risk (Figure 2A, Table S2). An odds ratio plot was constructed
to assess the relationships for each genus using logistic-regression analysis. Our results
revealed higher relative abundances of Streptococcus and Parvimonas and a lower relative
abundance of Corynebacterium and Prevotella in the oral cancer-patient group than in the
control group (Figure 2B, Table S3).

2.4. Integration of the Microbiome and Functional-Pathway Analysis Revealed Potential
Biomarkers and Associations in Oral Cancer

In this study, we identified 14,860 KEGG orthologs (KOs) and 446 pathways using
PICRUSt and data from 1022 participants. This analysis revealed 24 significantly differ-
ent KOs between the groups. CPT1A, acyl-CoA dehydrogenase, long-chain acyl-CoA
synthetase, diacylglycerol choline phosphotransferase, and H+-transporting ATPase were
associated with an elevated cancer risk (Figure 2C,D, Tables S4 and S5). A parallel analytical
approach was used to predict outcomes associated with 15 specific pathways. Fatty acid
metabolism (ko01212) and biosynthesis (ko00061) were significantly associated with oral
cancer progression (Figure 2E,F, Tables S6 and S7).

We explored the relationship between 20 specific microbiomes and 24 KOs using
Spearman’s rank correlation coefficients. In patients with oral cancer, enzymes such as
CPT1A (K08765), acyl-CoA synthetase (K01897), and diacylglycerol choline phosphotrans-
ferase (K00994) correlated positively with Streptococcus, whereas acyl-CoA dehydroge-
nase (K06445) and H+-transporting ATPase (K01535) correlated positively with Parvi-
monas (Figure 3A,B; Figure S4A,B). Fatty acid degradation (ko00061) was significantly and
positively correlated with Streptococcus and Parvimonas in the oral cancer group. In contrast,
fatty acid metabolism (ko01212) showed greater correlations with Streptococcus, Parvimonas,
and Corynebacterium in the oral cancer group than in the control group (Figure 3C,D;
Figure S4C,D).
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ysis of the top 20 features contributing to the LightGBM model performance in discovery dataset (n 
= 637) Color Gradient: The colors range from deep blue at the top (for the highest importance) 
through green and yellow to red at the bottom (for lower importance). (B) Receiver Operating Char-
acteristic (ROC) curve analysis showing the relationship between the true positive rate (TPR) and 
the false positive rate (FPR) of the LightGBM model. The area under the Receiver Operating Char-
acteristic curve (ROC curve) represents the performance of the model in distinguishing between 
positive and negative samples in top 20 feature importance in the validation dataset (n = 385). (C) 
The utilization of SHapley Additive exPlanations (SHAP) values has unveiled a comprehensive elu-
cidation of the output generated by the machine learning model. This method offers a localized 
interpretation for individual predictions, accomplishing this by assigning proportional contribu-
tions of features to the ultimate prediction outcome. (D) The Probability of Detection Index (POD) 
in Light Gradient Boosting Machine Learning indicates the likelihood of classifying samples into 
cancer and control, with values ranging from 0 to 1. Higher values closer to 1 suggest a greater 
chance of classifying a sample as cancer. (E) The fold confusion matrix evaluated the LightGBM 
model performance with actual and predicted labels in the discovery dataset. 

Figure 1. Oral microbiota-based prediction of oral cancer (OC) using the Light Gradient Boosting
Machine learning (LightGBM) model. Machine-learning model training strategy: 5-fold cross-
validation of the LightGBM model in predicting oral cancer (OC) dataset. (A) Feature importance
analysis of the top 20 features contributing to the LightGBM model performance in discovery dataset
(n = 637) Color Gradient: The colors range from deep blue at the top (for the highest importance)
through green and yellow to red at the bottom (for lower importance). (B) Receiver Operating
Characteristic (ROC) curve analysis showing the relationship between the true positive rate (TPR)
and the false positive rate (FPR) of the LightGBM model. The area under the Receiver Operating
Characteristic curve (ROC curve) represents the performance of the model in distinguishing between
positive and negative samples in top 20 feature importance in the validation dataset (n = 385).
(C) The utilization of SHapley Additive exPlanations (SHAP) values has unveiled a comprehensive
elucidation of the output generated by the machine learning model. This method offers a localized
interpretation for individual predictions, accomplishing this by assigning proportional contributions
of features to the ultimate prediction outcome. (D) The Probability of Detection Index (POD) in
Light Gradient Boosting Machine Learning indicates the likelihood of classifying samples into cancer
and control, with values ranging from 0 to 1. Higher values closer to 1 suggest a greater chance
of classifying a sample as cancer. (E) The fold confusion matrix evaluated the LightGBM model
performance with actual and predicted labels in the discovery dataset.
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Figure 2. (A,C,E) Volcano plot using the results of a fold change of 20 microbiomes, orthologies, and 
pathways in OC, compared to controls. Red dots indicate significant microbiome, orthologies, and 
pathways with |log2FC| > 0.5; blue dots indicate non-significant microbiome, orthologies, and path-
ways with |log2FC| > 0.5; and gray dots indicate non-significant microbiome, orthologies, and path-
ways with |log2FC| < 0.5. (B,D,F) A graphical representation of a forest plot displaying odds ratios 
and their corresponding 95% confidence intervals (95% CI) reveals the results of a multivariate lo-
gistic regression analysis involving the continuous scale of microbiome, orthologies, and pathways. 
In the odds ratio plot, the red line indicates significant microbiome, orthologies, and pathways; blue 
lines indicate non-significant microbiome, orthologies, and pathways. OC, oral cancer; CI, confi-
dence interval.  

Figure 2. (A,C,E) Volcano plot using the results of a fold change of 20 microbiomes, orthologies,
and pathways in OC, compared to controls. Red dots indicate significant microbiome, orthologies,
and pathways with |log2FC| > 0.5; blue dots indicate non-significant microbiome, orthologies, and
pathways with |log2FC| > 0.5; and gray dots indicate non-significant microbiome, orthologies, and
pathways with |log2FC| < 0.5. (B,D,F) A graphical representation of a forest plot displaying odds
ratios and their corresponding 95% confidence intervals (95% CI) reveals the results of a multivariate
logistic regression analysis involving the continuous scale of microbiome, orthologies, and pathways.
In the odds ratio plot, the red line indicates significant microbiome, orthologies, and pathways;
blue lines indicate non-significant microbiome, orthologies, and pathways. OC, oral cancer; CI,
confidence interval.
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Figure 3. Spearman correlation heatmap between microbiome and function data: (A,B) correlation
between four genera and five orthologs (Carnitine O-palmitoyltransferase 1(K08765), Acyl-CoA
dehydrogenase (K06445), Long-chain acyl-CoA synthetase (K01897), Diacylglycerol choline phos-
photransferase (K00994), and H+transporting ATPase (K01535)) in oral cancer and control group;
(C,D) correlation between four genera and two pathways (Fatty acid biosynthesis (ko00061) and
Fatty acid metabolism (ko01212)) in cancer and control. Red indicates a positive correlation, while
blue indicates a negative correlation. * Significant correlation at the p < 0.05 level. ** more significant
correlation at the p < 0.01 level. *** highly significant correlation at the p < 0.001 level. (The color chart
range has been set from −1.00 to 1.) OC, oral cancer.

2.5. Microbiome Associations with Disease-Free and Overall Survival in Oral Cancer

We assessed the association between specific oral microbiota and patient survival
outcomes. Our findings revealed significant links between certain taxa and both disease-
free survival (DFS) and overall survival (OS) rates. Notably, Streptococcus and Parvimonas
were associated with worse outcomes; Streptococcus exhibited an independent increased
risk for disease recurrence and mortality (HR: 2.85 for DFS, 5.76 for OS), while Parvimonas
also indicated an elevated risk (HR: 2.17 for DFS, 2.90 for OS). In this multivariate analysis,
we accounted for potential confounding factors, particularly disease stage, which is crucial
for accurate cancer prognosis, as advanced stages may correlate with specific microbiota
profiles and poorer survival outcomes.

Conversely, Prevotella and Corynebacterium were linked to reduced recurrence and
mortality risk, demonstrating protective effects (HR: 0.28 for DFS, 0.30 for OS for Prevotella;
HR: 0.26 for DFS, 0.36 for OS for Corynebacterium). These results underscore the prognostic
value of the oral microbiome in oral cancer, highlighting how specific bacterial taxa can
influence disease progression and patient survival, and are presented in Table 2.
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Table 2. Cox proportional hazards analysis of disease-free and overall survival in oral cancer patients.

DFS Univariate Cox Proportional Multivariate Cox Proportional

Microbiome HR 95%CI p-Value HR 95%CI p-Value

Streptococcus 2.30 (1.10–5.10) 0.035 2.85 (1.29–6.32) 0.009
Parvimonas 2.52 (1.26–5.42) 0.023 2.17 (0.98–4.79) 0.05
Prevotella 0.29 (0.26–0.91) 0.007 0.28 (0.11–0.69) 0.006
Corynebacterium 0.28 (0.43–1.30) 0.016 0.26 (1.35–6.03) 0.01

Overall survival

Streptococcus 5.10 (1.90–13.0) 0.001 5.76 (2.17–15.3) 0.0004
Parvimonas 3.20 (1.40–7.30) 0.005 2.90 (1.26–6.66) 0.0119
Prevotella 0.29 (0.12–0.67) 0.004 0.30 (0.12–0.72) 0.0074
Corynebacterium 0.35 (0.14–0.87) 0.024 0.36 (0.14–0.91) 0.0318

CI, confidence interval; HR, hazard ratio; DFS, disease-free survival.

After analyzing bacterial genera, we further assessed the relationship between clin-
icopathological stage and bacterial species, to gain a deeper understanding of the oral
microbiome. We examined the relative abundance of bacterial species in control, early-
stage, and late-stage samples. In the genera Streptococcus and Parvimonas, the species
Streptococcus pneumoniae, Streptococcus constellatus, Parvimonas (uncultured), and Parvimonas
micra exhibited a significant increase in relative abundance at the late stage compared to
both the early-stage and control samples, with significant differences noted across all three
stages (Figure 4A–D). Conversely, the genera Corynebacterium and Prevotella, specifically
Corynebacterium matruchotii, Corynebacterium durum, Prevotella melaninogenica, and Prevotella
nanceiensis, showed a marked increase in abundance in control and early-stage samples
relative to the late stage of the oral cancer microbiome (Figure 4E–H).

2.6. Oral Microbiome Modulation of Cytokine and Immune Pathways: Implications for
Cancer Onset

Combining microbiome analysis, IHC, and ELISA aims to reveal microbial and cel-
lular roles in oral cancer. Microbiome analysis examines bacterial impacts on immu-
nity and metabolites, IHC localizes key proteins, and ELISA quantifies cytokines. To-
gether, these methods elucidate molecular mechanisms linking the oral microbiome to
cancer progression.

IHC and ELISA experiments were conducted to further analyze the significant path-
ways identified (K08765, K06445, K01897, K00994, and K01535). Oral cancer tissues showed
significantly elevated levels of the CPT1A protein; an increased presence of T-helper cell
counts (CD4+); and higher levels of OXSR1, IL-6, and TNF-α. SCFAs production by oral
microbial communities were lower in the oral cancer group than in the control group
(Figure 5A–H).

MTT assays demonstrate that siCPT1A treatment effectively reduces CPT1A protein
expression across four cell lines (HGF-1, YD-10B, CAL27, and SCC1), while Actin levels
remain consistent, confirming equal protein loading (Figure 5I). The bar graph indicates that
siCPT1A treatment significantly decreases cell viability in YD-10B, CAL27, and SCC1 cells
(highly significant in YD-10B and SCC1, extremely significant in CAL27), but not in HGF-1
cells. These findings suggest that CPT1A is crucial for the viability of YD-10B, CAL27, and
SCC1 cell lines, but not for HGF-1, indicating varying dependence on CPT1A among these
cell lines (Figure 5J). Additionally, MTT assays revealed that CPT1A knockdown affects
the survival of both cancerous and normal cells. Further exploration of the relationship
between specific microbiomes and cytokines/enzymes revealed that Streptococcus correlated
positively with IL-6, TNF-α, CPT1A, and OXSR1 levels; Parvimonas correlated positively
with IL-6 alone; and Prevotella correlated negatively with IL-6, OXSR1, and TNF-α. These
correlations suggest that the oral microbiome may significantly influence cytokine and
CPT1A levels, thereby affecting cellular functions and survival (Figure 5K).



Int. J. Mol. Sci. 2024, 25, 10890 9 of 18
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 4. Relative abundance of various bacterial species in control, early stage, and late stage in 
oral cancer saliva microbiome: (A) Streptococcus pneumoniae, (B) Streptococcus constellatus, (C) Par-
vimonas micra, (D) Parvimonas uncultured (uc), (E) Corynebacterium matruchotii, (F) Corynebacterium 
durum, (G) Prevotella melaninogenica, (H) Prevotella nanceiensis. Statistical significance * p < 0.05, ** p 
< 0.01, *** p < 0.001, NS: not significant. 

2.6. Oral Microbiome Modulation of Cytokine and Immune Pathways: Implications for  
Cancer Onset 

Combining microbiome analysis, IHC, and ELISA aims to reveal microbial and cel-
lular roles in oral cancer. Microbiome analysis examines bacterial impacts on immunity 
and metabolites, IHC localizes key proteins, and ELISA quantifies cytokines. Together, 
these methods elucidate molecular mechanisms linking the oral microbiome to cancer 
progression. 

IHC and ELISA experiments were conducted to further analyze the significant path-
ways identified (K08765, K06445, K01897, K00994, and K01535). Oral cancer tissues 
showed significantly elevated levels of the CPT1A protein; an increased presence of T-
helper cell counts (CD4+); and higher levels of OXSR1, IL-6, and TNF-α. SCFAs produc-
tion by oral microbial communities were lower in the oral cancer group than in the control 
group (Figure 5A–H). 

Figure 4. Relative abundance of various bacterial species in control, early stage, and late stage in oral
cancer saliva microbiome: (A) Streptococcus pneumoniae, (B) Streptococcus constellatus, (C) Parvimonas
micra, (D) Parvimonas uncultured (uc), (E) Corynebacterium matruchotii, (F) Corynebacterium durum,
(G) Prevotella melaninogenica, (H) Prevotella nanceiensis. Statistical significance * p < 0.05, ** p < 0.01,
*** p < 0.001, NS: not significant.



Int. J. Mol. Sci. 2024, 25, 10890 10 of 18Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 5. Impact of CPT1A siRNA treatment on cell viability, CPT1A depletion, immunohistochem-
ical and biomarker analysis in oral cancer. (A) Representative images of immunohistochemistry of 
CPT1A protein detected from oral tissues. Stained tissues are shown at 100× magnification. Scale 
bar represents 100 µm. (B) IHC staining of control and OC tissues; the staining is visualized using a 
yellow color (Opal 480 yellow with scale bar: 200 µm) and DAPI in OC, oral cancer. (C) Quantified 
intensity of CPT1A in OC. Error bars indicate the mean ± SEM for three independent experiments. 
(D) Quantified CD4+T-helper cell counts. (E) Oxidative Stress Responsive 1 (OXRS1). (F) Human 
plasma interleukin-6 levels (IL6). (G) Tumor necrosis factor-alpha (TNFα). (H) Short-chain fatty acid 
(SCFA) concentrations in oral saliva. OC: oral cancer. (I) Western blot analysis showing the depletion 
of CPT1A by siRNA treatment in normal and oral cancer cells. The data are representative of at least 
three independent experiments. (J) HGF-1, YD-10B, CAL27 and SCC1 cells were reverse-transfected 
with either siCTL or siCPT1A; after 48 h, cell viability of HGF-1, YD-10B, CAL27 and SCC1 cells was 
analyzed using MTT assay. (K) Spearman correlation heatmap for four specific microbiomes with 
cytokines and enzyme in oral cancer. (The color chart range has been set from -1.00 to 1.00.) Statis-
tical significance * p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant. 

MTT assays demonstrate that siCPT1A treatment effectively reduces CPT1A protein 
expression across four cell lines (HGF-1, YD-10B, CAL27, and SCC1), while Actin levels 
remain consistent, confirming equal protein loading (Figure 5I). The bar graph indicates 
that siCPT1A treatment significantly decreases cell viability in YD-10B, CAL27, and SCC1 
cells (highly significant in YD-10B and SCC1, extremely significant in CAL27), but not in 
HGF-1 cells. These findings suggest that CPT1A is crucial for the viability of YD-10B, 
CAL27, and SCC1 cell lines, but not for HGF-1, indicating varying dependence on CPT1A 
among these cell lines (Figure 5J). Additionally, MTT assays revealed that CPT1A knock-
down affects the survival of both cancerous and normal cells. Further exploration of the 
relationship between specific microbiomes and cytokines/enzymes revealed that Strepto-
coccus correlated positively with IL-6, TNF-α, CPT1A, and OXSR1 levels; Parvimonas cor-
related positively with IL-6 alone; and Prevotella correlated negatively with IL-6, OXSR1, 
and TNF-α. These correlations suggest that the oral microbiome may significantly influ-
ence cytokine and CPT1A levels, thereby affecting cellular functions and survival (Figure 
5K). 

Figure 5. Impact of CPT1A siRNA treatment on cell viability, CPT1A depletion, immunohistochemical
and biomarker analysis in oral cancer. (A) Representative images of immunohistochemistry of CPT1A
protein detected from oral tissues. Stained tissues are shown at 100× magnification. Scale bar
represents 100 µm. (B) IHC staining of control and OC tissues; the staining is visualized using a
yellow color (Opal 480 yellow with scale bar: 200 µm) and DAPI in OC, oral cancer. (C) Quantified
intensity of CPT1A in OC. Error bars indicate the mean ± SEM for three independent experiments.
(D) Quantified CD4+T-helper cell counts. (E) Oxidative Stress Responsive 1 (OXRS1). (F) Human
plasma interleukin-6 levels (IL6). (G) Tumor necrosis factor-alpha (TNFα). (H) Short-chain fatty acid
(SCFA) concentrations in oral saliva. OC: oral cancer. (I) Western blot analysis showing the depletion
of CPT1A by siRNA treatment in normal and oral cancer cells. The data are representative of at least
three independent experiments. (J) HGF-1, YD-10B, CAL27 and SCC1 cells were reverse-transfected
with either siCTL or siCPT1A; after 48 h, cell viability of HGF-1, YD-10B, CAL27 and SCC1 cells
was analyzed using MTT assay. (K) Spearman correlation heatmap for four specific microbiomes
with cytokines and enzyme in oral cancer. (The color chart range has been set from −1.00 to 1.00.)
Statistical significance * p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant.

3. Discussion

This case-control study identified significant associations between specific members
of the oral microbiome and the metabolic pathways involved in oral cancer. Patients with
oral cancer exhibited notable changes in enzymes critical for fatty acid metabolism, particu-
larly CPT1A, while healthy controls had higher levels of short-chain fatty acids (SCFAs)
and CD4+T-helper cell counts. In contrast, oral cancer patients demonstrated elevated
concentrations of key markers, including CPT1A, IL-6, OXSR1, and TNF-α, reflecting sub-
stantial alterations in metabolic and inflammatory pathways. Survival analysis revealed
that higher levels of Streptococcus and Parvimonas, positively correlated with interleukin-6,
tumor necrosis factor-alpha, and CPT1A, were linked to poorer disease-free and overall
survival, whereas increased levels of Prevotella and Corynebacterium were associated with
better survival outcomes.

Reports on the association between the oral microbiome and oral cancer are lim-
ited [21]; the role of CPT1A as a regulator of fatty acid metabolism with relevance to
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the oral microbiome and oral cancer risk has rarely been investigated. In this study, we
elucidated associations between the oral microbiome, cellular enzymes, and cytokines
in oral cancer, in detail. We observed that the levels of Corynebacterium and Prevotella
decreased in relative abundance significantly in patients with oral cancer, whereas the
levels of Streptococcus and Parvimonas increased in relative abundance significantly. Our
findings are consistent with those of earlier reports suggesting that bacterial imbalance
may upset the complex equilibrium of oral microbiome–host relationships and cause oral
cancer [22–26].

The findings of this study indicate that changes in fatty acid metabolism enzymes
may contribute to the development of oral cancer. Specific bacterial species, such as
Corynebacterium glutamicum and Prevotella intermedia, have been linked to fatty acid
metabolism through β-oxidation and energy generation, as documented in the KEGG
database [27,28]. Additionally, an upregulation of short-chain fatty acids (SCFAs) was
observed in healthy controls. Previous studies have highlighted the potential role of SCFAs
from gut microbiota in cancer treatment by influencing apoptosis, cell cycle arrest, and
metabolism. SCFAs may also enhance the efficacy of conventional therapies and reduce
drug resistance. Future research should focus on optimizing SCFA-based treatments and
investigating their role in personalized cancer care [29].

Moreover, other studies have shown a close association between Streptococcus and
Parvimonas with the production of various SCFAs and bile acids [30,31], which differ
from the fatty acids metabolized by CPT1A in the mitochondria of various cancers [17,32].
CD4+ T-helper cell counts were lower in oral cancer patients compared to healthy controls,
suggesting potential immune dysregulation. This finding aligns with research indicating
that microbiota-derived SCFAs support CD4+ T cell differentiation and function. Therefore,
disruptions in microbiome composition or SCFA signaling in oral cancer patients may
contribute to impaired immune responses, potentially influencing disease progression
and immune surveillance [33,34]. Furthermore, the results demonstrated a correlation
between alterations in the oral bacterial community, increased lipid metabolism, and
oxidative stress in oral cancer. These changes are linked to variations in CPT1A enzyme
levels and the production of key metabolites, such as fatty acids. Together, these insights
point to potential lipid-related mechanisms in oral cancer development, underscoring
the importance of exploring oral microbiome imbalances for a deeper understanding and
improved diagnosis of the disease.

Our findings highlight the crucial role of the oral microbiome in regulating key
metabolic enzymes, such as CPT1A and OXSR1, as well as cytokines like TNF-α and
IL-6 in oral cancer. Additionally, we observed the downregulation of specific metabo-
lites, including SCFAs and CD4+T-helper cell counts, in oral cancer (Figure 6). These
molecules can trigger distinct immune responses and pathways linked to carcinogene-
sis [35]. Our results are consistent with those of previous studies, in which oral bacteria
were found to be associated with tumor metastasis through vascular inflammation and
barrier disruption [36,37]. Previously, FAO upregulation increased oxidative stress and
potentially increased OXSR1 levels [38]. Here, we demonstrated that CPT1A knockdown
did significantly influence the survival of cancerous or normal cells. Previous data em-
phasized the significance of CPT1A in cancer cell proliferation, metastasis, and induced
tumor senescence via FAO regulation [35,37,39–44]. Our findings confirm that CPT1A is a
lipid-metabolism regulator associated with oral cancer.

The study has several significant limitations that must be acknowledged. The sam-
ple diversity and size, with participants drawn from specific institutions in Korea, may
limit the generalizability of the findings to broader populations. As a case-control study,
it identifies associations between oral microbiome composition and oral cancer based
on comparisons between cancer patients and healthy controls, but it does not establish
causality or the directionality of these relationships. Variability in sample collection and
handling, including timing and storage conditions, could introduce biases affecting the
results. Technical constraints inherent in 16S rRNA sequencing, such as short read lengths
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and low throughput, may impact the accuracy and scalability of microbial identification.
Although the LightGBM model demonstrated high accuracy, its performance is sensitive
to parameter choices and potential overfitting, highlighting the need for validation in
independent cohorts. The functional predictions and pathway analyses based on inferred
data may not fully capture actual microbial functions. Furthermore, biological variability
among individuals and ethical considerations related to informed consent add complex-
ity to interpreting and generalizing the findings. Addressing these limitations in future
research is essential for a more comprehensive understanding of the oral microbiome’s role
in oral cancer [45].
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Figure 6. Exploring the impact of oral microbiota on carnitine O-palmitoyltransferase 1A (CPT1A)
function in fatty acid metabolism and its potential immunomodulatory effects in oral cancer. The
oral microbiome may modulate the upregulation of CPT1A, Oxidative Stress Responsive Kinase
1 (OXSR1), Interleukin-6 (IL-6), and Tumor Necrosis Factor-alpha (TNF-α) in oral cancer patients,
while concurrently influencing the downregulation of short-chain fatty acids. Red: increased, blue:
decreased.

4. Materials and Methods
4.1. Participant Characteristics

In this case-control study, we enrolled adult patients (age > 19 years) newly diagnosed
with oral squamous cell carcinoma, covering oral-cavity regions, from the National Cancer
Center, Korea, and Seoul National University Dental Hospital. Healthy controls were
recruited from the cancer-screening cohort of the National Cancer Center of the Republic of
Korea. This study consisted of 1022 participants. The discovery and validation datasets
included 637 participants (104 with oral cancer and 533 controls) and 385 participants
(53 with oral cancer and 332 controls), respectively. By dividing the study into these
two groups, we can ensure that their findings are not only discovered but also validated,
and also increase the credibility of the results. Among the characteristic parameters, the
main clinical variables considered were age, sex, smoking status, drinking status, cancer
stage, tumor extent (T stage), and lymph node involvement (N stage). Body Mass Index
(BMI) was treated as a continuous variable and categorized into five groups: underweight
(<18.5), normal (18.5 to 23), overweight (23 to 25), obese (≥25), and unknown. Smoking
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status was classified into four groups: nonsmokers, current smokers, ex-smokers, and
unknown. Similarly, drinking status was categorized as nondrinking, current drinking,
ex-drinking, and unknown. Oral cancer was staged as T1, T2, T3, and T4, while lymph node
involvement was classified as N0, N1, N2, and N3. The study was ethically approved by
the National Cancer Center, Korea (IRB approval numbers NCC2019-0050, NCC2019-0116,
and CRI15017), and written informed consent was obtained from all participants.

4.2. Saliva and Blood Sample Collection

Baseline saliva (unstimulated whole) samples from participants were meticulously
collected following a 1 h fasting period, to minimize variability in saliva composition
due to recent food and drink intake. These samples were then carefully stored in 1.5 mL
tubes at −80 ◦C, ensuring their preservation for subsequent analysis. Blood samples were
drawn from their antecubital veins into BD Vacutainer K2 EDTA tubes after a 12 h fast and
centrifuged at 3000 rpm for 20 min at 4 ◦C. The resulting plasma, buffy coat, and red blood
cell samples were stored at −80 ◦C. This was performed in compliance with the Declaration
of Helsinki ethical principles for medical research involving human subjects

4.3. Oral Microbiome Characterization Based on 16S rRNA Gene Amplification and Sequencing

A substantial concentration of microbial DNA, precisely 70 ng/mL, was meticulously
extracted from 500 µL of saliva samples employing the highly efficient Fast DNA Spin
Kit (MP Biomedicals, Santa Ana, CA, USA) in accordance with the manufacturer’s in-
struction. From this, 20 ng/mL was used for further analysis. This advanced extraction
method ensures the isolation of high-purity DNA, crucial for downstream molecular anal-
yses and the exploration of the complex microbiome within the saliva. DNA quality
and quantity were checked using a Qubit dsDNA BR Kit and a fluorometer (Life Tech-
nologies, Carlsbad, CA, USA). PCR amplification was performed using fusion primers
targeting V4 regions of the 16S rRNA gene with the extracted DNA. For bacterial amplifica-
tion, fusion primers of 515F (5′-AATGATACGGCGACCACCGAGATCTACAC-XXXXXXXX-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-GTGCCAGCMGCCGCGGTAA-3′; un-
derlining sequence indicates the target region primer) and 806R (5′-CAAGCAGAAGACGGC-
ATACGAGAT-XXXXXXXXGTCTCGTGGGCTCGG-AGATGTGTATAAGAGACAG-GGACTA-
CHVGGGTWTCTAAT-3′) were used. The Fusion primers are constructed in the following
order: P5 (P7) graft binding, i5 (i7) index, Nextera consensus, sequencing adaptor, and
target region sequence.

The amplifications were carried out under the following conditions: initial denatu-
ration at 95 ◦C for 3 min, followed by 25 cycles of denaturation at 95 ◦C for 30 s, primer
annealing at 55 ◦C for 30 s, and extension at 72 ◦C for 30 s, with a final elongation at
72 ◦C for 5 min. The PCR product was confirmed by using 1% agarose gel electrophore-
sis and visualized under a Gel Doc system (BioRad, Hercules, CA, USA). The amplified
products were purified with the CleanPCR (CleanNA). Equal concentrations of purified
products were pooled together and short fragments (non-target products) were removed
with CleanPCR (CleanNA). The quality and product size were assessed on a Bioanalyzer
2100 (Agilent, Palo Alto, CA, USA) using a DNA 7500 chip. Mixed amplicons were pooled
and the sequencing was carried out at CJ Bioscience, Inc. (Seoul, Korea), with Illumina
iSeq Sequencing system (Illumina, San Diego, CA, USA) according to the manufacturer’s
instructions. Bacteria were classified based on taxonomic data provided by EzBioCloud [46].
Poor-quality sequence reads of <80 base pairs (bp) or >2000 bp were excluded. Taxonomic
analysis was performed using the USEARCH tool. The UPARSE algorithm was used to
classify the reads into operational taxonomic units (OTUs) with 97% similarity. Single-end
reads were clustered into OTUs using UCLUST and the cut-off numbers [47].

4.4. Functional Homology Inferences: Predicting Orthologs

The functional profile of the oral microbiome was constructed using the PICRUSt
algorithm with EzBioCloud’s [46] microbiome taxonomic profiling (MTP). Sequencing
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reads were obtained using the EzBioCloud 16S MTP pipeline and matched to reference
database entries. Functional profiles were annotated by multiplying the gene counts/OTU
by the OTU abundance per sample, using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. The accuracy of each functional profile was analyzed using the nearest-
sequenced taxon index.

4.5. Cell Lines

HGF-1, YD-10B, CAL27, and SCC1 are oral cancer cell lines, used in our studies due
to their distinct characteristics and relevance to oral cancer research. HGF-1, CAL27, and
SCC1 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal
bovine serum (FBS), penicillin, and streptomycin, and maintained at 37 ◦C with 5% CO2.
In contrast, YD-10B cells were grown in RPMI-1640 medium under the same conditions.
HGF-1 provides a baseline for comparison with normal oral mucosal cells, while CAL27
and SCC1 are used to study cancer progression and therapeutic responses, given their
origins from human oral squamous cell carcinomas. YD-10B, derived from another human
oral cancer, helps assess experimental conditions and drug effects. These cell lines were
selected to offer a comprehensive view of oral cancer biology and to facilitate the evaluation
of new treatments.

4.6. Small-Interfering RNA (siRNA) Experiments

A negative-control siRNA and an siRNA targeting CPT1A mRNA were purchased
from Genolution, Inc. (Seoul, Republic of Korea). The abovementioned siRNAs had the
following sequences: siControl: 5′-CUCGUGCCGUUCCAUCAGGUAGUU-3′; siCPT1A:
5′-GACGUUAGAUGAAACUGAAUU-3′.

4.7. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) Assay

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was
performed to determine cell viability. HGF-1 (4 × 104 cells/mL) and YD-10B, CAL27,
SCC1 (3 × 104 cells/mL) were grown in 96-well plates. After 24 h, the cells were reverse-
transfected with either scrambled siRNA (siCTL) or siCPT1A-specific siRNA (siCPT1A)
for 48 h. Following this incubation, MTT solution was added to each well at a final
concentration of 5 mg/mL. After incubation at 37 ◦C for 6 h, the formazan pellets in
each well were completely dissolved in 2-propanol (Merck, Rahway, NJ, USA), and the
absorbance was measured using a VERSA Max Microplate Reader (Molecular Devices
Corp., San Jose, CA, USA) at wavelengths of 540 nm and 650 nm.

4.8. Western Blotting

HGF-1, YD-10B, CAL27, and SCC1 cells were reverse-transfected with siCPT1A for
48 h. Subsequently, the cells were harvested in ice-cold RIPA lysis buffer (R0278; Sigma
Aldrich, Seoul, Republic of Korea) containing protease and phosphatase inhibitors. Soluble
lysate was isolated from each sample via centrifugation and quantified using the BCA
Protein Assay Lit (Pierce, Thermo Fisher Scientific, Waltham, MA, USA). Proteins were
resolved using sodium dodecyl-sulfate polyacrylamide gel electrophoresis and transferred
to polyvinylidene fluoride or polyvinylidene difluoride membranes. The membranes were
blocked with 5% skim milk and probed with a primary antibody against CPT1A (ab128568,
Abcam, Cambridge, UK) and a secondary horseradish peroxidase-conjugated anti-mouse
antibody (A90–116P; Bethyl Laboratories, Montgomery, TX, USA).

4.9. Immunohistochemistry (IHC) Analysis of CPT1A and CD4+T-Helper Cell Counts

A tissue microarray (TMA) was constructed using paraffin-embedded blocks from six
tumor samples with a tissue array device (Beecher Instruments Inc., Sun Prairie, WI, USA).
For each sample, 2 mm diameter core biopsies were extracted from the paraffin blocks.
The TMA blocks were sectioned at a thickness of 3 µm and subsequently dried at 56 ◦C
for 1 h. Immunohistochemical staining was performed using an automated Discovery
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XT instrument (Ventana Medical Systems, Tucson, AZ, USA) and the Chromomap DAB
Detection Kit. Sections were deparaffinized, rehydrated, and washed with reaction Buffer
(Ventana Medical Systems). Antigen retrieval was achieved through heat treatment in pH
6.0 citrate buffer (Ribo CC, Ventana) at 95 ◦C for 20 min. A primary antibody against CPT1A
(15184-1-AP, Proteintech, dilution 1:200) was applied for 32 min at room temperature,
followed by detection with an UltraMap anti-rabbit HRP secondary antibody for 16 min
at room temperature. Images were captured using a Vectra Polaris system (PerkinElmer,
Waltham, MA, USA). CPT1A protein expression was quantified using an H-score, calculated
as follows: the percentage of tumor cells with weak staining intensity (+1) multiplied by
1, the percentage of cells with moderate staining intensity (+2) multiplied by 2, and the
percentage of cells with strong staining intensity (+3) multiplied by 3. The H-score is the
sum of these values: [1 × (% cells + 1) + 2 × (% cells + 2) + 3 × (% cells + 3)], resulting in a
final CPT1A score ranging from 0 to 300 cells.

CD4+T-helper cell-count tissue samples were prepared as 4 µm thick sections using a
microtome, deparaffinized, and rehydrated. Antigens were retrieved using Tris-EDTA and
sodium citrate buffer (pH 6.0). After blocking peroxidases with 3% hydrogen peroxide, the
samples were stained and scanned by PrismCDX Co., Ltd. (Gyeonggi-do, Korea), as per
clinical protocols (Supplementary Protocol S1).

4.10. Antibodies and Reagents

Primary antibodies against CPT1A (ab128568) were purchased from Abcam (Cam-
bridge, UK). Secondary antibodies against horseradish peroxidase-linked anti-mouse (A90–
116P) were purchased from Bethyl Laboratories (Montgomery, TX, USA).

For IHC, primary antibodies against CPT1A (15184-1-AP) were purchased from Pro-
teintech (Chicago, IL, USA).

4.11. Measuring Oral Microbial Signals, Including Cytokine Levels (OXSR1, CPT1A, SCFAs, IL6,
and TNF-α)

Plasma oxidative stress was evaluated by performing enzyme-linked immunosorbent
assays (ELISAs) using the OXSR1 ELISA Kit (abx382011; Abbexa Ltd., Cambridge, UK).
Briefly, 100 µL saliva samples were aliquoted into 96-well plates and incubated at 37 ◦C.
Detection Reagents A and B were then added to the plates, which were further incubated
for 1 h at 37 ◦C. TMB substrate (90 µL) was added to each plate, followed by 50 µL
of stop solution. Optical densities were measured at 450 nm using a microplate reader
(SPECTROstar, BMG LabTech, Ortenberg, Germany). Total human SCFAs in each saliva
sample was measured using an SCFA ELISA Kit (MBS7269061; MyBioSource, San Diego,
CA, USA), which has a sensitivity of 0.92 pg/mL.

Plasma CPT1A levels were measured using a CPT1A ELISA Kit (MBS724213; My-
BioSource) and the minimum detectable concentration was 0.1 ng/mL. Plasma IL-6 (catalog
number BMS213-2; Thermo Fisher Scientific) and TNF-α (catalog number BMS223-4) levels
were quantified using an ELISA kit. The minimum detectable concentrations of the kit
were 0.92 pg/mL for IL-6 and 2.3 pg/mL for TNF-α.

4.12. Statistical Analysis

Python software (version 3.7.15) and the H2O Python module (version 3.38.0.2) (https:
//github.com/h2oai/h2o-3, accessed on 23 March 2024) were used for cancer diagnosis and
biomarker identification. The gradient-based one-side sampling method was employed
within the light gradient-boosting machine (LightGBM) model, and optimization was
performed using various metrics, including accuracy, area under the receiver-operating
characteristic (ROC) curve, F1 score, precision, and recall. R software (version 4.1.1)
was used for analysis and visualization, with t-tests and chi-square tests conducted to
compare observed traits. Alpha diversity was determined by observing OTUs and the
Chao index, while beta diversity was assessed through principal coordinate analysis using
both weighted and unweighted UniFrac analyses.

https://github.com/h2oai/h2o-3
https://github.com/h2oai/h2o-3
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For survival analysis, we utilized the Cox proportional hazards regression model to
evaluate the impact of microbial genera and other clinical factors on disease-free survival
(DFS) and overall survival (OS). Both univariate and multivariate Cox analyses were
performed to identify independent predictors of survival outcomes. Statistical significance
across other comparisons was assessed using quartiles, Wilcoxon’s rank-sum test, fold-
changes, and logistic regression. Linear discriminant analysis effect size (LEfSe) was
conducted to identify genus-level microbial differences.

5. Conclusions

In conclusion, our findings reveal a potential association between oral microbiome
dysbiosis and metabolic enzymes, such as CPT1A, alongside immunological pathways in
oral cancer. Notably, shifts in bacterial composition, with higher levels of Streptococcus and
Parvimonas correlating with poorer disease-free survival (DFS) and overall survival (OS),
contrast with the improved survival outcomes associated with Prevotella and Corynebac-
terium. Our results indicate that alterations in these genera may influence critical metabolic
pathways linked to cell growth, immune activation, and oxidative stress during oral cancer
progression. Furthermore, the observed downregulation of SCFAs underscores the sig-
nificant role of microbial metabolism in disease development. Collectively, our findings
suggest that Streptococcus, Parvimonas, Corynebacterium, and Prevotella may serve as potential
biomarkers for oral cancer; however, the validity of these microorganisms and metabolites
as definitive biomarkers necessitates additional investigation. Continued research is crucial
to confirm their roles in oral cancer and elucidate the mechanisms by which these microbial
taxa impact disease progression and survival outcomes.
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