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Abstract: Parkinson’s disease (PD) is a progressive age-related neurodegenerative disorder affecting
millions of people worldwide. Essentially, it is characterised by selective degeneration of dopamine
neurons of the nigro-striatal pathway and intraneuronal aggregation of misfolded α-synuclein with
formation of Lewy bodies and Lewy neurites. Moreover, specific small molecules of intermediary
metabolism may have a definite pathophysiological role in PD. These include dopamine, levodopa,
reduced glutathione, glutathione disulfide/oxidised glutathione, and the micronutrients thiamine
and ß-Hydroxybutyrate. Recent research indicates that these small molecules can interact with
α-synuclein and regulate its folding and potential aggregation. In this review, we discuss the current
knowledge on interactions between α-synuclein and both the small molecules of intermediary
metabolism in the brain relevant to PD, and many other natural and synthetic small molecules
that regulate α-synuclein aggregation. Additionally, we analyse some of the relevant molecular
mechanisms potentially involved. A better understanding of these interactions may have relevance
for the development of rational future therapies. In particular, our observations suggest that the
micronutrients ß-Hydroxybutyrate and thiamine might have a synergistic therapeutic role in halting
or reversing the progression of PD and other neuronal α-synuclein disorders.

Keywords: Parkinson’s disease; α-synuclein; intermediary metabolism; ß-hydroxybutyrate; thiamine;
small molecules; treatment

1. Introduction

Parkinson’s disease (PD) is a progressive age-related neurodegenerative disorder
affecting millions of people worldwide, for which, currently, only symptomatic treatment
is available. However, this treatment does not affect disease progression [1,2]. Therefore,
finding rational, innovative neuroprotective compounds for this disorder represents an
important and urgent need. The aetiology of PD is complex and both genetic and envi-
ronmental factors may contribute [1,2]. Extensive research on PD pathophysiology has
demonstrated that definite biochemical pathways are involved in specific neuronal cells
and discrete areas of the brain, such as the dopaminergic neurons in substantia nigra pars
compacta (SNc) and the nigro-striatal pathway [1–3]. Moreover, several specific small
molecules (i.e., a molecular weight ≤ 1000 daltons) of intermediary metabolism may have
a definite pathophysiological role in PD. The affected metabolic pathways include the
catecholaminergic system, the glutathione synthesis pathway, the tryptophan/kynurenine
catabolic pathway, polyamine pathway, purine pathway, fatty acid- and beta oxidation, as
well as the concentration changes of several amino acids [4–9].

Considering the myriad of small molecules potentially involved, and the huge number
of experimental and clinical findings documenting the definite pathophysiological and
therapeutic relevance of specific small molecules in PD, we have chosen to draw attention
especially to the biological action of dopamine, levodopa, reduced glutathione (GSH),
glutathione disulfide/oxidised glutathione (GSSG), and the micronutrients thiamine and
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ß-Hydroxybutyrate [4–6]. Recent research indicates that these small molecules can in-
teract with the small protein α-synuclein (α-syn) and regulate its folding and potential
aggregation, a likely critical event in PD pathophysiology [10–12].

This review article summarises and discusses the recent developments on the relation-
ship between these small molecules and the folding and potential aggregation of α-syn
in patients with PD, and analyses some of the main molecular mechanisms potentially in-
volved. Better understanding of these interactions may have relevance for the development
of rational future therapies effective in halting the progression of PD and other neuronal
α-syn disorders [13]. Notably, several review articles offering new therapeutic insights in
different experimental models of PD and into the various clinical phenotypes and different
stages of PD, including those focusing on small molecules therapy, have been recently
published [11,12,14–16]. However, they did not discuss the biological action and possible
therapeutic role in halting or reversing the progression of PD of the small molecules of
intermediary metabolism examined in this review.

2. Brain-Specific Small Molecules in Parkinson’s Disease

Individuals with PD may vary strongly in their clinical manifestations and overall
prognosis, suggesting that PD may be divisible into subtypes. A recent published study
on newly diagnosed untreated patients with PD, recommended four different subtypes
based on both motor and nonmotor signs/symptoms and progression rate [17]. The exact
mechanisms underlying the progressive loss of dopamine neurons in the nigro-striatal
pathway, and the impairment of other types of neurons in noradrenergic, cholinergic,
and serotonergic pathways in PD brain still remains elusive [1,2]. Important scientific
advances in α-syn research indicate that the intracellular pathological accumulation and
spreading of toxic α-syn aggregates is a likely critical event in PD pathophysiology [10–12].
According to the Braak hypothesis [18], in most cases of PD, the onset of α-syn pathological
aggregation begins outside the central nervous system, in the olfactory bulb and/or the
enteric nervous system, and then spreads retrogradely to the brain, penetrating the cerebral
hemispheres via the brain stem and subcortex [18,19]. To date, it is believed that, under
pathological conditions, α-syn forms oligomers and fibrils due to instability of the α-syn
helical structure, in a multi-step process [20]. Primary nucleation, which is the formation of
soluble oligomeric intermediates from small aggregates of unfolded monomers, elongation,
which is the process of adding monomers to the ends of existing aggregates, and secondary
nucleation in which there is a recruitment of soluble proteins into new aggregates [20].

The α-syn aggregates in neurons, astrocytes and microglia lead to various cellular
dysfunctions such as impaired mitochondrial function, pathological oxidative stress, endo-
plasmic reticulum impairment, disruption in the autophagy-lysosomal pathway, synaptic
dysregulation and progressive neuroinflammation until neuronal cell death [20]. Impor-
tantly, the spread of pathological α-syn oligomers and fibrils is closely associated with the
disease progression, and possibly, the individual variation in clinical manifestations of PD
may also depend on the spreading patterns and the affected networks [19–21]. PD belongs
to a group of diseases called α-synucleinopathies, sharing the pathological accumulation
and spreading of toxic α-syn aggregates, which includes dementia with Lewy bodies, PD
with dementia, multiple system atrophy and neuroaxonal dystrophy [13,20]. The distinct
characteristics of different conformational α-syn strains found in neurons and glia may
partly explain the heterogenous nature of α-synucleinopathies [20]. Moreover, studies on
familial PD, which accounts for about 3–5% of the sporadic cases [1], have shown that
most of the genes involved in PD pathology are related to α-syn synthesis, trafficking,
and clearance [20]. α-Syn is encoded by the SNCA gene, and missense point mutations
in this gene (e.g., A30P, A53T, E46K, G51D, A53E, and H50Q) increase the potential of
α-syn for misfolding and aggregation, and affect the conformation of α-syn fibrils [20,22].
Interestingly, compared to the wild-type protein, these different mutations of α-syn exhibit
different ability in promoting oligomerisation, fibrillation, and the formation of the insol-
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uble fibrillar inclusions in cells, thus showing a great difference in their cytotoxicity and
seeding capacity (as described in depth in reference [20]).

Importantly, since the first report that mutations in the SNCA gene are involved
in the early-onset familial PD, many other genetic mutations have been attributed to
PD [1]. These include mutations in LRRK2 (encoding leucine-rich repeat kinase 2) and
PRKN (encoding parkin) [1]. Mutations in the LRRK2 gene are the most frequent known
cause of late-onset autosomal dominant and sporadic PD, while mutations in the PRKN
gene usually lead to a loss of parkin activity and are the most common recessive form
of PD, frequently with disease onset before the age of 40 years [1]. Notably, pathologic
mutations of the LRRK2 protein induce neuronal degeneration both through a gain of
function mechanism and, in part, because of its effect on α-syn [23]. Indeed, PD-associated
mutations in LRRK2 contribute to α-syn aggregation, its release from cells, and propagation
to other cells [24]. Consequently, therapies targeting LRRK2 may have also a role in treating
the neurodegeneration associated with pathological α-syn accumulation [23,24].

Likewise, variation in the concentration/value of several factors in the microenviron-
ment of discrete cerebral areas in PD patients may foster the post-translational pathological
assembly and potential aggregation of α-syn. These factors include molecular crowding,
the presence of specific metal ions and proteins (e.g., Ca2+, Mg2+, Fe2+; tau protein and
amyloid-ß peptide), acidic pH, the excessive generation of ROS, disruption of lipid home-
ostasis, and the levels of brain-specific molecules of intermediary metabolism such as
dopamine, the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde, and glutathione
disulfide/oxidised glutathione [6,25,26]. Moreover, definite biochemical reactions, such as
phosphorilation and tyrosine nitration of α-syn, may also foster its post-translation patho-
logical assembly and potential aggregation [20,25]. Brain-specific small molecules in PD
can be defined as those small molecules with a known, definite and important metabolic
role in dopamine neurons of the nigro-striatal pathway or other multiple pathways in
the brain related to PD (e.g., the catecholaminergic system and the glutathione synthesis
pathway). Importantly, although this definition is suitable for the purpose of the review, it
is worth noting that actually no small molecules are really “brain-specific”, indeed all small
molecules of intermediary metabolism may be detected both inside and outside the brain,
even at very different concentrations, because only ~2% to 6% of all small molecules can
cross the blood-brain barrier [27].

The occurrence of a marked decrease of dopamine concentrations in the striatum of
patients with PD, shown by Ehringer and Hornykiewicz in 1960 [4], indicated a means by
which the nigra cells could be therapeutically supported. In PD patients, this discovery
led to the extensive use of levodopa in clinical practice [1]. Levodopa is the precursor to
dopamine that, unlike dopamine, can cross the blood-brain barrier [1]. Importantly, this
large, neutral aminoacid, still remains the most effective symptomatic treatment for motor
symptoms in patients with PD, although it does not affect disease progression [1]. This is
because, in most PD patients, motor symptoms become evident when 50–80% of nigral
dopaminergic neurons have degenerated, after the occurrence of irreversible structural
lesions in these neuronal cells [1].

In 1982, Perry et al. [5] showed a marked decrease of GSH levels in substantia nigra
in cases of incidental Lewy body disease (presymptomatic PD) [5]. In particular, the
magnitude of reduction in GSH seems to parallel the severity of PD motor symptoms and,
in advanced stages, in the nigra, GSH is virtually undetectable [5]. The occurrence of GSH
depletion, in tandem with altered iron metabolism in substantia nigra of patients with
PD, has been recently replicated in a study by Shukla et al. [28] This evidence suggests a
fundamental role of redox dysfunction and specific oxidation reactions in the development
and progression of PD. Redox dysfunction in neuronal cells that seems to occur at an
early stage of PD, likely in the so-called stage of “reversible biochemical lesions”, when
the use of appropriate disease-modifying treatments should be effective in halting the
progression of the disorder. Moreover, these findings provide a potential early diagnostic
biomarker for PD and suggest a therapeutic role of GSH, its precursors and analogues,
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or other antioxidants molecules of intermediary metabolism, such as thiamine and ß-
Hydroxybutyrate, in PD. Notably, some experimental studies documented that GSH may
cross the blood-brain barrier intact by a saturable, low-affinity transport process [29], and
in a Sechi et al. study in 1996, the administration of large doses of GSH intravenously
to untreated, early PD patients, improved bradykinesia and other PD motor symptoms
significantly [30]. In support of this finding, a mild symptomatic effect of lower doses
of intravenous GSH on PD motor symptoms in patients not adequately controlled with
their current medication was shown by Hauser et al. in 2009, in a randomised controlled
trial [31].

Moreover, many experimental studies have documented a definite relationship be-
tween dopamine metabolism in neuronal cells of the nigro-striatal pathway and the mi-
cronutrients thiamine and ß-Hydroxybutyrate. Indeed, intrastriatal administration of thi-
amine diphosphate in rats can release a significant amount of dopamine, whereas reduced
levels of dopamine in the striatum can occur in thiamine deficiency [32,33]. Furthermore,
a significant decrease of CSF-free thiamine levels has been shown in patients with PD, as
compared to controls, and the administration of 100/200 mg daily doses of parenteral thi-
amine in five PD patients has been reported to improve motor symptoms within few days
of treatment [34,35]. Similarly, many experimental studies have documented a beneficial
effect of ß-Hydroxybutyrate in different models of PD [36]. In particular, the infusion of this
ketone body in mice with MPTP-induced parkinsonism rescues mitochondrial respiration,
increases ATP production, and mitigates features of PD [36]. These findings fit preliminary
clinical data showing that ketogenic diet may be beneficial in PD [37].

3. Brain-Specific Small Molecules in Parkinson’s Disease and α-Synuclein Pathology

Parkinson’s disease is associated with the progressive formation of misfolded α-syn
and its aggregation both inside and outside the brain [1,2]. In neurons, this pathological
misfolding forms aggregates called Lewy bodies and Lewy neurites, chiefly composed of
misfolded α-syn [38]. At a biochemical level, pathological oxidative stress, inflammatory,
and immune responses may foster the incorrect folding of α-syn, the progressive formation
of toxic oligomers and insoluble amyloid fibrils, ultimately causing neuronal loss and this
degenerative disorder [39,40]. Alpha-synuclein is a small, soluble, 140 amino acid protein,
which is widely expressed in the brain. Its sequence can be divided in three regions: the
N-terminal amphipathic region, which contains most of the mutations linked to autosomal
dominant early-onset PD, and the repeated KTKEGV sequences that mediate the interaction
between α-syn and the surface of acidic lipids. This region maintains the helical structure of
α-syn. The central region, encompasses the most hydro-phobic non amyloid-ß component
(NAC) of the protein and promotes aggregation. In contrast, the acidic C-terminal portion,
which is highly negatively charged, mainly due to the negative charges of Asp and Glu,
also contains three of the four Tyr residues (Y125, Y133, Y136) and tends to decrease protein
aggregation [41,42] (Figure 1).

In cells, under physiological conditions, soluble α-syn engages in a myriad of inter-
actions with a variety of proteins and small molecules of intermediary metabolism that
can affect its correct or incorrect folding and its potential aggregation. Although, current
understanding of the mechanisms underlying these interactions remains relatively limited,
recent work proposes that the interaction between α-syn and specific, different proteins
may lead to the formation of distinct strains, and contribute to the clinical heterogeneity
observed among PD patients [43].

Concerning the small molecules of intermediary metabolism previously discussed, a
pioneering study in vitro indicated that catecholamines, including dopamine and levodopa
could interfere with the aggregation process of α-syn and disaggregate amyloid fibrils [44].
However, these findings have not been replicated in vivo. Instead, the occurrence of an
endotoxicity associated with levodopa administration and the formation of dangerous
dopamine metabolites (e.g., 3,4 dihydroxyphenylacetaldehyde) seems to occur, which
triggers α-syn oligomerisation [45]. Moreover, in animal models of PD, the manipulation of
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both dopamine levels and α-syn expression in aged mice induces soluble α-syn oligomers
and nigro-striatal degeneration [46,47]. Similarly, the amyloid formation of α-syn was
significantly facilitated by GSSG. Indeed, while α-syn itself started to form aggregates after
125 h of prolonged lag period, GSSG reduced the lag to around 50 h. Interestingly, GSH
did not influence the lag phase, although it increased the final amyloid formation [48].
This is because, under specific conditions, the oxidative stress may favour GSSG formation
from GSH [48]. This observation indicates that, in cells, GSH and GSSG contents are finely
regulated and raises the issue on how to supplement the GSH content of neurons without
also eliciting potential detrimental effects.
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Figure 1. The α-synuclein protein, its three regions, and the potential interaction with ß-
Hydroxybutyrate and thiamine.

The micronutrients, ß-Hydroxybutyrate, a ketone body produced by the liver, and
thiamine, the water-soluble B1 vitamin, possess high permeability across the blood-brain
barrier (BBB) [49,50]. In particular, for ß-Hydroxybutyrate, this is also related to a specific
modulable carrier [49]. Thiamine transport at the BBB, instead, occurs by both passive and
active mechanisms, which allows for a rapid increase of brain thiamine concentrations after
parenteral administration of the vitamin [50]. These micronutrients are small molecules
essential to protecting cells against energy deficit, oxidative stress, neuroinflammation,
and cellular death by apoptosis [51,52]. Thus, they may also exert a crucial neuroprotec-
tive effect on dopaminergic neurons in PD [53,54]. In particular, a molecular analysis of
their chemical characteristics, and of the charge-dependent intermolecular interactions,
indicates that these molecules may bind α-syn in specific, different regions favouring
the correct folding of the protein and counteracting its pathological aggregation. Indeed,
ß-Hydroxybutyrate carries a negative charge and may interact with the positively charged
N-terminal amphipathic region of α-syn through the KTKEGV sequences, fostering in this
way the maintenance of the helical structure of the protein [42,55,56]. Notably, in C. elegans
experimental PD-model, treatment with ß-Hydroxybutyrate decreased α-syn aggregation
by 35% [57]. Likewise, a study on α-syn fission on a yeast model showed that, in cells,
thiamine lowers α-syn concentrations in a dose-dependent manner and, consequently, its
potential aggregation [58].

Free thiamine, instead, at physiological pH, carries a positive charge (formal charge,
1+) and may interact with the acidic C-terminal portion of α-syn, which is highly negatively
charged, mainly due to the negative charge of Glu and Asp residues [41,42]. Interestingly,
a similar mechanism has been also reported in a small thiamin-binding protein from
sunflower seeds which contains a large amount of Glu and Asp residues [59].

Moreover, in this region, during neuro-oxidative stress, thiamine may bind the neg-
atively charged peroxynitrite anions (ONOO−) (formal charge, 1−) and protect the four
Tyr residues of α-syn from oxidation, which play a crucial role in decreasing protein
aggregation [42,52] (Figure 2).
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Notably, increased levels of nitrotyrosine, a specific marker of ONOO-- attack on
tyrosine residues of proteins, were previously demonstrated in many neurodegenerative
disorders including PD [60]. Also, it is worth nothing that, amongst other modifications,
the reaction between tyrosine and peroxynitrite at concentrations ≤5 µM can give rise
to covalent links between adjacent tyrosine residues known as dityrosine cross-linking,
which could play an important role in the pathological assembly of α-syn in PD [61–64].
Importantly, under specific experimental conditions, the formation of nitrotyrosine and dity-
rosine from the reaction between tyrosine and peroxynitrite is inhibited by thiamine [52,65].
Taken together these findings suggest that nitrotyrosine and dityrosine could serve as
biomarkers of chronic oxidative damage of proteins in PD, and also indicate specific reac-
tions/pathways that may serve as targets for potential disease-modifying treatments in PD
such as thiamine or other, positively charged, antioxidants compounds (e.g., methylene
blue). Notably, considering the early, very fast nitration of α-syn tyrosine residues by per-
oxynitrite in PD [66], thiamine and related compounds are likely to affect the initialisation
of monomeric α-syn aggregation, preventing the primary nucleation (i.e., the formation of
droplets with high concentrations of α-syn) and the pathological elongation processes of
the protein [67,68].

4. Other Small Molecules That Target α-Synuclein Aggregation

In addition to the few, brain-specific small molecules of intermediary metabolism re-
lated to PD previously discussed, many other natural or synthetic organic small molecules
have been studied in vitro and in vivo experiments in order to gain a better understand-
ing of α-syn aggregation as a possible therapeutic target for PD [8,9,69]. These organic
compounds may interfere with the regulation of many biological processes of interme-
diary metabolism in cells, including the mechanisms that modulate α-syn content and
conformation. In particular, the main mechanisms of action involved for different small
molecules include:

(1) The transcriptional regulation of α-syn which may reduce the cellular expression of
the protein [70,71]. A well-studied compound is salbutamol, a brain-penetrant asthma
medication, ß2-adrenoreceptor ligand, which modulates SNCA transcription through
histone 3 lysine 27 acetylation of its promoters and enhancers [71]. Another similar
compound is clenbuterol [70,71].

(2) The translation inhibition of α-syn which reduces the cellular expression of the protein.
Using sequence-based design, the small molecule synucleozid, a potent inhibitor of
the SNCA mRNA that encodes α-syn protein has been identified. It selectively targets
the α-syn mRNA 5′ UTR at a specific IRE site, decreasing the amount of SNCA mRNA
loaded into polysomes, thus inhibiting SNCA translation and lowering α-syn protein
levels in cells [72]. Another compound that reduces α-syn protein translation is
posiphen, the (+) enantiomer of the cholinesterase inhibitor phenserine. However, its
exact mechanism of action is unknown [73]. Currently, there is a safety and tolerability
study of posiphen in patients with PD.
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(3) The increased intracellular clearance of α-syn via activation of either the ubiquitin-
proteasome system (for normal monomeric α-syn) [74,75], or of the authophagy/
lysosomal pathway (for aggregated α-syn) [76,77]. Evaluated compounds include
the natural alkaloids harmine and licorine. Additionally, rapamycin, a stimulator of
autophagy which increases the clearance of α-syn [74–77].

(4) The inhibition of the aggregation, either of monomeric α-syn or of the aggregated
α-syn, to prevent further elongation of α-syn fibrils [10,78,79]. Several natural
and synthetic small molecules have been studied: polyphenols such as curcumin,
epigallocatechin-3-gallate, caffeic acid; the human Rho kinase inhibitor fasudil; the
anti-microbials squalamine and ceftriaxone; the selective tyrosine kinase inhibitor nilo-
tinib; the synthetic molecules CLR01, NPT100-18A, Anle138 B, 03A10 and Compound
C [10,78,79].

(5) The stabilisation of the physiological conformation of α-syn [71]. The synthetic
compound NPT200-11, recently studied in a small randomised, double-blind clinical
trial [71].

(6) The prevention of α-syn spread by inhibiting uptake from the neighbouring cells
and the fostering of α-syn extracellular clearance mechanisms [71,80,81]. The NMDA
receptor antagonists AP5 and memantine, and the AMPA receptor antagonist peram-
panel are being investigated for their ability to also block α-syn synaptic transmission
and decrease the amount of this protein in the extracellular space [80,81].

In recent years, there has been a marked increase in the number of small molecules
studied to target α-syn aggregation as a potential therapeutic strategy for PD [8,79] (Table 1).
These include natural and synthetic compounds developed by the repositioning of already
approved molecules to develop new treatments for different diseases, the analysis of the
polyphenol-based scaffolds, the use of a rational design considering specific regions or
conformations of a protein, the high-throughput screening of large libraries of compounds,
and the use of structure-based strategies using recent advances in structural analyses of
in vitro formed and patient-derived α-syn fibrils [79,82,83].

Table 1. Relevant natural and synthetic small molecules targeting α-synuclein folding and aggrega-
tion, studied by different methods [56,58,65,74,83].

1. Repositioning of drugs already approved for different diseases.

Antibiotics used as anti-microbials: ceftriaxone, vancomycin, doxycycline, squalamine
trodusquemine.

Rho kinase inhibitors used for glaucoma and vasospasm: fasudil.ß-2 adrenergic receptor agonists
used for asthma: clenbutarol, salbutamol.

Oxidised phenotiazines used as antimalarial agents: methylene blue.

2. Natural polyphenols. Analysis of the polyphenol-based scaffolds.

Curcumin, baicalein, myricetin, ferulic acid, caffeic acid, gallic acid, ellagic acid.

3. Synthetic small molecules developed by rational design.

CLR01, CLR03, NPT 100-18A, NPT-200-11.

4. The high-throughput screening of large libraries of compounds.

Ceftriaxone, Anle138b, SC-D, ZPD-2, ZPDm.

5. Small molecules identified through structure-based analysis of α-synuclein fibrils.

PDB.2N0A, Compound C.

Among the several small molecules identified as having definite anti-aggregational
properties toward α-syn, the most relevant molecules include the repositioned drugs
ceftriaxone, vancomycin, doxycycline, squalamine and its analogue trodusquemine (antibi-
otics/ anti-microbials) [7,79,84–88]; fasudil (Rho kinase inhibitor/cerebral vasospasm and
glaucoma) [87]; clenbuterol and salbutamol (ß2-adrenergic receptor agonists/treatment
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of asthma) [73,88]; methylene blue/methylthioninium and its reduced stable form leuco-
methylthioninium bis(hydromethanesulfonate) (oxidised phenothiazine/antimalarial agent,
powerful antioxidant) [89,90]. Additionally, the natural polyphenols curcumin, myricetin,
ferulic acid, caffeic acid, gallic acid and ellagic acid [79,91–94]. Notably, structure-activity
relationship analysis of several phenolic compounds indicated that the phenyl group alone
does not prevent fibril formation [95]. The inhibitory potential on α-syn aggregation seems
to be mainly related to the number, position, and conjugation of the hydroxyl groups at
the benzoic acid scaffold [95]. Small molecules developed by a rational design, instead, led
to the synthesis of many compounds, such as CLR01, CLR03, NPT100-18A, NPT200-11,
which induce, in in vitro and in vivo experimental studies, a reduction of α-syn aggrega-
tion and the disassembly of preformed fibrils, possibly by the formation of off-pathway
oligomers [96,97]. Notably, a clinical phase 1 study on safety and tolerability of NPT200-11
was completed, but the data have not been published [79]. Several other small molecules
have been identified through high-throughput screening and structure-based strategies
for drug discovery [79,97]. The best clinical drug candidates against α-syn aggregation
include the synthetic molecule anle138b, which has shown high affinity towards oligomers
of α-syn thus inhibiting further amyloid aggregation [79,98]. Interestingly, the oral admin-
istration of this molecule in different PD mice models ameliorated motor symptoms and
survival [99–101]. Because the therapeutic effect was also evident in late-stage rodents, the
possibility that this molecule could also be effective in the advanced stages of PD, has been
suggested [102]. Also of note, recent in vitro studies, by using structure-based strategies,
report the discovery of new synthetic small molecules that specifically prevent fibril elon-
gation upon binding to fibril ends, or to the surface of the amyloid fibrils, thus inhibiting
the formation of α-syn aggregates [103,104]. These molecules seem to be highly selective
for the misfolded α-syn, nontoxic, and active in cells in small concentrations [103,104].
Importantly, most of the small molecules discussed in this study have shown a definite
antifibrillogenic activity in various neurodegenerative diseases related to the misfolding
of different specific proteins. For instance, several studies have documented a beneficial
effect of ceftriaxone on the misfolding of glial fibrillary acidic protein (GFAP) in in vitro
and in vivo models of Alexander’s disease (AxD), a genetic astrogliopathy [105,106], and
on the misfolding of α-syn in dopaminergic neurons in experimental models of PD and
in dementia with Lewy bodies [7,107,108]. Likewise, the natural polyphenolic compound
curcumin has the ability to inhibit GFAP misfolding in an in vitro model of AxD [10],
α-syn misfolding in experimental models of PD [109–111], and amyloid beta oligomers
formation and interactions with anionic membranes in experimental models of Alzheimer’s
disease [112,113]. The synthetic compound, CLR01, instead, causes a reduction of α-syn
aggregation and the disassembly of preformed fibrils in in vitro and in vivo models of
PD and other synucleinopathies such as dementia with Lewy bodies and multiple system
atrophy [96,114,115].

Also, in experimental models in vitro, CLR01 has shown an inhibitory potential in
the aggregation process of different amyloid proteins, such as Alzheimer’s Aß42/Aß40
peptides and tau protein, cellular prion protein and transthyretin related to systemic
amyloidosis [116,117]. The evidence that the same compound may have a beneficial effect
on the pathological misfolding of different proteins in different neurodegenerative diseases,
and thus in several kinds of cells and neuronal pathways, supports the possibility that
similar pathophysiological mechanisms may underlie abnormal protein aggregation in
these disorders. In particular, it is known that an abnormal accumulation of misfolded
proteins in cells is strictly related to transcriptional regulation of the protein that may reduce
or increase its cellular expression, oxidative stress, mitochondrial dysfunction, cellular
energy failure, and inflammation [116]. Thus, multi-target bioactive compounds, such
as ceftriaxone, curcumin and CLR01 [7,54,111,114], which can attenuate oxidative stress,
neuroinflammation, restore mitochondrial function and regulate genetic transcription
are plausible, rational clinical drug candidates against many different neurodegenerative
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diseases. Recent clinical rials for PD involving small molecules as potential therapeutic
agents that may modify disease course are reported in Table 2.

Table 2. Recent clinical trials for Parkinson’s disease involving small molecules as potential therapeu-
tic agents that may modify disease course.

Agents Mechanism of Action Phase Development Status/Findings

Deferiprone Iron chelator. Interferes with
α-syn aggregation. Pilot study Improved motor scores.

UPDRS. (Devos, 2014) [118].

Phase 2/3
NCT00943748

Improved motor scores.
UPDRS. (Grolez, 2015) [119]

Phase 2
NCT01539837

Improvement trend in motor scores.
(Martin-Bastida, 2017) [120]

Phase 3
NCT02655315

Therapy leads to PD worsening.
(Devos, NEJM, 2022) [121]

Squalamine
phosphate/ENT-01

Interferes with α-syn aggregation
by displacing α-syn from

membranes.

Phase 2
NCT03047629

Improvement in constipation.
(Hauser, 2019) [122]

Phase 2b
NCT03781791

Safe. Improvement in constipation.
(Camilleri, 2022) [123]

Buntanetap/Posiphen
(ANVS 401) Reduces α-syn protein translation Phase 3

NCT05357989

Improvement in motor, nonmotor, cognitive
symptoms.

(Annovis Bio, New release, 2024) [124]

Anle 138b Inhibits α-syn oligomer formation Phase 1
NCT04208152

In healthy volunteers excellent safety, tolerability
at all dose-plasma levels [125]

Phase 2
NCT04685265

Good safety, tolerability confirmed in PD
patients

(Levin, 2023; Mov Disord) [125]

Nilotinib c-Abl inhibitor enhances
autophagic clearance of α-syn

Phase 2
NCT03205488

Acceptable safety/tolerab. Low brain
penetration. No biomarkers effect. No efficacy.

(Simuni, 2021, JAMA Neurol) [126]

YTX-7739
Inhibits stearoyl-CoA desaturase,

promotes smaller α-syn
aggregates

Phase 1b
Trial NL 9172

Well tolerated in PD patients. Mild/moderate
adverse events

(Press Release, 2021, NL) [127]

NPT200-11 Interferes with α-syn aggregation,
displacing α-syn from membranes

Phase 1
NCT02606682

In healthy volunteers Data not published.
(Journal of Parkinson’s Disease 13; 4:2023) [128]

5. Rationale for New Treatments Effective in Halting or Reversing the Progression of
Parkinson’s Disease

In general, the treatment of a disease is based on the known etiopathogenesis, and
it will be more effective the more it promptly corrects the early anomalous biological
determinants of the disorder. In particular, the known pathophysiological determinants
involved in PD include the interaction of specific genetic patterns, chronic oxidative stress,
inflammatory and immune responses that may foster the incorrect folding of α-syn and
its anomalous aggregation. Moreover, the peculiar, elevated metabolic activity of the
dopaminergic neurons in pars compacta of the substantia nigra, directly related to the
morphological characteristics of these neurons, which have large size, a very high number
of projections and connections into the striatum, and a calcium-dependent, autonomous
pacemaking activity that needs one molecule of ATP to pump one molecule of Ca2+ into
cellular channels to sustain physiological electrochemical gradients [129–132]. In com-
parison, a neuron which fires sodium-based action potentials needs only one molecule
of ATP to pump into cellular channels three Na+ ions and two K+ ions [129–133]. Thus,
mitochondrial bioenergetic requirements are significantly more elevated in calcium-based
action potentials neurons, compared with sodium-based action potentials neurons. As a
result, the peculiar morphological and electrophysiological properties of the dopaminergic
neurons in the pars compacta of the substantia nigra make them particularly vulnerable to
oxidative stress and to biochemical or structural cellular damage [107–111]. In PD patients,
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considering the likely interaction of many different pathophysiological mechanisms, the use
of compounds with definite multi-target activity should be highly promising. In particular,
among the brain-specific small molecules of intermediary metabolism in PD previously
discussed, reduced glutathione and the micronutrients ß-Hydroxybutyrate and thiamine
seem to have these characteristics [30,36,52,54]. Indeed, all three of these compounds
can target multiple mechanisms such as oxidative stress, inflammation, mitochondrial
damage, and cellular apoptosis. Moreover, thiamine and ß-Hydroxybutyrate exert funda-
mental roles in energy metabolism. Thiamine via activation of the intracellular glucose
metabolism in the cytoplasm and the mitochondria through thiamine pyrophosphate, and
ß-Hydroxybutyrate via activation of the ketolytic pathway. Thus, these micronutrients
may replenish, in dopaminergic neurons, ATP stores when depleted and protect them
against oxidative damage [30,36,54,134]. Also, these micronutrients may interact directly
with α-syn in specific, different regions: Hydroxybutyrate with the positively charged
N-terminal amphipathic region of α-syn, while thiamine with the acidic C-terminal portion
of α-syn [39,42] (Figure 3).
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6. Conclusions

These observations highlight the relevance of definite small molecules of intermediary
metabolism in the pathophysiology of PD. Moreover, the early fundamental role of redox
dysfunction and specific oxidative and nitrative α -syn modifications in the development
and progression of PD. In addition, they suggest that the micronutrients ß-Hydroxybutyrate
and thiamine, that penetrate the blood-brain barrier well and are commercially available,
might have a definite therapeutic role in halting or reversing the progression of PD, in
particular if used in combination, at an early stage of the disease, when still-reversible
biochemical lesions are present in the brain. Indeed, ß-Hydroxybutyrate and thiamine both
have antioxidant and anti-inflammatory properties. Moreover, given in combination, they
should stabilise two different regions of α-syn protein and, at the same time, through acti-
vation of different biochemical pathways involved in energy production (i.e., intracellular
glucose and ketone body metabolism) sustain the higher baseline requirements for ATP
production in specific dopaminergic neurons.
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