
Citation: Börner, N.; Schoenberg,

M.B.; Pöllmann, B.; Pöschke, P.; Böhm,

C.; Koch, D.; Drefs, M.; Koliogiannis,

D.; Andrassy, J.; Werner, J.; et al. Deep

Learning-Adjusted Monitoring of

In-Hospital Mortality after Liver

Transplantation. J. Clin. Med. 2024, 13,

6046. https://doi.org/10.3390/

jcm13206046

Academic Editor: Hirofumi Noguchi

Received: 10 August 2024

Revised: 29 September 2024

Accepted: 4 October 2024

Published: 10 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Deep Learning-Adjusted Monitoring of In-Hospital Mortality
after Liver Transplantation
Nikolaus Börner 1,2,*,† , Markus B. Schoenberg 1,2,3,† , Benedikt Pöllmann 1, Philipp Pöschke 4, Christian Böhm 4,
Dominik Koch 1,2, Moritz Drefs 1,2 , Dionysios Koliogiannis 1,2 , Joachim Andrassy 1,2 , Jens Werner 1,2

and Markus Otto Guba 1,2

1 Department of General, Visceral, and Transplant Surgery, LMU, 81377 Munich, Germany;
markus.schoenberg@gmail.com (M.B.S.); markus.guba@med.uni-muenchen.de (M.O.G.)

2 Transplantation Center Munich, LMU Munich, Campus Grosshadern, 81377 Munich, Germany
3 Medical Centers Gollierplatz and Nymphenburg, 80339 Munich, Germany
4 Institute of Informatics, LMU, 81377 Munich, Germany
* Correspondence: nikolaus.boerner@med.uni-muenchen.de
† These authors contributed equally to this work.

Abstract: Background: Surgeries represent a mainstay of medical care globally. Patterns of com-
plications are frequently recognized late and place a considerable burden on health care systems.
The aim was to develop and test the first deep learning-adjusted CUSUM program (DL-CUSUM)
to predict and monitor in-hospital mortality in real time after liver transplantation. Methods: Data
from 1066 individuals with 66,092 preoperatively available data point variables from 2004 to 2019
were included. DL-CUSUM is an application to predict in-hospital mortality. The area under the
curve for risk adjustment with Model of End-stage Liver Disease (D-MELD), Balance of Risk (BAR)
score, and deep learning (DL), as well as the ARL (average run length) and control limit (CL) for
an in-control process over 5 years, were calculated. Results: D-MELD AUC was 0.618, BAR AUC
was 0.648 and DL model AUC was 0.857. CL with BAR adjustment was 2.3 with an ARL of 326.31.
D-MELD reached an ARL of 303.29 with a CL of 2.4. DL prediction resulted in a CL of 1.8 to reach an
ARL of 332.67. Conclusions: This work introduces the first use of an automated DL-CUSUM system
to monitor postoperative in-hospital mortality after liver transplantation. It allows for the real-time
risk-adjusted monitoring of process quality.

Keywords: liver transplantation; surgery; risk adjustment

1. Introduction

Surgery in general represents a mainstay of medical care globally. Complications after
surgical interventions play a major role in the recovery of patients. Liver transplantation
specifically remains a high-risk surgical procedure despite constant improvements [1]. To
ensure the safety of patients, it is important to prevent avoidable complications, which
might be as high as over 50% [2,3]. Managing this risk includes structured preoperative
planning, risk assessment, and early recognition, as well as immediate and appropriate
management [4]. Structured preoperative planning as a prevention measure alone manages
to reduce complications from 11.0% to 7% [5]. However, primary prevention alone cannot
completely eradicate unnecessary complications. Currently, most methods for the analysis
of remaining complications are based on manual analyses of quality indicators, combined
with review procedures and external audits. These attempts to improve quality are carried
out at intervals and are therefore retrospective [6]. In most cases, there is no risk adjustment
but, at most, a risk grouping of patients. Thus, it is not always clear what the exact
risk profile of patients with a complication was. Furthermore, retrospective analyses are
problematic: when reacting too slowly, systemic quality issues can cost additional resources
or, at worst, even patients’ lives [7].
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We propose to solve this problem with a technique involving CUSUM charts [8,9].
Conventional CUSUM charts are known as a sequential analysis technique for process
control within industry. A CUSUM chart shows the accumulation of events (mortality) in
real time. It signals an out-of-control process by an upward drift of the cumulative sum
graph until it crosses a predefined threshold. In medicine, this proven technique has not
yet been broadly adopted. In the field of solid organ transplantation, prospective CUSUM
charts are only performed in the OPTN/UNOS (Organ Procurement and Transplantation
Network)/United Network for Organ Sharing) space for monitoring liver transplanta-
tions [10,11]. However, these analyses have no proper risk adjustment and therefore may
lead to false-positive signals, especially in an increased proportion of high-risk patients.
Conversely, this could lead centers to develop a bias towards transplanting low-risk pa-
tients, thereby passing over higher-risk individuals, who might be in greater need of the
lifesaving organ. In the field of liver transplantation, a risk-adjusted CUSUM analysis
might be particularly appropriate, as every donor or recipient presents with a distinctive
set of risk factors. For this, however, accurate prediction is critical. In particular, consider-
ing the complexity of the association between donor and recipient factors, so-called deep
learning (DL) neural networks for variable learning and selection might be particularly
suitable [12]. Moreover, DL can continuously adapt and add new variables to the model
through feedback (recursion) [13], which is ideal in an evolving and dynamic field such as
transplantation.

In this paper, we present and test the first deep learning-adjusted CUSUM program
(DL-CUSUM) to predict and monitor in-hospital mortality after liver transplantation. This
study is unique as we developed and tested a novel DL algorithm to predict in-hospital
mortality. Then, we combined this highly accurate prediction with a risk-adjusted CUSUM
analysis to sequentially identify cases with excess mortality.

2. Materials and Methods
2.1. Study Groups and Predictive Variables

Patients receiving transplantation and their matching donors from 2004 to 2019 were
included in the prospectively maintained database. Ethical approval was obtained from
the institutional review board (EK 19-395, 08/2019) at the Ludwig-Maximilian University
in Munich. The need for informed consent was waived by the institutional review board.
This trial complies with the TRIPOD (Transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis) Statement.

All transplant patients were extensively evaluated, and other treatment options were
considered. Clinical indication for transplantation was based on the recommendation of
our multidisciplinary transplant board. During the wait time, all patients were regularly
followed up and their indication was re-evaluated (either in an ambulatory or an in-hospital
setting) [14].

In the case of an organ offer, experienced transplant surgeons evaluated the donor–
recipient matching on a case-by-case basis. After acceptance, explanted organs were
re-evaluated during cold preparation. Upon approval of the organ for transplantation,
recipients were anesthetized and underwent hepatectomy. Standard liver transplantation in
our institution is performed with the piggy-back technique but adapted accordingly. After
transplantation, patients received a standard immunosuppressive protocol with Tacrolimus,
MMF, and tapering dosages of steroids. In HCC patients, Tacrolimus is switched to
Everolimus during follow-up visits if possible [15].

In this analysis, 62 preoperatively readily available variables from the recipient, the
donor, and organ transportation data were included. The baseline recipient demographic
variables were age, gender, diagnosis, weight, height, and blood type. The allocation vari-
ables included laboratory-measured Model of End-stage Liver Disease (MELD), allocation
MELD, allocation modality, and high-urgency listing (HU). The recipient disease-specific
variables were ascites, encephalopathy, and dialysis. Lastly, readily available laboratory
values including Sodium (Na), Potassium (K), Creatinine (Crea), Albumin (Alb), Bilirubin
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(Bili), Aspartate Transferase (AST), Alanine Transferase (ALT), Gamma Glutamyl Trans-
ferase (GGT), Alkaline Phosphatase (AP), Hemoglobin (Hb), Leukocytes (WBC), Platelets
(plt), C-reactive Protein (CRP), and the International Normalized Ratio (INR) were noted.
Additional variables regarding the donor organ included the cold ischemia time (CIT),
distance of procurement center, graft size, donor age, Donor Risk Index (DRI), cause of
donor death, donor height, donor weight, donor BMI, donor gender, donor mechanical
resuscitation, graft quality, donor Na, donor K, donor Crea, donor Alb, donor Bili, donor
ASAT, donor ALAT, donor GGT, donor AP, donor Hb, donor Leuko and donor plt, donor
INR, and donor CRP. These variables were chosen following an extensive systematic re-
view of predictive variables for early mortality after liver transplantation [16]. From the
above-mentioned variables, we calculated the compound scores for Body Mass Index (BMI),
MELD, CTP (Child–Turcotte–Pugh Score), and DRI. These compound scores were not used
for modeling since they heavily correlate with the variables from which they are calculated.

2.2. Follow-Up

According to international recommendations, transplant patients are structurally
followed up. After an uneventful first year, the intervals are changed to every 6–9 months.
Survival times for overall survival (OS) are calculated from the date of transplantation until
the date of death. Because this study focuses on in-hospital mortality, no observations had
to be censored.

2.3. Statistical Analysis

In general, normally distributed data were summarized with the mean and standard
deviation (±SD) and compared using a t-test. Classification variables were compared
using Fisher’s exact test. A p-value of <0.05 was considered statistically significant. All
calculations were performed using the open-source software Python (Vers. 3.9.1, Python
Software Foundation, Wilmington, DE, USA) RStudio (Version 1.1.463, RStudio Inc., Boston,
MA, USA) and Prism Version 8.0 (GraphPad Software, Inc., La Jolla, CA, USA).

Figure 1 depicts the steps of the development and validation of the DL-model, as
well as the construction of the DL-CUSUM program, and Supplemental Figure S1 shows
a graphical representation of the layers that are created during the modeling of the deep
neural network for the DL-model (Figure 1A). First, preprocessing was carried out by
imputing missing values with the novel MMCI Algorithm, which was specifically designed
to calculate missing data in transplantation data sets [17]. In order to prevent biases,
observations (donors or recipients) with more than 50% missing data and variables that
could cause discrimination (anti-classification) were excluded from the analysis. After
imputation, the cohort was split randomly 90% to 10% into a training and a test data set.
This was in accordance with the TRIPOD statement [18].

The training data set was used to create the neural network and develop the DL-
model. During development, the hyperparameters were tuned and cross-validated (CV).
(Figure 1B). Hyperparameters that were tuned for the model included the learning rate,
batch, epochs, and split between cross-validation groups. For further explanation, the rate
is used to define how quickly the model is adapted to the problem. If the rate chosen is too
small, the learning process takes too long; if it is too high, it might not adapt to the problem.
In neural networks, batch and epochs are often confused. The batch defines the number
of samples to train on before updating the model parameters. A training data set can
contain more than one batch. In contrast, epochs are defined as the number of times that
the algorithm will work through the training data set. Inherent to its nature, the DL model
in this work is a so-called black box. That means that an analysis of the paths taken by the
algorithm is not possible [19]. The test data were put aside and left untouched to be used
for testing the DL-model after its development. The performance of the DL-model was
evaluated using the area under the precision recall curve (PRAUC). For predictive machine
learning models in imbalanced datasets, PRAUC is more informative than the area under
the receiver operator curve (ROC) [20] (Figure 1C). Additionally, common and already-
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validated risk scores that incorporate recipient and donor data were used as a comparison
for the novel DL-model. The D-MELD Score is calculated by multiplying the laboratory
MELD score by the age of the donor [21]. The BAR (Balance of Risk) score comprises the
recipient MELD, recipient age, donor age, cold ischemia time, whether recipients were on
life support, and whether the recipient had received prior transplantations. A detailed
description can be found in the original work by Dutkowski and colleagues [22]. The
performance scores were calculated using the ROC.
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Figure 1. Workflow for the development and testing of the DL-CUSUM. A detailed description can
be found in the Material and Methods section. BAR score, Balance of Risk; D-MELD, Donor age
multiplied by recipient Model of End-stage Liver Disease.

To obtain a prediction of in-hospital survival, the scores were grouped according
to published thresholds and retrospectively analyzed (Figure 1D). The predictions for
in-hospital death ranged from 0 to 1 and were obtained from the DL-model, D-MELD,
BAR, and mean in-hospital death. This individual death risk was integrated into a custom
CUSUM Analyzer. With this, the risk-adjusted CUSUM analysis could be performed.
These risk-adjusted CUSUM plots of expected vs. observed outcomes used the formula
established by Steiner et al. [9]. The code of the CUSUM algorithm was obtained from the
original publication from Steiner et al. [9]. The graphical user interface was constructed
using the shiny app within the Rstudio software suite and made available online. Before
drawing the CUSUM charts, the average run length (ARL) was calculated using the formula
obtained by Steiner et al. [9]. The control limit (CL) was increased by 0.1 increments until
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the ARL was high enough to allow for continuous monitoring over 5 years without false-
positive accumulations. The threshold of 5 years without false-positive accumulations was
chosen according to the suggestions by Steiner et al. [9]. and the goal to balance between
the ability for the program to run for a long time without false positives and the sensitivity
provided by an accurate model. At about 60 transplantations per year, the threshold ARL
was set at 300 to strike a balance between sensitivity and prevent signal fatigue. With this,
the CL was adjusted to match the ARL. A lower CL indicated a more accurate prediction,
since it minimized the chances for false-positive signals even if the control-limit is low. The
ARL was tested through 1000 epochs (see definition above). With this, information in the
CUSUM chart with the model-specific CL for the DL-model, D-MELD, BAR, and mean risk
adjustment was drawn with patients from the test data.

3. Results
3.1. Patient Data

Five hundred and thirty-three patients received a liver transplantation during the
period from 2004 to 2019. For these 533 matching donor observations were additionally
added into the data base. Eight observations had to be excluded because of an excess of
missing data. The demographic and clinical data for the transplanted patients are listed in
Table 1.

Table 1. Study data for the recipient study cohort. The training and test data are compared in terms
of Body Mass Index (BMI), Model for End-stage Liver Disease (MELD), Alanine Transferase (ALT),
Aspartate Transferase (AST), Gamma-Glutamyl Transferase (G-GT), Alkaline Phosphatase (AP),
International Normalized Ratio (INR), and C-Reactive Protein (CRP; mg/L). SD, standard deviation.

Characteristics Study Cohort Training Data Test Data Training vs. Test
n = 529 n = 477 n = 52 p-Value

Demographics
Age at operation in years, mean ± SD 50.28 ± 12.29 50.06 ± 12.46 52.31 ± 10.58 0.2113

Male/female 357/172 318/159 39/13 0.2755
Height (m), mean ± SD 1.73 ± 0.10 1.73 ± 0.10 1.73 ± 0.09 0.9754
Weight (kg), mean ± SD 77.57 ± 16.39 77.79 ± 16.36 75.58 ± 16.66 0.3543

BMI, mean ± SD 25.67 ± 4.59 25.74 ± 4.57 25.03 ± 4.44 0.2903
Liver disease features

Ascites, Y/N 332/197 301/176 31/21 0.6518
Encephalopathy, Y/N 216/313 194/283 22/30 0.8822

Dialysis, Y/N 77/452 72/407 5/47 0.2921
MELD, mean ± SD 23.79 ± 11.08 23.86 ± 11.16 23.17 ± 10.50 0.6710

Allocation MELD, mean ± SD 27.75 ± 8.55 27.83 ± 8.66 27.15 ± 7.64 0.5912
Laboratory values

Na mmol/L, mean ± SD 135.98 ± 5.42 135.98 ± 5.43 135.98 ± 5.38 0.9983
K mmol/L, mean ± SD 4.10 ± 0.50 4.11 ± 0.49 3.95 ± 0.55 0.0268

Bilirubin mg/dL, mean ± SD 12.12 ± 13.56 12.02 ± 13.32 12.97 ± 15.83 0.6296
Albumin g/L, mean ± SD 3.15 ± 0.67 3.15 ± 0.68 3.16 ± 0.60 0.8627

ALT U/L, mean ± SD 328.94 ± 876.02 306 ± 829.33 421.81 ± 1023.03 0.0967
AST U/L, mean ± SD 454.85 ± 1318.16 389.63 ± 1125.18 684.92 ± 1854.65 0.3536
GGT U/L, mean ± SD 141.45 ± 186.77 140.23 ± 186.29 144.37 ± 189.98 0.8796
AP U/L, mean ± SD 231.38 ± 252.37 225.67 ± 251.54 246.48 ± 237.75 0.5693

Hemoglobin g/dL, mean ± SD 10.58 ± 2.50 10.60 ± 2.50 10.43 ± 2.47 0.6348
INR, mean ± SD 1.76 ± 0.90 1.77 ± 0.94 1.62 ± 0.51 0.2541

Creatinine mg/dL, mean ± SD 1.66 ± 1.16 1.65 ± 1.14 1.83 ± 1.30 0.2843
CRP mg/dL, mean ± SD 2.51 ± 3.58 2.50 ± 3.64 2.60 ± 3.09 0.8481

Leukocytes 106/L, mean ± SD 8.15 ± 6.47 8.22 ± 6.66 7.50 ± 4.37 0.4426
Platelets 106/L, mean ± SD 100.27 ± 74.17 100.49 ± 75.54 98.17 ± 60.68 0.8305
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Transplanted patients were 50.28 ± 12.29 years old. The average labMELD at transplan-
tation was 23.79 ± 11.08. Because of the SE and NSE granted to qualifying patient allocation,
MELD was 27.75 ± 8.55. Notably, albumin levels were decreased at 3.15 ± 0.67 g/L and
transaminases were increased (ALT 328.94 ± 876.02 U/L, AST 454.85 ± 1318.16 U/L). The
cholestasis parameter showed increased levels with bilirubin being 12.12 ± 13.56 mg/dL,
GGT being 141.45 ± 186.77 U/L, and AP being 231.38 ± 252.37 U/L. Creatinine was in-
creased at 1.66 ± 1.16 mg/dL. Also, INR was increased at 1.76 ± 0.90. After transplantation,
patients stayed in hospital for 45.15 ± 39.87 days.

3.2. Transplantation and Donor Data

Accepted organs were 321.56 ± 210.99 km distant from the Transplantation Center in
Munich. Consequently, the cold ischemia time was relatively high at 630.69 ± 156.61 min
(Table 2).

Table 2. Study data for the transplantation. SD, standard deviation.

Characteristic Study Cohort Training Data Test Data Training vs. Test

n = 529 n = 477 n = 52 p-Value

Cold Ischemia Time (min) ± SD 630.69 ± 156.61 634.28 ± 159.66 597.77 ± 121.49 0.1104

Full/Split Liver ± SD 499/30 447/30 52/0 0.0607

Distance from Explanation to
Transplantation (km) ± SD 312.56 ± 210.99 328.52 ± 210.31 257.73 ± 208.38 0.0215

Duration of Stay (Days) ± SD 45.15 ± 39.87 44.79 ± 39.64 48.42 ± 42.13 0.5334

Donors were 54.79 ± 16.27 years old. Overall, they had a calculated donor risk
index of 1.98 ± 0.43. Albumin levels were decreased at 27.86 ± 6.46 g/L. Notably, when
comparing the recipient data, inflammation parameters were increased with leukocytes at
13.85 ± 5.95 106/L and CRP 14.78 ± 10.72 mg/dL. All donor data are listed in Supplemental
Table S1.

3.3. Separation of the Data Sets and Training of the Deep Learning Model

After imputation and before the training and cross-validation of the algorithm, the
study cohort was split by date of transplantation 90/10. With 529 transplantations alto-
gether in the study group, the training data set included n = 477 and the test data set
included n = 52 transplantations. After separation, the test data set remained untouched
throughout the analysis and was only used for testing the final model [17]. Variables were
compared between the training and the test data sets. Regarding recipients, all demo-
graphic disease-specific variables showed no significant difference. In the comparison
of the laboratory values, potassium levels were significantly different between data sets
(Table 1). Transplantation data showed a shorter distance from procurement to transplanta-
tion (p = 0.0215) in the test data. In the comparison of the donor data, the DRI was higher in
the training data set (p = 0.0095). Training and hyperparameter calibrations were performed
on the training data set. During this procedure, 600,000 epochs were calculated.

3.4. Predicting In-Hospital Mortality

As mentioned above, the test data set was used to measure the performance of the
newly derived deep learning model. The DL model showed a strong predictive power with
an area under the precision recall curve of 0.857. The AUROC of D-MELD of in-hospital
mortality for the entire cohort (n = 529) reached 0.618. The BAR score reached an AUC of
0.648. Additional metrics are summarized in Supplemental Table S2.

3.5. Merging of Risk Adjustment and CUSUM Analysis

After predicting the in-hospital mortality of the patients in the test data set, we
incorporated the prediction in the risk-adjusted CUSUM Analyzer. First, the mean rate for
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in-hospital mortality was calculated. At 13.80%, the CL Xt was set at 2.4 to reach an ARL of
313.77 (Figure 2A). When calculating the risk using BAR, the CL had to be set at 2.3 for an
ARL of 326.31 (Figure 2B). With D-MELD, an ARL of 303.29 was possible with a CL of 2.4
(Figure 2C). With the risk adjustment performed by the DL algorithm, the CL could be set
at 1.8 to reach an ARL of 332.67 (Figure 2D). With these CLs, risk-adjusted CUSUM charts
could be drawn. In Figure 2, the risk-adjusted CUSUM charts with the corresponding CL
and ARL are depicted. With the more accurate risk adjustment, neither false nor real excess
mortality within a tighter control limit could be identified in the test data set. We have
published the graphical user interface of the CUSUM Analyzer online. It can be found here:
https://translationalsurgery.shinyapps.io/CUSUMAnalyzer/ accessed on 2 February 2022.
When opening the online app, the reader can find instructions how to use the Analyzer.
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Figure 2. Risk-adjusted CUSUM (Cumulative Sum) charts with the corresponding CL (control limit)
and ARL (average run length). (A) CUSUM chart for mean rate for in-hospital mortality, (B) CUSUM
chart for BAR score (Balance of Risk), (C) CUSUM chart for D-MELD (Donor age multiplied by
recipient Model of End-stage Liver Disease), (D) DL (deep learning-adjusted) CUSUM chart.

4. Discussion

This work represents the first attempt to use the power of deep learning prediction to
augment risk-adjusted CUSUM charts to monitor in-hospital mortality after liver transplan-
tation [23]. We call this pipeline of interconnected algorithms DL-CUSUM. Transplantation
programs are uniquely challenging to monitor, since outcomes are difficult to predict,
dependent on the donor, and influenced by a large team of physicians from different disci-
plines [24]. Often, quality control is carried out periodically through retrospective analyses
and is complicated because it requires a review of all cases [25].

With the DL-CUSUM, we set out to solve these problems. It is important to emphasize
that transplant datasets differ from other clinical datasets in that they consist of multiple
independent datasets (e.g., recipient data, donor data, and location data). Most AI models
suffer from an incomplete data set on which the models are build. Within our data, we had
less than 15% missing values. Imputing with standard means or deleting all datasets that
had missing data would have resulted in fewer observations or significant noise within
the data set. Thus, for this particular situation, we developed a new imputation algorithm

https://translationalsurgery.shinyapps.io/CUSUMAnalyzer/
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that allows record segmentation (see above). The MMCI algorithm has already been tested
using a historical transplant data set with 5, 10, 20, and 30% missing data (simulated). The
MMCI showed the highest precision (>89%) in predicting missing data compared with
conventional algorithms (random forest, MICE, and K-Nearest Neighbor) [18]. With this
more complete data set, we developed and tested a deep learning algorithm based on
known variables for predicting in-hospital mortality. With better prediction, cases that truly
resulted in a preventable complication/mortality can be reviewed. We showed that the
DL-CUSUM chart is superior to general risk and static risk adjustment using the D-MELD
and BAR score. In fact, as demonstrated in the results, a less accurate prediction leads to
deflection caused by the events stacking up at the wrong time point. In this case, a review
of the wrong case could lead to the wrong conclusion being drawn [25]. However, with
an accurate prediction, the DL-CUSUM system gains the capacity to analyze a case more
thoroughly, in order to understand the events leading to a negative outcome for the patient.
Also, with a more accurate prediction, the CL Xt can be reduced to allow for a higher
sensitivity without sacrificing the average run length of 5 years (no false-positive signals
over this time period). Some authors in the literature have suggested that an ARL of up to
30 years could be appropriate. With this, however, many accumulations would falsely be
declared negative. Up to now, only CUSUM charts without modern risk adjustments have
been used to monitor transplant programs [23]. With a preset risk, CUSUM charts can lead
to biases and the investigation of an accumulation of cases that are falsely signaled as excess
in-hospital mortality. To avoid signals that are too frequent, CL needs to be increased, which
leads to a significantly decreased sensitivity in the monitoring. Also, a preset risk creates
incentives for program physicians to treat patients with low risk for a negative outcome [25].
With accurate deep learning prediction, these problems can be solved. DL can continuously
adapt and add new variables to the model through recursion [26]. With this, a dynamic
model can be generated that rapidly benefits from new translational biomarkers or changes
in practice [25]. Among the most promising new translational markers for the clinical status
of liver transplant patients are so-called “frailty markers” [27]. It has already been shown
that a multi-marker approach can sufficiently predict the elusive frailty syndrome [28].
Thus, it is ideal for the objective assessment of liver transplant patients.

The principles of the presented program are transferable to many other operations or
interventions. In particular, high-volume interventions would benefit from an automated
monitoring program to maintain oversight over the continuous development of operational
quality. By automating this process, several endpoints (different types of complications,
mortality, or time to discharge) could be monitored. For introduction into clinical practice,
however a rapid identification of the cases causing the accumulation should be imple-
mented. For this, we propose a strong pseudonymization with a key that never leaves
the data repository of the treating institution. This would allow the safe storing of patient
data. Additionally, for clinical introduction, some variables, such as the operating surgeon,
should be excluded to prevent administrative abuse. An accumulation of events does not
indicate a causal connection and should not be used for sanctioning [9].

This study and the algorithms used have limitations. First, a larger sample size would
be desirable. Further, the results are based on a data set from one large transplant center
that has transplanted patients from three Bavarian university hospitals, which makes it
difficult to apply this model to a general patient population. However, the purpose was to
use a pipeline of interlocking methods to showcase the combination of machine learning
and CUSUM. In this work, it was possible to create an algorithm that accurately predicted
the 10% of the data set that was set aside as test data. However, the test data consisted
only of 52 transplantations. As shown in the tables, the test and the training data sets
significantly differed for several variables. That allows us to be more confident that this
algorithm, built on more than 450 transplantations, could be generalizable and not overly
overfitted [17]. The use of a deep neural network might be overly complicated for this
arguably relatively complete data set. However, the goal of this work was to create a
workflow of intersected methodologies that could be used for any kind of data set and any
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kind of medical intervention. Deep neural networks can handle vast amounts of complex
and difficult-to-interpret data and suit different outcomes where the effect of covariates
may change over time. With the versatility of the workflow, this proof of concept can serve
as a basis for further multicenter studies. The third limitation is natural for the algorithm
used in this work. Deep learning algorithms are so-called black box algorithms. It is not
possible to depict the decision process since the algorithm has so many layers. That means
that after data are inputted, there is no possibility of a visualization or to check in any
way how the model calculates the risk (Supplemental Figure S1) [19]. This is especially
troubling if the input variables include gender or ethnicity. Since, for example, female
individuals might have worse transplant outcomes, an agnostic algorithm could decide
to discriminate against gender when predicting outcomes [29]. With white box methods
like logistic regression, this type of bias is also possible. However, as the name suggests,
white box algorithms can easily be interpreted for underlying biases. So how is it possible
to prevent this from occurring when employing black box algorithms? If the relevant
variables are directly available, then one strategy could be to make the algorithm unaware
of this variable (basically, deleting the variable). This is called anti-classification [29]. Anti-
classification can lead to a decrease in accuracy, which, however, can be accepted to a
certain degree to prevent discrimination. In this study, we have excluded all variables
which posed a direct threat of discrimination. As we aimed to monitor all liver transplant
patients, we did not perform a diagnosis-based analysis, which, in the case of HCC, might
have altered the outcome. As we aimed to create transparency and interpretability within
our deep learning algorithm, we used only readily available clinical parameters. We like
to emphasize that this study did not compare the practicality of the models, as traditional
risk scores like D-MELD and BAR are well established and have proven valuable due to
their simple utilization. However, within the experimental nature of this work, we hope
to encourage further studies and research with deep learning-based prediction models, as
they are sure to have a great impact in the future.

Another limitation of all result-driven monitoring concerns national and supranational
data privacy laws. We concur with the fact that personal data should be secure and not
available to the general public. The European Union has created a universal benchmark
for data privacy. However, its interpretation and application vary from country to country.
True real-time monitoring of anonymized/pseudonymized data could arguably have a
more positive effect than potential data insecurities because even general trends can be
used to learn from past mistakes [2,3].

5. Conclusions

This work introduces the first use of an automated DL-CUSUM system to predict and
monitor post-transplant in-hospital mortality. Independent to our predictive model, we
have created a novel CUSUM Analyzer with a graphical user interface that can be easily
found online (https://translationalsurgery.shinyapps.io/CUSUMAnalyzer/ accessed on
2 February 2022). In future, similar systems could be used for any kind of intervention to
allow for the real-time risk-adjusted monitoring of process quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm13206046/s1. Supplemental Table S1: Study data of the
donor study cohort. Training and Test data is compared. Alanine Transferase (ALT), Aspartate
Transferase (AST), Gamma-Glutamyl Transferase (G-GT), Alkaline Phosphatase (AP), International
Normalized Ratio (INR), C-Reactive Protein (CRP; mg/l), Standard Deviation (SD). Supplemental
Table S2: Evaluation metrics of the models used in this analysis. DL-model (Deep-learning model),
BAR Score (Balance of Risk), D-MELD (Donor age multiplied by recipient Model of End-stage Liver
Disease) Supplemental Figure S1: Simple schematic display of the Deep Neuronal Network utilized.
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