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Abstract: Multimodal technology is poised to revolutionize clinical practice by integrating artificial
intelligence with traditional diagnostic modalities. This evolution traces its roots from Hippocrates’
humoral theory to the use of sophisticated AI-driven platforms that synthesize data across multiple
sensory channels. The interplay between historical medical practices and modern technology chal-
lenges conventional patient–clinician interactions and redefines diagnostic accuracy. Highlighting
applications from neurology to radiology, the potential of multimodal technology emerges, suggest-
ing a future where AI not only supports but enhances human sensory inputs in medical diagnostics.
This shift invites the medical community to navigate the ethical, practical, and technological changes
reshaping the landscape of clinical medicine.
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1. Introduction

Medicine is a multimodal discipline. Hippocrates of Kos (460-377 Before Common
Era, BCE), who is considered the father of modern medicine, theorized that the body
consisted of four fluids or ‘humors’, black bile, yellow bile, phlegm, and blood, requiring
the basic sense of vision [1]. In 1816, René Théophile Hyacinthe Laënnec invented the
stethoscope and, 3 years later, published his revolutionary masterpiece “De L’Auscultation
Médiate”. This tool allowed him to hear, interpret, and document heart and lung sounds [2].
Naturally, tactile touch is considered the basis for human–patient communication and is a
fundamental part of physical examination and clinical practice [3]. Smell was also used for
centuries as a diagnostic tool in the practice of medicine, be it for recognizing gas gangrene
on the battlefield or diabetic ketoacidosis in the emergency room [4]. Even the sense of taste
was applied; for example, the sweet taste of diabetic urine, which is described in ancient
Indian texts and noted by Avicenna (980–1037) and Morgagni (1635–1683), was attributed
to the passage of absorbed water and nutrients unchanged into the urine [5].

We use our senses to interpret the world around us, and this fundamental process
is mirrored in medicine. Without it, there could be no possibility to diagnose, treat, and
communicate with patients. It is almost impossible to imagine a world where the hu-
man component in the medical profession could be replicated or supplanted by artificial
systems—until now.

In recent years, clinical practice has been transformed by significant advancements in
technology, research, and patient care methodologies [6]. In the early days, medical practice
relied heavily on physical examination, basic human senses, and rudimentary diagnostic
tools. The advent of advanced imaging technologies like MRI and CT scans, along with the
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introduction of minimally invasive surgical techniques, significantly enhanced diagnostic
accuracy and treatment precision [7]. The digital revolution in the late 20th and early 21st
centuries brought about electronic health records (EHRs), which streamlined patient data
management and improved coordination among healthcare providers [8].

Telemedicine and mobile health technologies have also expanded access to care,
allowing patients to receive medical consultations and monitoring remotely [9]. Recently,
the integration of artificial intelligence (AI), machine learning (ML), and big data analytics
has taken the healthcare community and medical profession by storm, with its potential
transformative power on current clinical practice.

Multimodal technology encompasses the integration of multiple forms of data and
sensory inputs to process information. By analyzing information from different sources,
this technology provides a more comprehensive and accurate understanding of complex
situations or problems, potentially enabling more accurate diagnoses in medicine.

The aim of this perspective is to critically explore and provide a comprehensive
overview of the integration of multimodal AI technologies in modern clinical practice,
examining both their potential and limitations, and to analyze the key components of AI
which facilitate this ability.

Moreover, this perspective aims to offer a balanced analysis by not only highlighting
the promising applications of AI across various medical specialties but also discussing the
significant challenges that impede its full integration.

2. Fundamental Concepts
Multimodal Technology and Its Components

Several components of multimodal technology are what makes its implementation in
clinical practice interesting to research.

Data diversity: the collection and analysis of diverse types of data, such as text, images,
audio, video, sensor readings, and diverse types of biomedical information, allow for a
richer and more nuanced interpretation of information.

Integration and fusion of different data types are central to multimodal technology.
This involves combining data in a way that capitalizes on the strengths of each modality,
providing a more holistic view than any single data type could offer.

Machine learning and artificial intelligence are employed to process and analyze
multimodal data. Machine learning models can identify patterns and correlations across
different data types, enabling more accurate predictions and insights.

Interoperability ensures that data from different sources can be integrated smoothly.
For multimodal systems to function effectively, they must be able to communicate and
work seamlessly with various devices and platforms.

User interaction via multiple sensory channels, such as visual, auditory, and tactile
interfaces, enhances user engagement and accessibility, allowing for more intuitive and
efficient interactions.

Artificial intelligence (AI): Artificial intelligence, or AI, is a branch of computer science
focused on creating machines or software that can perform tasks that usually require human
intelligence. These tasks include things like understanding language, recognizing patterns,
solving problems, learning from experience, and making decisions [10].

Machine learning: Machine learning is a subset of artificial intelligence (AI) that
enables computers to learn and improve from experience without being explicitly pro-
grammed for every task. In a way, it is teaching a computer how to do something by giving
it lots of examples, rather than telling it exactly what to do step by step.

The key idea is that instead of writing a specific set of rules for the computer to follow,
it will generate its own rules by analyzing the data. This makes machine learning very
powerful due to the fact that it can adapt to new situations and improve its performance as
it obtains more data or experience.

Deep learning: Deep learning is a type of machine learning that tries to mimic how
the human brain works in processing information and making decisions. It is called “deep”
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because it uses many layers of processing, with each one refining the information a little
more, just like how the human brain layers different pieces of information to understand
something complex [11].

Imagine trying to recognize a face in a crowd. First, the brain might pick out basic
features like shapes and colors. Then, it might identify more specific features like eyes, a
nose, and a mouth. Finally, it puts everything together to recognize whether it is a friendly
face. Deep learning works in a similar way, with each layer of processing in the computer
handling different levels of detail.

In practical terms, deep learning drives many of the latest technological advances,
like autonomous cars (helping them understand the road and objects around them). Deep
learning also enables advanced natural language processing systems, which allow speech
recognition applications, voice assistants (like Siri and Alexa, that understand and generate
human-like responses), and chatbots such as ChatGPT. It is especially useful for tasks that
involve complex data, like images, sounds, and natural language.

Artificial neural networks: Deep learning models are often built using structures called
artificial neural networks, which are inspired by the way neurons in the human brain
connect and work together. These networks can learn to recognize patterns and make
decisions in ways that are often more accurate than traditional machine learning methods,
especially when there are a lot of data to learn from. Artificial neural networks comprise
multiple layers of nodes, known as artificial neurons. Each neuron simulates a single logistic
regression unit, processing inputs to produce an output through an activation function. This
function determines whether the neuron fires, akin to a binary decision in logistic regression.
The inputs to each neuron are weighted, emphasizing the importance of some over others.
Through training, these weights adjust to minimize errors in predictions, enhancing the
model’s accuracy over time. Networks with many layers, called “deep” are capable of
abstracting data at multiple levels, recognizing intricate patterns in large datasets [11].

Transformers: Transformers are a type of deep learning model that have become
incredibly powerful in processing and understanding language. It is a similar process to
reading a sentence; as the brain goes through each word, it keeps track of the context—the
meaning of the words before and after the current word. Transformers work in a similar
way but on a much larger scale.

At the heart of transformers is a mechanism called “attention” [12,13]. This allows the
model to focus on different parts of the input (like words in a sentence) and understand
how they relate to each other, even if they are far apart in the sentence. For example,
suppose the task is to analyze and determine whether a patient has a certain condition,
such as diabetes, based on an EHR record. The transformer model can “pay attention” to
key pieces of information scattered throughout the input data, such as the following:

• Blood sugar levels noted in laboratory results.
• Symptoms such as frequent urination or excessive thirst documented in clinical notes.
• Medication history related to blood sugar management.
• Past diagnoses that might indicate risk factors, such as obesity or hypertension, or

associated conditions such as diabetic retinopathy.

The attention mechanism allows the model to weigh the importance of each piece of
information in the EHR relative to the task. This innovation differs from traditional feature
importance as it is context-specific, meaning attention is dynamically shifted with each
input. It might give more “attention” to recent lab results showing elevated blood sugar
levels, while also considering relevant symptoms mentioned in the patient’s history. Even
if these details are spread across different parts of the record, the model can identify and
prioritize them, helping to make a more accurate diagnosis.

Transformers are used in many applications, especially in language processing tasks
like translation, summarization, and text generation. They are the technology behind some
of the most advanced AI models today, such as large language models (LLMs) including
the Generative pre-trained Transformer (GPT) family of models and Bidirectional Encoder
Representations from Transformers (BERTs). These models are used for understanding and
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generating human-like text [14]. Because of their ability to handle large amounts of data
and understand complex language structures, transformers have revolutionized the field
of natural language processing.

Transformers have also been used for image analysis. Using similar attention mecha-
nisms as with natural language processing, the model can focus on specific areas within an
image deemed “important”. For example, Azad et al. reviewed how Vision Transformers
(ViTs) have advanced medical image analysis. ViTs outperform traditional convolutional
neural networks (CNNs) in learning long-range dependencies and spatial correlations,
making them highly effective for complex medical imaging tasks like classification, segmen-
tation, and detection [15]. Some key challenges include the large computational resources
required to train Vision Transformers and the need for substantial annotated medical
datasets. While ViTs demonstrate remarkable improvements in handling diverse medical
imaging modalities, their application is often constrained by the availability of high-quality
data, which is crucial for precise medical diagnosis.

3. Leading Multimodal Tools and Platforms

New multimodal models emerging recently such as GPT4Vision (GPT4V), Gemini,
and Whisper (Table 1) can interpret and generate not only text but also images, videos, and
sound [16]. By using few-shot learning, the newer models are better at clearing ambiguity,
understanding clinical context, understanding the expected format the response should
take, and aiding in reasoning [17]. The use of diverse data types such as imaging, sound,
genomics, biometrics, and EHR notes can create a comprehensive view of a patient’s
health status.

Table 1. Some examples of current AI multimodal platforms.

AI Platform Capabilities Input Modalities Typical Uses

GPT-4 Vision [18]
(OpenAI)

Text and image generation,
comprehension, translation,

summarization
Text, image, video

Content creation, conversation, coding
assistance, data analysis, education,

graphic design

DALL-E [19] (OpenAI) Image generation from textual
descriptions Text Graphic design, art creation, visual

content generation, advertising

CLIP [20] (OpenAI)
Understanding and classifying
images in the context of natural

language
Text, image Image search, analysis, classification

based on textual descriptions

Whisper [21] (OpenAI) Speech-to-text transcription,
translation Audio

Transcription services, language
translation of spoken content,

accessibility tools

CoPilot [22] (GitHub) Code generation and suggestion
based on natural language Text

Software development assistance,
debugging, code review, educational

tools

Gemini [23] (Google)
Text and image generation,
comprehension, translation,

summarization
Text, image, video

Conversational agents, customer
service bots, personal assistants,

interactive storytelling, education

DeepMind’s Perceiver
[24]

Processing and integrating
different types of data

Text, image, audio,
video

Universal data processing, cross-modal
information retrieval, games,

simulations, research

Midjourney [25] Image generation based on
textual prompts Text Visual storytelling, concept art, design

exploration

Stable Diffusion [26] Text-to-image generation, image
editing Text, image Content creation, digital art, image

editing, marketing

Meta.AI Llama [27]
Text and image generation,
comprehension, translation,

summarization
Text, image

Content creation, conversational
interfaces, data analysis, educational

tools
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4. Clinical Usage

Since their release, several studies have already tested the different multimodal capa-
bilities in clinical settings. Zhu et al. performed a pilot study on ChatGPT-4V (Vision)’s
ability to interpret radiological images [28]. They found that ChatGPT-4V achieved a
diagnostic accuracy of 77.01% for USMLE-style questions, with an average score of 3.97 for
treatment plans. By removing detailed patient history, the diagnostic accuracy dropped to
19.54% (p < 0.0001). Also, without detailed patient history, ChatGPT-4V could not specify
the exact disease, but was able to provide diagnoses consistent with or very similar to the
reference answers. Elyoseph et al. tested Chat-GPT 4’s ability in mentalization, interpreting
human emotions from visual and textual data. They found that ChatGPT-4 proved its
efficacy in the domain of visual mentalizing, aligning closely with human performance
standards [29]. In clinical settings, multimodal technology can transform patient care by
providing comprehensive diagnostics through imaging data integration [30–32] with other
health metrics, such as lab results and patient history, achieving more accurate diagnoses.

Multimodal data enable healthcare providers to tailor treatments to individual patients
based on a comprehensive analysis of various health factors, creating personalized treat-
ment plans [33]. They can analyze collected real-time data using remote monitoring and
wearable sensors, allowing for the continuous monitoring of patients’ conditions outside
traditional clinical settings. Enhanced multimodal data interfaces, such as virtual reality or
augmented reality, can improve patient understanding and involvement in their treatment
plans, enhancing patient engagement [34]. The study by Vikram R explores the use of
automated multimodal systems for the remote monitoring and assessment of neurological
and mental health conditions [35]. It emphasizes the integration of various data types, such
as speech, facial expressions, and cognitive performance captured through remote inter-
actions. These systems utilize AI-driven analysis to detect and monitor health conditions,
making it a critical tool in the telehealth ecosystem, especially for conditions like Parkin-
son’s and other neurodegenerative disorders. This study highlights the potential of such
technologies to enhance early diagnosis, treatment, and ongoing monitoring, particularly
in a post-COVID 19 pandemic world where remote healthcare is increasingly important.

Sorin et al. evaluated the capability of GPT-4’s multimodal version (GPT-4V) to
analyze ophthalmology cases that involve both textual data and ocular images [36]. They
provided GPT-4V with ophthalmological images, initially without clinical context, and
later with clinical data for comparison. This study involved 40 patients with various ocular
pathologies. Without clinical context, GPT-4V achieved correct diagnoses in 47.5% of cases,
but the accuracy improved to 67.5% when the clinical context was provided. This study
underscores the model’s capability to integrate multimodal data effectively, with significant
promise for future advancements in AI-driven medical diagnostics.

Applying multimodal technology can also assist in treatment plans after hospital-
ization and throughout different treatment phases. The study by Indolfi et al. examines
the use of artificial intelligence (AI) in managing allergies, particularly focusing on the
transition of care from childhood to adulthood [37]. This research highlights AI’s potential
in improving personalized allergy care through enhanced risk stratification, treatment
optimization, and remote patient monitoring. AI can aid in the continuous tracking of a
patient’s allergy progression and help healthcare providers make better-informed decisions
during the transition phase. However, this study emphasizes that while AI is a valuable
tool, it cannot replace the human elements of empathy and ethical judgment in patient care,
making AI a complementary rather than standalone solution in allergy management.

Another study by Zhu et al. explored the impact of upgrading management processes
in hospital operating departments using multimodal identification technology [38]. This
research compared traditional surgical management practices with the new multimodal
system in 4630 laparoscopic surgeries conducted over two years. They found that the
multimodal system significantly improved various aspects of the operating department’s
efficiency. Among the 251 cases in the control group, 198 cases were on time, and the
rate of on-time operation was 78.9%. In the multimodal practice group, 229 cases were
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on time, and the rate of on-time operation was 92.3%, with a significant difference in the
rate of on-time operation between the two groups. The waiting times for consecutive
surgeries were compared between the two groups. The multimodal practice group had
significantly shorter waiting times for consecutive surgeries relative to the traditional group.
In addition, the mean operative time for all procedures was significantly shorter in the
multimodal practice group relative to the traditional group. This multimodal approach
enhanced the speed and efficiency of surgical procedures, improved material management,
and increased patient satisfaction with their surgical experience. These improvements
suggest that integrating advanced identification technologies into surgical management
can lead to better outcomes both operationally and from the patient’s perspective.

Even when comparing multimodal to single modality technology, studies already
show a clear advantage in favor of multimodality. Kwon et al. evaluated the use of
deep learning to improve outcome prognoses for COVID-19 patients in the emergency
department by combining initial radiographs with clinical variables [39]. The model trained
on the chest radiograph severity score produced the following areas under the receiver
operating characteristic curves (AUCs): 0.80 (95% CI: 0.73, 0.88) for the chest radiograph
severity score, 0.76 (95% CI: 0.68, 0.84) for admission, 0.66 (95% CI: 0.56, 0.75) for intubation,
and 0.59 (95% CI: 0.49, 0.69) for death. The model trained on clinical variables produced an
AUC of 0.64 (95% CI: 0.55, 0.73) for intubation and an AUC of 0.59 (95% CI: 0.50, 0.68) for
death. Combining chest radiography and clinical variables increased the AUC of intubation
and death to 0.88 (95% CI: 0.79, 0.96) and 0.82 (95% CI: 0.72, 0.91), respectively. These results
show that combining both data types improved the model’s ability to predict outcomes
such as intubation and mortality, with significantly higher accuracy than using either
radiographs or clinical variables alone. This demonstrates the potential of integrating
multimodal data to enhance predictive accuracy in critical care settings. A different study
by Mohsen et al. examined the integration of AI techniques to combine EHRs with medical
imaging data [40]. This fusion aimed to enhance clinical decision making by providing a
more comprehensive view of patient health.

The researchers conducted a detailed review of various AI methods used for this
purpose, focusing on how different data types can be combined to improve diagnostic
accuracy and patient outcomes. This study found that AI-driven multimodal fusion models,
which combine EHRs and imaging data, generally outperform models that rely on a single
data modality. The most common applications of these fusion models were in disease
diagnosis and prediction, with early fusion techniques being the most widely used.

Further proof of the multimodal superiority to single data models is seen in the study
by Lipkova et al. which explores the use of AI to combine various types of medical data,
such as radiology, genomics, and pathology, for improved cancer diagnosis and treat-
ment [41]. This research highlights that integrating these different data sources enhances
predictive models for cancer outcomes and can even identify novel biomarkers. This study
emphasizes that multimodal data fusion using AI outperforms single-modality approaches,
leading to more personalized and accurate oncology care.

Multimodal data are not only used to advance oncologic care, but they can also be
used to predict various gene mutations that can assist in tailored care. The following
study by Shao et al. focuses on using AI and multimodal integration (MMI) to predict
gene mutations, advancing precision oncology. By combining diverse data sources like
medical imaging, genomics, and clinical data, AI models were developed to improve
mutation status predictions, essential for tailoring personalized cancer treatments [42].
This study emphasizes that MMI-based AI models outperform single-modality approaches
in predicting mutations and offer significant potential for more accurate diagnoses and
treatment plans in oncology. These findings emphasize that by integrating diverse data
sources, healthcare providers can gain deeper insights, leading to more personalized and
effective treatments for patients.

In contrast, an important aspect of clinical care is mental health, as well as physical.
The study by Alhuwaydi explores the growing role of artificial intelligence (AI) in mental
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healthcare [43]. The author provides insights into current trends and potential future
directions in the narrative review, discussing how AI technologies, such as machine learning
and predictive analytics, are being applied to improve screening, diagnosis, and treatment
in mental health. These AI-driven tools help analyze vast datasets to predict patterns
related to mental illnesses, offering individualized and preventive care.

However, the review also highlights challenges, such as the need for human empathy
in mental healthcare. AI lacks human emotional intelligence, which may impact the quality
of care, as mental health often requires compassionate, nuanced human interaction [44], as
well as ethical concerns, due to the potential of AI systems to reinforce biases and exacerbate
inequalities in mental health treatment [45]. Further challenges that were mentioned were
data privacy issues and the sensitive nature of mental health data, which raises privacy
risks, especially in AI-driven systems [46], and the cultural sensitivities involved in AI
applications, especially in mental health, where cultural differences play a key role in
shaping how individuals perceive health, illness, and treatment [47]. This study stresses
the importance of collaboration between healthcare professionals and AI to ensure effective
and ethical use of these technologies in mental healthcare. It also calls for more research
and larger studies to fill existing gaps, especially regarding how AI can complement
human-centered approaches in mental health.

A study conducted in a similar field also stresses the impact of AI on clinical care, both
positive and potentially negative. The study by Ettman and Galea discusses the significant
potential of AI to impact population mental health [48]. The authors propose three primary
areas of influence. Advancement in mental healthcare: AI has the potential to improve the
prevention, screening, and treatment of mental health disorders by enabling early detection,
predicting risks, and offering digital interventions. AI tools could help identify high-risk
populations and provide quicker, more accessible interventions, especially in underserved
areas. Shifts in social and economic contexts: AI might reshape economic landscapes,
possibly exacerbating mental health disparities by displacing jobs or increasing inequality.
Alternatively, AI could create new opportunities, balancing its impact by offering new
economic pathways. Policy and regulation: The authors stress the importance of developing
policies that safeguard patient privacy and reduce algorithmic bias. Proper regulatory
frameworks are essential to prevent AI from worsening existing mental health disparities
and ensure ethical use in healthcare.

This study also emphasizes that while AI offers promise, there are significant risks
associated with its adoption, such as privacy concerns and the potential for misuse in
mental healthcare.

Theoretically, with the further advancement of this multimodal technology, multi-
modal data could replace many functions performed today by medical staff, like interpret-
ing a video of a patient with respiratory distress and alerting the ED, diagnosing a disease
based on the pathology image provided to the model, or performing personalized treatment
plans for individual patients, based on risk factors and personal history. Multimodal data
might also be able to delve into the world of psychiatric medicine, by their growing ability
to interpret images expressing human emotions [29]. In a sense, multimodal tools could
practically augment human senses with input from “machine senses”.

5. Medical Education

Another aspect of clinical practice is medical education. The utilization of AI tech-
nologies in medical education presents an intriguing opportunity to enhance learning and
decision making by providing a new dimension of learning for students and clinicians.
Additionally, medical students may benefit from using AI as a supplementary learning tool,
as it can offer real-time feedback and enhance understanding of clinical reasoning through
interactive learning.

The study by Kung et al. evaluated the performance of ChatGPT on the United States
Medical Licensing Examination (USMLE) to assess its potential for AI-assisted medical
education [49]. They tested ChatGPT across all three levels of the USMLE, which cover a
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wide range of medical topics, including basic sciences, clinical knowledge, and applied
clinical skills. The AI model achieved an accuracy of approximately 60% in answering
questions, which is near the passing threshold for the exam. However, limitations, such
as difficulties with nuanced clinical reasoning and interpreting certain clinical scenarios,
were noted.

While ChatGPT shows promise for assisting in medical education, particularly in
helping students prepare for exams, reinforcing learning, or even generating medical exams
for testing [50], it still lacks the ability to interpret the subtleties of human interaction,
emotional intelligence, and ethical judgment, which remain crucial aspects of clinical
practice that seasoned physicians bring to their decision-making process [51].

6. Limitations of AI

Despite its potential, the application of AI technology in medical clinical practice faces
significant challenges that hinder its widespread adoption. One of the primary challenges
is the “black box” nature of many AI algorithms, where the decision-making process is
opaque, making it difficult for clinicians to trust or fully understand how a diagnosis
or recommendation is generated [52]. This lack of transparency raises concerns about
accountability, especially in cases where AI-driven errors occur, such as misdiagnoses or
inappropriate treatment suggestions. Moreover, AI models often rely on large, high-quality
datasets for training, and if these datasets are biased or unrepresentative, the models can
perpetuate and even exacerbate healthcare disparities, particularly in underserved popu-
lations [53]. Another known limitation is a phenomenon known as “hallucination”. This
occurs when generative AI misinterprets the given prompt in a wide variety of scenarios, re-
sulting in outputs that lack logical consistency or in completely false information [54]. When
relying on AI for quality diagnosing and medical recommendations, this phenomenon is
unacceptable. Additionally, AI implementation requires significant financial investment,
along with extensive training for healthcare staff, which poses a barrier for resource-limited
healthcare facilities. Finally, patients’ reception of AI, mistrust, or apprehension is a key
factor that needs to be taken into consideration [55,56].

7. Discussion

The important technological advancement of multimodal capabilities places the medi-
cal world at a critical intersection regarding where the medical profession is headed, and
what will be the role of AI in the process of patient care. It is clear that AI multimodal
technology has the potential to revolutionize clinical care, and it is already implemented in
various medical fields, either as an additive tool for physicians or by performing complete
tasks independently.

This also raises further moral and philosophical questions, regarding the perceived
importance of the simple human touch in medical care [57]. Human touch is an essential
part of human interaction; it is at the core of social, cultural, and professional relationships,
and it is an integral part of clinical care [58]. The integration of multimodal technology
in healthcare is already taking place in hospitals and administrative systems worldwide.
However, careful attention must be given to its impact on clinical care, not only in the
medical sense but also in terms of its emotional, psychological, and social impacts on
patients in the clinical setting.

Several challenges mentioned in the studies that are important to address are bias
and liability. Bias in AI models trained on unrepresentative or skewed data could lead to
inaccurate or discriminatory outcomes, especially for under-represented populations. This
can exacerbate healthcare disparities, and further cause mistrust in AI [59]. Liability con-
cerns revolve around accountability. If AI makes incorrect decisions, such as misdiagnoses
or flawed treatment recommendations, determining whether the responsibility lies with
the healthcare provider, the developer, or the AI system itself presents complex legal and
ethical dilemmas, complicating the widespread adoption of AI in healthcare.
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An important aspect of AI integration in healthcare and clinical practice is patients’
perception and opinion on AI technology. While AI has the potential to enhance diagnostic
accuracy and personalize treatment plans, patients’ trust in these systems remains a critical
factor [60]. While some patients appreciate the efficiency and precision AI can bring,
others might express concerns over reduced human interaction, fearing that AI-driven
healthcare may feel impersonal or lack the empathy inherent in human clinicians. These
apprehensions are often more pronounced in older adults or individuals from culturally
diverse backgrounds who may be less familiar with advanced technologies or more reliant
on traditional doctor–patient relationships [61].

Furthermore, AI systems may inadvertently exacerbate healthcare disparities in
resource-limited populations. AI models are often trained on datasets that do not ad-
equately represent marginalized or low-income groups, leading to biases in diagnosis or
treatment recommendations that could disproportionately affect these populations [62].
In resource-limited settings, the high cost of implementing AI technologies may also re-
strict access, potentially creating a digital divide where wealthier institutions and patients
benefit from AI advancements while under-resourced communities are left behind [63].
Thus, while AI integration offers promising advancements in medical practice, it must be
carefully implemented with consideration of patient perspectives, cultural sensitivities,
and equitable access to avoid widening existing healthcare disparities.

Our perspective is intended to provide a broad overview of multimodal AI in clinical
practice (Table 2). However, future works should systematically review the literature, using
methodologies such as PRISMA, and explore meta-analyses of quantitative results. Addi-
tionally, structured interviews with healthcare professionals and patients could provide
diverse insights into the real-world implementation of multimodal AI, helping to assess
both its benefits and limitations in clinical environments. Additionally, future research
should also focus on comparison studies between multimodal AI and traditional diag-
nostic methods. Long-term-follow-up, original studies evaluating patient outcomes, and
assessments of cost-effectiveness across different healthcare settings, will be critical to
understanding the broader implications of AI technologies in clinical environments.

Table 2. Comparison and summarization of the strengths and weaknesses of various AI-based
multimodal tools across the different studies mentioned.

Field Study Strengths Weaknesses

Radiology Zhu et al., 2024
(Int J Surg) [28]

Strong in interpreting radiological
images, handles large image–text

datasets.

Limited medical domain expertise;
potential for misinterpretation of

complex cases.

Mental health Elyoseph et al., 2024
(JMIR Ment Health) [29]

Effective at recognizing emotions from
visual and textual data, helpful in

mental health applications.

Potential for biases in emotion
recognition and difficulty with

more nuanced emotional contexts.

Neuroimaging
Biessmann et al., 2011
(IEEE Rev Biomed Eng)

[30]

Robust integration of different
neuroimaging modalities; enhances

understanding of brain function.

Requires significant computational
resources and expertise; challenges

with data standardization.

Radiology Brin et al., 2024
(Eur Radiol) [31]

Accurate interpretation of radiological
images, effective across diverse clinical

cases.

Performance varies with image
complexity; potential for

hallucination of results in complex
imaging cases.

Ophthalmology Sorin et al., 2024
(MedRxiv) [36]

Analysis of external ocular images with
or without clinical context.

Performance was inferior to
non-ophthalmologist physicians,
and was only evaluated based on

external images versus OCT or
fundoscopy.
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Table 2. Cont.

Field Study Strengths Weaknesses

Pulmonary Cahan et al., 2023
(Sci Rep) [32]

Improves mortality prediction by
fusing clinical and imaging data,
supports personalized treatment

planning.

Model complexity and
interpretability challenges; requires

large, high-quality datasets.

Biomedicine Acosta et al., 2022
(Nat Med) [33]

Integrates diverse medical data
(imaging, clinical) for diagnostics,

facilitates personalized care.

High dependency on
comprehensive, high-quality

datasets; concerns about
generalizability in clinical practice.

Virtual reality in
healthcare

Kouijzer et al., 2023
(Implement Sci Commun)

[34]

Enhances patient engagement, effective
for rehabilitation and training.

Implementation challenges,
especially in integrating VR with

existing healthcare systems.

Neurology
Ramanarayanan, 2024
(J Speech Lang Hear Res)

[35]

Effective for remote monitoring and
assessments, supports telehealth

initiatives.

Privacy concerns and limited
accuracy for certain complex

conditions.

Immunology Indolfi et al., 2024
(Front Med) [37]

Supports continuity of care from
childhood to adulthood, personalized

treatment recommendations.

Limited data on long-term
outcomes; potential for biases in

decision making.

Operations and
patient management

Zhu et al., 2022
(Front Surg) [38]

Improves operational efficiency,
integrates multimodal ID technology
for patient and material management.

Complex integration with existing
hospital systems; steep learning

curve for users.

Radiology Mohsen et al., 2022
(Sci Rep) [40]

Effective in combining EHR and
imaging data for enhanced decision

making, predictive analytics
capabilities.

Requires high-quality, standardized
datasets; concerns about patient

privacy and data security.

Oncology Lipkova et al., 2022
(Cancer Cell) [41]

Enables comprehensive analysis of
multimodal cancer data (genomics,

imaging), supports precision oncology.

Computationally expensive;
challenges in scaling for real-time

clinical applications.

Oncology/genomics Shao et al., 2023
(Semin Cancer Biol) [42]

Enhances precision in predicting gene
mutations through multimodal

integration of genomics and clinical
data.

Model complexity may hinder
clinical interpretability; requires

extensive training datasets.

Mental health
Alhuwaydi, 2024

(Risk Manag Healthc
Policy) [43]

Improves accessibility to mental
healthcare, supports early diagnosis

and intervention through multimodal
data.

Ethical concerns, potential biases in
AI-driven mental health

interventions, and lack of human
empathy.

Mental health Ettman & Galea, 2023
(JMIR Ment Health) [48]

Enhances population mental health
monitoring, addresses large-scale

public health issues with AI
interventions.

Risks of widening socioeconomic
disparities through AI

implementation; data privacy
concerns.

Lastly, our perspective is intended to provide a broad overview of multimodal AI in
clinical practice. However, future works should also systematically review the literature,
using methodologies such as PRISMA, and explore meta-analyses of quantitative results.

8. Conclusions

Multimodal AI applications in clinical practice integrate diverse data sources such
as medical images, electronic health records (EHRs), sound recordings, and genomic
data to enhance diagnostic accuracy, treatment planning, and patient monitoring. By
combining multiple data modalities, AI systems provide a comprehensive view of patient
health, potentially improving diagnosis and treatment. In several studies we reviewed, the
application of AI increased efficiency, reduced waiting times, and proved to be a valuable
tool in the hands of proficient healthcare staff.
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The further application of AI multimodal technology can also be expanded and used
in the setting of medical education, where AI models assist medical students and physicians
prepare for exams, practice clinical scenarios, and enhance learning. However, such a rapid
development of technology is not without its challenges, such as data integration, algorithm
transparency, bias in data, hallucinations, and ensuring equitable outcomes across diverse
and disadvantaged populations. Additionally, the accountability and liability of AI-driven
decisions in complex healthcare environments pose significant ethical and legal concerns.

These applications show great potential in enhancing clinical practice and creating a
more calculated and holistic approach to healthcare, but due to its many limitations, this
technology remains as a tool, its applicability is still heavily user-dependent, and it requires
careful oversight by experienced practitioners.
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