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Abstract: The current article elucidates a study centered on the development of an anemometer
leveraging an inertial sensor for wind speed measurement in the northeast region of Brazil, focusing
on renewable energy generation. The study encompassed a series of experiments aimed at calibrating
the anemometer, analyzing the noise generated by the inertial sensor, and scrutinizing the data
acquired during wind speed measurement. The calibration process unfolded in three stages: initial
noise analysis, subsequent inertial data analysis, and the derivation of calibration curves. The first
two stages involved experiments conducted at an average sampling rate of 10 Hz. Simultaneously,
the third stage incorporated data collected over a 1 h duration while maintaining the same sampling
rate. The outcomes underscore the suitability of the anemometer based on an inertial sensor for
wind energy systems and diverse applications. While the wind readings from the prototype exhibit
considerable fluctuations, a three-length moving average filter is applied to the prototype’s output to
mitigate these fluctuations. The calibration surface was established using observational data, and
the resultant surface is detailed. Data analysis assumes paramount significance in wind speed mea-
surement, and the K-NN algorithm demonstrated superior efficacy in estimating the correspondence
between measured and control data.

Keywords: anemometer; inertial sensor; wind speed measurement; renewable energy generation;
calibration surface

1. Introduction

The northeast region of Brazil is an area of great prominence when it comes to the
potential for renewable energy generation, being recognized for having significant and
strategic potential for diversifying the country’s energy matrix and reducing greenhouse
gas emissions [1]. One of the most promising sources in this region is wind energy, and,
due to the evolution of technological maturity in generation and the continuous decline in
generation costs, wind turbines have been widely used in recent years [2]. The Brazilian
northeast is characterized by consistent and strong winds that blow along its extensive
coastline and interior [3,4]. This climatic characteristic makes the region an ideal location
for the installation of wind farms, which can generate electricity in a clean and sustainable
manner [3,4].

The harnessing of the wind potential in the northeast presents specific and quite
unique challenges, requiring an extensive and well-distributed network of measurement
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instruments to accurately map locations with higher wind speed and consistency [1,4]. The
state of the art of wind speed measurement instruments plays an influential role in the
challenges faced by the northeast because the employed technology, whether anemometers,
measurement towers, or Laser Detection and Ranging (LIDAR), entails high costs and the
need for qualified labor, impacting the understanding of the behavior and availability of
these strategic and crucial data [5]. Another prevailing factor is the absence of long-term
meteorological data, affecting the identification of the best locations for wind farms, as well
as the economic and technical feasibility analysis of projects [1,4,6].

According to Cuerva [7], anemometers, especially in the context of sonic anemometers,
are capable of measuring wind speeds in turbulent atmospheric flows by analyzing the
behavior of ultrasound pulses in non-uniform and non-stationary flow and air fields. Such
systems consider how variations in airflow over the device interfere with pulse transmission.
Sonic anemometers are more suitable for measuring average velocities in non-uniform
flows compared to cup anemometers, which require more rigorous uniformity conditions
and have a measurement capacity ranging from 0 to 30 m/s. They are also subject to
low wind speed measurement errors (below 5 m/s). These errors can be attributed to
various factors such as background noise, small variations in wind speed, and, especially,
operational design for very low wind speed ranges.

According to Kristensen [8], the operation and dynamics of cup anemometers are
based on a linear calibration and an efficient response to the wind based on the difference
in drag between the cups when the wind blows in opposite directions, resulting in a torque
that causes the rotor to rotate. Cup anemometers have efficiency based on the height at
which the measurement occurs, presenting low errors, between 0.5% and 8%, for heights up
to 10 m. For wind speeds below 1 m/s, cup anemometers may have significant difficulties
in terms of accuracy and response due to the effects of the cup anemometer’s sensitivity
decreasing at low wind speeds, subtle changes in wind speed, and design.

Today, one of the major challenges is particularly low-cost instrumentation with good
data capture resolution for wind speed measurement in large areas [3,5,6]. In this context,
the Internet of Things (IoT) emerges as a notable trend in the field of instrumentation
applied to wind power generation, enabling the creation of low-cost and highly efficient
measurement systems capable of identifying wind speed profiles simultaneously in multi-
ple areas [6].

Magnetic anemometers, such as those proposed by Silva [9] and Hardianto [10], find
applications in sectors like agriculture and energy. However, the magnetic induction
technology introduced by Silva [9] faces challenges related to sensitivity to interference and
the need for precise calibration, especially at low wind speeds. Hardianto [10], for example,
reported errors of up to 3.08% for speeds below 1.26 m/s.

On the other hand, ultrasonic anemometers, which rely on the Doppler effect principle
to measure wind speed, are more commonly developed. Studies by Ribeiro [11] and
Wieser [12] demonstrate the feasibility of this approach, although factors such as wind
speed and vortex formation can affect measurement accuracy under varying atmospheric
conditions. Yadav [13] proposes a system based on the ultrasonic signal’s time of flight,
but his error analysis is limited to the influence of sensor distance. Amin [14], in turn,
presents a low-cost digital anemometer with wind direction monitoring, achieving standard
deviations between 1.19% and 3.56% for different speed ranges.

One of the main advantages of loT-based systems corresponds to the ability to enable
devices to communicate with high-latency wireless networks, providing reliability, security,
and privacy of transmitted data [14-16]. The use of IoT technology allows a revolution in
how environmental and meteorological monitoring is conducted, making it possible to col-
lect real-time data in an accessible, scalable, and cost-effective manner [7-9]. In the context
of wind speed measurement, compact sensors connected to the network are installed in
strategic locations, such as measurement towers, open spaces, building roofs, houses, and
even wind turbines, enabling continuous and high-resolution data collection [17,18]. The
use of IoT becomes essential for the development of wind speed magnitude monitoring
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systems, enabling the understanding of local and regional wind variations and facilitating
the existence of low-cost sensors capable of collecting a series of other relevant information,
such as wind direction. IoT-based systems are also more accessible in terms of acquisition
and maintenance compared to traditional technologies [19].

The development of systems for continuous measurement of wind speed magnitude
has become increasingly common. Kuncara et al. [20] present the development of an
ultrasonic anemometer based on Arduino, which is cost-effective and noise-free and can
be remotely monitored. The anemometer uses the HC-SR04 sensor with a Kalman filter
to measure wind speed and direction with high precision. Measurement results can be
stored on a memory card and accessed in real time through the Blynk app, version 2.27, on
a smartphone. The work also provides a comparison with other types of anemometers and
discusses the advantages of using the ultrasonic anemometer.

Yadav et al. [13] present the design and implementation of a low-cost, two-axis ul-
trasonic anemometer with real-time data logging on an SD card and Internet of Things
(IoT) capabilities. The goal is to measure wind speed in challenging environments where
conventional anemometers may not function adequately. The anemometer utilizes com-
mercially available components to reduce implementation costs and improve efficiency.
The article details the design and implementation process of the anemometer, including
the use of the time of flight (TOF) concept and the integration of SD card and IoT modules
with a Real-Time Clock (RTC) to store wind data with time information. The implemented
prototype is an autonomous system that does not require any additional computer or
hardware for operation. The article concludes that the anemometer is suitable for wind
energy systems and other applications. It notes that the wind reading from the prototype
is quite fluctuating, but a three-length moving average filter is applied to the prototype’s
output to remove fluctuations.

Jian et al. [21] describe an angle detection system based on the MPU6050 sensor like
an Inertial Measurement Unit (IMU). The system utilizes the Kalman filter algorithm to
improve the accuracy of angle measurement and a hardware circuit for implementation.
The system is capable of accurately measuring horizontal and vertical angles, making it
useful for tilt detection in inertial systems.

In light of this, this study presents the development, implementation, and validation
of preliminary results for a system that enables remote measurement of wind speed in
discrete time. The proposed system utilizes IoT technology to allow secure, intelligent, and
cost-effective measurements, providing data on wind speed magnitude through the use of
an inertial sensor. The study’s contribution lies in introducing a smart electronic device
capable of sending data to public or private web interfaces and employing measurement
methods without moving parts to measure wind speed.

2. Materials and Methods
2.1. Conceptual Design

The proposed system for real-time wind speed measurement is presented in Figure 1
as a block diagram. The inertial sensor, depicted in the figure, corresponds to an integrated
assembly consisting of a hollow plastic shell, a counterweight, an Inertial Measurement
Unit (IMU), and electronic circuitry. The IMU, in conjunction with the counterweight, is
responsible for detecting variations in wind speed. This system is specifically designed
for measuring flows that change slowly over time. The electronic circuitry includes a
signal conditioning circuit and a low-power microcontroller based on the 32-bit Xtensa LX6
processor, Espressif Systems, Shanghai, China, which transmits the collected data via the
MOQTT protocol.
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Figure 1. Schematic representation (a) of the real-time wind speed measurement system and (b) in a

block diagram.

The prototype for the system comprises an external inertial sensor with a cylindrical
shape, having a diameter of 100 mm and a height of 100 mm. It is made of rigid thermo-
plastic polymer with a thickness of 3 mm. The inertial sensor’s housing has an external
coating designed to enhance resistance to ultraviolet (UV) radiation, increase resistance
to high ambient temperatures, and maintain a low experimental cost. While the choice
of material and external coating for the housing meets the requirements of resistance and
insulation, it also resulted in the selection of a material with low roughness. This charac-
teristic, although not the primary objective of the coating, has the direct consequence of
reducing the coefficient of friction between the sensor and the air.

The inertial sensor has a central mass, aiming to maintain a mass distribution close
to the center of gravity of the sensor, and a drain to prevent condensation formation.
The support is adjustable, allowing the system to be installed at higher positions above
the ground. The inertial sensor’s housing is made of rigid thermoplastic polymer and
houses a 3-axis accelerometer sensor fixed at the center of gravity of the geometry, while
the supporting rod is a metal tube with a height of 1.5 m. Figures 2 and 3 represent the
hardware structure of the proposed system.

The proposed system utilizes an accelerometer sensor within the inertial sensor to
measure the acceleration of the inertial system. The inertial system has a total mass (M) of
300 g, with the balancing mass (m) having a value of 150 g. The balancing mass is fixed at
the center of the inertial system, where the accelerometer sensor is confined.

An accelerometer, specifically the MPU6050 model, was used as an Inertial Mea-
surement Unit (IMU) to construct the inertial sensor. The MPU6050 combines a 3-axis
accelerometer and a 3-axis gyroscope, allowing for the determination of linear acceleration
relative to an inertial frame with reasonable accuracy. This sensor was chosen due to its
low cost, easy integration, and adequate performance for the proposed application.
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Figure 2. Schematic representation of the block diagram of the components of the inertial sensor,
where (I) represents an accelerometer confined in the balancing mass, (II) represents an external case
in rigid thermoplastic polymer, and (III) represents a system balancing mass.

V)

Figure 3. Inertial system for inertial measurement. In (a), the system is observed with the control
and data processing unit (I), power cables +5 Vcc (II), and the O-ring seal (III) to prevent possible
moisture infiltrations in the electronic system. In (b), signal cables (IV) and the 3-axis accelerome-
ter (V) mounted on a rigid thermoplastic polymer structure are observed, completely limiting its
movement relative to the structure. In (c), the system’s balacing mass (VI) is observed, consisting of
distributed counterweights around the sensor.

The sensor hardware features 16-bit resolution analog-to-digital conversion per com-
munication channel. Although the sensor uses I2C communication by default, a low-speed
multi-slave bus, it is quite useful and functional for monitoring sensor outputs. Figure 4
illustrates the directions of the accelerometer’s measurement axes.

Figure 4. Reference axes of the inertial coordinate system of the device.
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In the figure, the x-, y-, and z-axes are represented in a three-dimensional coordi-
nate system associated with the IMU (Inertial Measurement Unit). The x-axis is oriented
horizontally to the right, while the y-axis is oriented horizontally to the left, both lying
in the horizontal plane. The z-axis is oriented vertically upward, perpendicular to the
planes formed by the x- and y-axes. This configuration of the axes allows for measuring
the IMU’s orientation and movement in three dimensions, providing a basis for analyzing
displacement and rotation in space. The x- and y-axes measure acceleration within a range
between —3.5 m/s? and +3.5 m/s?, while the z-axis measures acceleration within the range
of —10 m/s? to —6 m/s?. The established acceleration limits are based on the conducted
calibration and the physical limitations of the hardware and structure.

2.2. Mathematical Model of the Physical System

The physical model of the developed anemometer consists of a cylinder with diameter

D and height H located at the distal end of a circular metal rod, where the cylinder acts as

an inertial sensor aimed at measuring accelerations caused by aerodynamic forces from

wind speed. Wind speed measurement is based on the magnitude of the drag force (FD)

exerted perpendicular to the inertial sensor. The magnitude of FD on the inertial sensor is
estimated by (1):

FD:0.5><Cal><A><,o><v2 (1)

where Cd is the aerodynamic drag coefficient of the prototype; A corresponds to the cross-
sectional area in m? of the inertial sensor; 4 is the angle formed between the vertical axis
and the deflected shaft during operational scenarios; p is the air density in kg/m?; and v is
the wind speed given in m/s.

The theoretical model used to estimate the drag force on the cylinder provides a
useful basis for the mathematical analysis of the proposed physical system; however, it
is important to recognize that the drag coefficient is affected by several factors, such as
the aspect ratio of the cylinder and the Reynolds number. The presented formulation is
suitable for small variations in the angle of incidence and may not accurately capture the
flow behavior at higher angles or under turbulent conditions.

The maximum attainable angle of the shaft is constrained by its structural stiffness.
This property dictates the shaft’s capacity to withstand deflection prior to transitioning into
the inelastic regime or incurring permanent deformation.

However, even in a dynamic steady state where the drag force is balanced by the
elastic force of the shaft, acceleration (ac) can be non-zero due to micro-oscillations or rapid
fluctuations caused by variability in airflow and the elastic response of the system. These
accelerations, measured by the inertial sensor, do not reflect a constant linear motion but
rather a series of small variations around a mean equilibrium position. The equation for
the measured acceleration in relation to the drag force can be expressed as (2):

FD =m X ac 2)

where m corresponds to the mass in kg of the inertial sensor, and the term ac corresponds
to the resultant acceleration measured in the 2 axes of the accelerometer, given by (3):

ac = \/ax2 + ay2 3

In the case of a hypothetical static steady state, the drag force and weight of the
cylinder will be balanced by the elastic force in the supporting pole. In this situation, the
acceleration measured by the IMU, represented by ac in Equation (2), will be estimated as
zero, as there is no resulting movement in a steady state.

From Equations (1) and (2), it follows that

m><11c:0.5><Cd><A><p><v2 4)
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In Equation (5), the velocity (v) refers to the zero-mean fluctuating velocity experienced
by the probe, which is independent of any mean flow velocity. This fluctuating velocity
represents the instantaneous variations in wind speed around the probe, caused by dynamic
changes occurring over a time interval (t). It is important to distinguish this fluctuating
velocity (v) from the mean wind velocity, which is a global measure and can be influenced
by various factors, such as topography and atmospheric conditions.

The drag coefficient (Cd) depends on the local Reynolds number (Re) [22], considering,
due to the nature of wind movement, turbulence for most of the time which affects the
system. The Reynolds number, used for analyzing the flow behavior around the inertial
sensor, relates the fluid density (p), dynamic viscosity (u#), and the characteristic velocity
(U) of the flow. It is calculated as

_pxUXxL
K

Re (6)

In Equation (6), the characteristic dimension of the cylinder is denoted by L. This
definition is essential for analyzing the flow behavior around the inertial sensor, as it helps
assess flow conditions, such as laminar or turbulent, which directly affect the system’s
performance. The Reynolds number (Re) is used to predict the transition between laminar
and turbulent regimes and to analyze transport phenomena, as well as mass and heat
transfer [23,24]. The determination of Cd was based on the literature and tested using
computational fluid dynamics (CFD). It shows three distinct regimes as a function of Re: at
low speeds (0.1 to 1 m/s), Cd can be modeled as inversely proportional to Re (Cd « Re™!)
because the boundary layer around the cylinder is relatively thin, resulting in lower fluid
resistance [16-18]. Given the influence of Cd on the results, its variation was considered an
uncertainty factor in the measurements, affecting data precision.

Since the rod is fixed at one end and free at the other, the drag force along the rod is not
uniform. The drag increases with distance from the fixed end, reaching a maximum at the
end where the inertial sensor is located. This drag can be treated as a distributed load that
varies with height. Near the ground fixture, the drag effect is minimal or nearly zero due
to its proximity to the fixed point. As we move away from the fixture, the drag increases
exponentially, being maximum at the free end where the inertial sensor is located. Due to
the variable nature of the drag on the rod, there is a significant contribution to the angular
displacement of the rod, especially near the sensor. Since the drag is greater at the free end,
it generates an additional moment around the fixed point, increasing the inclination angle
6 of the rod. The behavior of the drag along the rod can be obtained by Equation (7).

xCdexdxxvazFDr:%xCdexvazxL (7)

N =

The relationship between the displacement angle of the rod and the drag force is
shown in Equation (8).

FD x L2

b= 2EI ®)

Equation (8) allows relating the drag force (FD), the height of the rod (L), and the

bending stiffness (EI) of the rod to determine the angular deformation in radians. The

selection of materials for the rod should consider the need to obtain angular deformations

proportional to drag forces produced by winds compatible with the region. The use of

materials with high stiffness values significantly affects the attainment of accelerations in

the range of low-speed winds.
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2.3. Signal-Processing Circuit and Firmware

The real-time wind speed measurement system employs digital sensors with an 12C
port for data transfer. The signal processing circuit performs several functions: it maintains
stable voltage levels by providing 0 V (or near zero) and VCC (power supply voltage),
preventing fluctuations that could affect the system; it synchronizes the clock to ensure
proper voltage levels for I2C communication; and it uses pull-up resistors on the SDA and
SCL pins to define logical levels accurately.

To operate the system, firmware was developed in a high-level programming language,
as shown in Figure 5. This firmware, based on the work of Rocha et al. [25], utilizes threads
to manage essential hardware control processes. Threads serve as individual execution
units within the firmware, allowing for simultaneous or rapid cycling of tasks, creating the
effect of multitasking.

Stop measurement and
restart process
—( Device started
Start of the measurement
process

NO

Error in sensors?

Thread 02

Wi-Fi avaliable

Connection
successful?

NO Data transmitted?

NO

Thread 03

Getting the
internet time?

Web application
and users

Figure 5. Flowchart for identification of firmware function blocks.

Thread 01

According to Figure 5, the system is divided into three units: thread 01, which is
the system’s connectivity with the internet network; thread 02, which corresponds to
checking the sensor reading conditions; and thread 03, which indicates the transfer of data
to the API (Application Programming Interface). For data transmission to the server, an
asynchronous MQTT protocol was implemented, based on the publish-subscribe model,
to publish messages on specific topics and with high performance for low-power devices
connected to wireless networks with limited speed and high latency [26-29].

2.4. Kalman Filter

The Kalman filter is designed for applications where discrete data need linear filtering
with noise distribution reduction through the minimization of the mean squared error
criterion. The filter can be widely applicable to linear dynamic systems, as long as the
average behavior for error covariance can be extracted from the dataset [30-32]. One of
the advantages of using the Kalman filter is the marginal gain for initial readings, along
with relatively inexpensive and straightforward computational cost. The Kalman filter is a
statistical tool used to estimate the current state of a dynamic system based on noisy signal
measurements. The Kalman filter relates the current estimated value with the previous
estimated value, the signal gain, and the current measurement. This approach allows for
efficient updating of the system’s state estimate, considering the uncertainties associated
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with both the measurements and predictions, resulting in a more accurate estimate of the
system’s state.

2.5. Numerical Validation of Drag Force on a Finite Cylinder

The computational fluid dynamics (CFD) simulations were performed using Ansys
Fluent® 2021 R2, a commercial software that employs the finite volume method. The main
goal of these simulations was to determine the drag coefficient (CD) for the anemometer,
which is crucial for accurately calculating air velocity. This method involves dividing
the domain into discrete subdomains or control volumes and integrating the differential
equations (continuity and momentum) within each subdomain over time. This process
results in a set of algebraic equations related to these control volumes, which are then solved
using iterative methods such as Jacobi, Gauss-Seidel, and Successive Over-Relaxation.
Figure 6 shows the physical domain under investigation, including its main dimensions
and the inlet and outlet faces. For external flow around submerged bodies, the literature
suggests that a longer downstream length is necessary [33,34]. Preliminary simulations
were conducted to determine the appropriate size of the fluid domain and avoid any
undesired influences.

35 -
PO 0 i

—

Figure 6. Physical domain under study.

The boundary condition used at the inlet is prescribed velocity, and at the outlet is
gauge pressure equal to zero. The boundary condition used on the bottom surface of the
domain, representing the floor, and on the surfaces representing the studied body (inertial
sensor + shaft) was of the ‘wall’ type, meaning a no-slip condition (the fluid velocity is
equal to zero). Additionally, the boundary condition used on the remaining faces of the
domain was of the ‘symmetry’ type to model a zero-shear slip wall, that is, having non-zero
velocity in a direction parallel to the surface.

The numerical mesh, illustrated in Figure 7, was developed in the Fluent Meshing®
and is composed of polyhedral elements due to their advantages over tetrahedral and
hexahedral elements: ease of generation, flexibility in handling complex geometries, and
reduced element requirements for a given level of result accuracy [35-37]. Consequently,
this choice accelerates analysis and reduces the computational cost required.

To determine the drag coefficient (CD) for the anemometer, a critical parameter for
calculating wind speed, as shown in Equation (5), a simulation was conducted using
computational fluid dynamics (CFD). A greater refinement was performed on the prototype
surfaces through local sizing, specifying smaller elements. Five thin boundary layers
(inflation) were added to all surfaces modeled as “‘wall’ to better capture pressure and
velocity gradients. Additionally, a body of influence was applied to increase refinement in
the region near the cylinder (inertial sensor), including the downstream region, with the
aim of enhancing the accuracy of the results.
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Figure 7. Details of the numerical mesh used in the simulations.

In order to reduce the computational effort and maintain a good accuracy of the
obtained results, a mesh convergence study was made using the methodology proposed by
Celik et al. [38]. By calculating the grid convergence index (GCI), a mesh with 888,608 cells
was selected to be used in the simulations of all cases under study. The final mesh exhibited
a minimum Orthogonal Quality value of 0.4, surpassing the suggested minimum of 0.2. The
physical properties of the air used in the simulation align with the altitude, temperature,
and relative humidity of the location where the tests were conducted. Specifically, this
entails a density of 1.164 kg/m3 and an absolute viscosity of 1.7894 x 10~ Ns/m?.

The simulations were performed in a steady-state regime, the turbulence model
used was the Shear-Stress Transport, k-w (SST), the pressure-velocity coupling was PISO,
and the spatial discretization was second-order upwind. Further information on the
mathematical model employed can be found in the Ansys Fluent Theory Guide [35]. The
convergence criteria employed in the simulations were set to 103 for continuity (mass
conservation), 105 for velocity components in the x, y, and z directions, and 10~# for
both turbulence kinetic energy (k) and the specific rate of dissipation (w). To validate the
employed mathematical model, preliminary simulations were conducted on airflow around
a sphere with a diameter of 100 mm and fluid velocity ranging from 0.5 to 5 m/s. The
maximum relative error obtained for the drag coefficient in these simulations, compared
to the exact values reported in the literature [39], was 5%. It is important to highlight that
the mathematical model used for CFD analysis assumes that the sensor is a rigid body and
does not undergo deformation due to the airflow.

2.6. Data Collection and Calibration

The official wind speed data for sensor calibration were obtained from a meteorological
station at the Brazilian Agricultural Research Corporation (Embrapa-Algodao), located in
the city of Campina Grande, Paraiba, northeast Brazil, with a semi-arid tropical climate.
The testing area took place in the city of Juru, located in the state of Paraiba, northeast
Brazil, and is part of the state hinterland, experiencing a semi-arid climate with irregular
rainfall and prolonged drought periods.

The calibration of the proposed inertial sensor was performed by comparing its data
with a reference mechanical sensor. Due to the discrepancy in the granularity of the data
collected by the two sensors, it became necessary to apply preprocessing techniques to
normalize and ensure comparability between the data. The Kalman filter was employed to
mitigate the effects of noise present in the inertial sensor measurements, minimizing the
impact of errors and aiming to align the values obtained by the inertial sensor with those
from the mechanical sensor. Additionally, the machine learning technique, specifically the
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polynomial regression model, was used to adjust the measurements of the inertial sensor
and establish a relationship between the measurements, making systematic corrections to
the inertial sensor data.

3. Results and Discussions
3.1. Estimation of the Ideal Length of the Vertical Rod for Minimum Natural Frequency

The analytical model was developed to predict the dynamic behavior of the inertial
system under specific wind conditions and to assist in the optimization of the support rod’s
length and geometry. The analysis focused on the natural frequency of the rod and the
expected maximum displacement due to wind excitation. These characteristics are crucial
to ensure that the rod maintains the system’s sensitivity without introducing excessive
displacements that could compromise the accuracy of the measurements.

Through the analytical model, different configurations of rod length and geometry
were simulated to evaluate how each combination affected the natural frequency and
maximum displacement of the rod. The iterative analysis, illustrated in Figure 8, shows
that the natural frequency decreases with increasing rod height, while the maximum
displacement increases. This behavior is directly related to the stiffness and mass of the rod.
Based on the results of the analysis, it was identified that a rod length between 1.42 m and
1.61 m would provide an adequate balance between high natural frequency and controlled
displacement. The final height of 1.5 m was chosen as an optimal point, maximizing sensor
sensitivity while minimizing the risk of introducing errors due to excessive displacements.
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Figure 8. Behavior of maximum displacement amplitude (mm) (a) and natural frequency (b) as a
function of height for a slender rod.
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The wind speed profile across the test region fluctuates between 1 m/s and 5 m/s
cylinder [40] on average, reaching peak velocities of 16 m/s during certain periods of
the year. The determination of the rod height was based on the premise that the average
wind speed would induce an average displacement of up to £1.5 mm in any direction
perpendicular to the axis of the rod as a consequence of system excitation. Figure 8a
illustrates the maximum displacement amplitude of the rod in millimeters as a function
of rod length. As the rod length increases, so does the maximum displacement. This
indicates that longer rods are more susceptible to larger displacements under aerodynamic
forces, which could compromise measurement accuracy. Figure 8b shows the natural
frequency of the rod in Hertz as a function of rod length. As the rod length increases,
the natural frequency decreases. A lower natural frequency can make the system more
vulnerable to unwanted resonances with the wind frequency, which would also affect the
sensor’s accuracy.

The analysis presented in Figure 8 was essential for selecting the ideal height of the rod.
Based on the graphs, it was possible to determine a length range for the post that would
provide a sufficiently high natural frequency to avoid resonances with the wind (between
1.42 m and 1.61 m), while also limiting the displacement to acceptable values (+1.5 mm).
Figure 8 also shows that a longer rod would result in greater displacement and lower natural
frequency, which is undesirable for maintaining sensor accuracy. Therefore, a length of
1.5 m was chosen as an optimal compromise between system sensitivity and mechanical
stability, ensuring that the sensor remains effective under expected operating conditions.

3.2. Numerical Validation of Drag Force

Figures 9 and 10 depict the behavior of fluid velocity and pressure gradients, respec-
tively, around the inertial sensor and its support structure for different wind speeds. The
pressure and velocity behaviors are complementary within the analysis of the interaction
between the fluid and the proposed device.

x-velocity [m/s]
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¥

..

Figure 9. Velocity contour in the XY plane at Z =0 m.

Upon analyzing Figure 9, it is noted that there are regions of higher velocity at the
top of the inertial sensor. This can be explained by the theory of inviscid flow, which
states that the mass flow rate is constant between any two streamlines. As the fluid flows
around the cylinder, the streamlines tend to converge, reducing the area between them and
consequently increasing the velocity to maintain a constant mass flow rate. The pressure
difference between the front and back regions of the solid, highlighted in Figure 10, plays a
critical role in the drag force. The high pressure at the front region of the inertial sensor
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arises from fluid stagnation, where the fluid’s velocity decreases abruptly, causing the
conversion of dynamic pressure (due to velocity) into static pressure.

Pressure [Pa]
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1.500
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-1.500
-2.000
-2.500
-3.000

Figure 10. Pressure contour in the XY plane at Z = 0 m.

The observation of negative values for the x-component of velocity in the downstream
region of the cylinder suggests the existence of recirculation zones. These zones, typical of
viscous flows around solid bodies, emerge due to boundary layer separation, an inherent
phenomenon in fluid mechanics. Herein, the fluid viscosity decelerates the motion of
particles proximal to the surface of the cylinder, leading to boundary layer separation and
the consequent formation of a low-pressure wake.

The graph shown in Figure 11 illustrates the relationship between drag force [N] and
drag coefficient [-] for the inertial sensor with respect to wind speed [m/s]. Data obtained
through CFD demonstrate a decrease in the drag coefficient with increasing wind speed. In
the speed range analyzed, there was an approximate difference of 0.05 in the value of the
drag coefficient in absolute terms and 8.4% in relative terms. The parabolic shape of the
drag force curve indicates that the drag force is directly proportional to the square of the
wind speed, as expected.
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—i— Drag force [N] = X =Drag coefficient [-]
X
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0.08 X
_ AN 0.62 =
2. 006 N 5
e N 061 5
9 ~ &
-« ~ ~ Oo)
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=X 0.58
0.00 0.57
0 1 2 3 4 5

Wind speed [m/s]

Figure 11. Drag force and drag coefficient behavior as a function of fluid velocity.
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The average drag coefficient obtained in simulations for the cylinder is approximately
40% higher than that for flow around a sphere with the same flow regime, meaning the
same Reynolds number. This happens because the smoother shape of a sphere tends to
induce more uniform flow patterns and reduced boundary layer separation. As a result,
it leads to less wake formation and a relatively lower pressure difference compared to a
cylinder of similar dimensions. The determination of air density for drag force calculations
was based on local climatic information, as the device does not have a sensor capable of
estimating air density. It was proposed that air density could vary by up to 5% in its values,
reflecting the variable atmospheric conditions at the measurement site. This approach
was adopted to compensate for the lack of a specific sensor and ensure the estimation of
drag calculations.

3.3. Calibration

The initial approach involved calibrating the inertial sensors, always aiming to keep
the inertial anemometer aligned horizontally to avoid significant alignment errors caused
by uneven surfaces. The calibration process was divided into stages, including noise
analysis, inertial data analysis, and obtaining calibration curves. The first two stages were
conducted through experiments with a 10 s period at an average sampling rate of 10 Hz.
Meanwhile, the third stage considered data obtained over a 1 h period, also maintaining an
average sampling rate of 10 Hz.

The data related to the analysis of noise produced by the inertial anemometer show
that the noise is not purely white. Analyzing the noise behavior, as shown in Figure 12, it is
observed that the wind speed behavior in the time domain exhibits low-frequency noise
with variable amplitude throughout the analysis. This behavior is consistent with vortex
shedding, characterized by periodic oscillations in the horizontal acceleration components
(X'and Y axes) due to flow separation around the sensor and its supporting structure.

Due to the limited bandwidth of the sensor used, it was not possible to adequately
adjust the measurement offset for the fast and chaotic fluctuations associated with high-
frequency turbulence. This limitation affects the accuracy of the measurements, especially
in conditions of intense turbulence, and may impact data analysis, such as the identification
of small-scale turbulence.

Analyzing the noise distribution behavior, Figure 12, shows that along the x- and
y-axes and relative velocity, the noise approaches a normal distribution, with mean and
standard deviation presented in Table 1. A comparative analysis between the noise distri-
bution of an inertial anemometer along the x-axis and the expected normal distribution is
presented in Figure 13. According to Figure 14, the characterization of noise in dynamic
applications and the potential deviations from Gaussian distribution behavior are observed,
being crucial to understanding the accurate interpretation of air velocity measurements by
the presented method.

Table 1. Behavior of the mean and standard deviation of wind speed measurements for the x- and
y-axes and for the resultant speed of the inertial system.

Acceleration

Statistical Parameter - - Resultant Speed (m/s)
x-Axis (m/s?) y-Axis (m/s?)

Average 0.3072 0.3665 1.4552
Standard Deviation 1.1262 1.0738 0.7282
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Figure 12. Inertial anemometer noise in the time domain for (a) x-axis, (b) y-axis, and (c) resultant
speed.

During testing, it was observed that the noise for resulting velocities between 0 and
1.2 m/s exhibited a higher variation around the mean value, averaging 10%. This behavior
was not significantly present for velocities above 1.2 m/s. This behavior can be attributed
to the resonance phenomena of the structure and the impact of the IMU on measuring
low-intensity, low-velocity values using the proposed system.

Analyzing the noise and calibration data, no anomalies or outliers were identified
for wind speeds above 1.2 m/s, with confidence intervals remaining within +2¢ and
£30 around the mean. Understanding the noise distribution allows for the calculation
of uncertainty associated with acceleration measurements and provides insight into the
reliability of the measurements. For speeds below 1.2 m/s, not shown in Figure 14, the
confidence intervals are greater than +30.
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Figure 13. Comparative analysis between the inertial anemometer noise distribution for the x-axis
(blue line) and y-axis (red line) and with the expected normal distribution (black line).

(a) 0.25
& 02
5
@ &2 015
g ¢
5 S
= £ 01
£ 5
2 g 005
= O
< 9
0.15
(b)
& 01
5
2 B 005
3z
=8
=
g =—005
S O
= O
< -0.1
-0.15

Time [s]

Figure 14. Behavior of acceleration values for the X-axis (a) before and (b) after calibration.

Table 2 illustrates the accuracy and noise level of the wind speed measurements
from the inertial sensor. According to Table 2, the inertial anemometer achieves about
95% accuracy and a lower noise level at moderate speeds (between 1.2 m/s and 10 m/s),
providing precise measurements. At very low speeds (<1.2 m/s) or very high speeds
(>10 m/s), the noise level increases, affecting measurement accuracy and resulting in errors
greater than or equal to 10%.

Table 2. Accuracy and noise levels of wind speed measurements by the inertial anemometer.

Wind Speed Range (m/s) Noise Level (Standard Deviation) Measurement Accuracy
<1.2m/s +30 ~90%
12m/sand 10 m/s Between £20 and £30 ~95%

>10m/s +30 <90%
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The system calibration utilized a combination of the Kalman filter and machine learn-
ing algorithms to address the stochastic nature of control and measurement data, enhancing
measurement performance. The Kalman filter was effective in reducing noise across the x-,
y-, and z-axes, stabilizing them around the reference values: x-axis, 0 £ 0.1 m/ s2; y-axis,
0 + 0.1 m/s?; and z-axis, —9.80 + 0.2 m/s?. Figures 14-16 show the acceleration data
from the inertial sensor before and after calibration, which included the Kalman filter.
Figure 14 displays the X-axis data, Figure 15 the Y-axis data, and Figure 16 the Z-axis
data. Comparing the data before and after calibration demonstrates the Kalman filter’s
effectiveness in reducing noise and improving the accuracy of acceleration estimates.
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Figure 15. Behavior of acceleration values for the Y-axis (a) before and (b) after calibration.
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Figure 16. Behavior of acceleration values for the Z-axis (a) before and (b) after calibration.
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Figure 14a illustrates the behavior of acceleration data prior to the calibration process.
Significant fluctuations and high variability are observed, attributed to noise and inter-
ference within the system. Figure 14b presents the acceleration data after the calibration
process, where techniques such as the Kalman filter were implemented. The calibrated
data exhibits greater stability, with reduced fluctuations and smoother, more consistent
accelerations over time. The use of the Kalman filter resulted in a significant improvement
in the quality of the acceleration data. The mean, initially at 0.158 m/s?, was reduced to
approximately zero (—0.001 m/s?), indicating a successful correction of the sensor’s offset.
However, the standard deviation slightly increased after calibration, from 0.037 m/s? to
0.051 m/s?. This observation suggests that the noise present in the x-axis may have a more
complex nature, possibly involving low-frequency components and colored noise. While
the Kalman filter is effective in reducing white noise, it may not be optimal for handling
this type of noise.

Similar to the X-axis, as shown in Figure 14, the calibration process also reduced
fluctuations in the Y-axis data, as illustrated by comparing Figure 15a,b. For the Y-axis, ap-
plying the Kalman filter lowered the average acceleration measurements from 0.033 m/s?
to —0.005 m/s?, indicating a moderate correction of the sensor offset. The standard devi-
ation of acceleration measurements also decreased after calibration, from 0.065 m/s? to
0.050 m/s?. As with the X-axis, noise on the Y-axis may be more complex, and while the
Kalman filter effectively reduced white noise, it may not fully address all types of noise.

The comparison of Figure 16a,b with Figures 14 and 15 reveals that the implemen-
tation of the Kalman filter also significantly improved the accuracy of the data. For
the Z-axis, the application of the filter resulted in the stabilization of the sensor offset
around —9.799 m/s? and a reduction in the standard deviation of the measurements from
0.111 m/s? to 0.013 m/s%. Unlike the X and Y axes, the noise on the Z-axis may indeed
have characteristics close to white noise, which would explain the mean being close to the
expected value of —9.8 m/s? and the lowest standard deviation among the axes. An impor-
tant factor to consider is that movements along the Z-axis are limited by the supporting
structure, which favored the results obtained.

Calibration was conducted using two algorithms: Linear Regression (LR) and K-
Nearest Neighbors (K-NN). While LR initially seemed like a natural choice for modeling
data relationships, it was not suitable due to slight non-linearity in the data. K-NN, on the
other hand, proved more effective by estimating the correspondence between measured
and control data based on data point similarity. Given that the results were based on
arithmetic means, some fluctuation was expected. To establish the calibration surface, 24 h
of observational data were used, as shown in Figure 17. The sensor calibration results
account for the corrected acceleration ac of the prototype and the impact of the prototype’s
mass variation m on wind speed determination.

Based on Figure 17, it is observed that the behavior of the calibration surfaces, resulting
from the application of machine learning techniques, is similar to the behavior of mechanical
anemometers. In some points of the calibration surface, a linear behavior is observed, which
is the result of numerical interpolation done to equalize the time scale and maintain the
similarity of the data. The behavior of the calibration surfaces, resulting from the application
of machine learning techniques, is similar to the behavior of mechanical anemometers.
Considering that wind speed can occur in various speed and turbulence regimes, affecting
the behavior of the Cd value, an analysis of the measured value variation was performed,
revealing an uncertainty of 0.067366.

The calibration method results showed that the measurements exhibit an accumulation
of errors from an accelerometer that corresponds to positive values. Although some factors
are considered for estimating the errors of the inertial sensor measurements, it still becomes
complex to identify all factors. The estimation of speed presents systematic positioning
errors estimated at v = 0.088 m/s for values between 1.2 m/s and 10 m/s. For values below
1.2 m/s, the estimated error is approximately 0.231 m/s. For values above 10 m/s, the
estimated error can reach 2.00 m/s due to increased turbulence. The result of the calibration
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of the proposed system appears reasonable, although it still contains a level considered
as noise mainly due to the phenomena of acceleration and deceleration of the suspended

mass of the inertial sensor.
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Figure 17. Calibration curve for the inertial sensor after calibration.

3.4. Data Analysis

After calibrating the device, it was sent to the test area in Juru, Paraiba, where it
remained under testing from 1 January 2023 to 30 June 2023. The city of Juru lacks meteoro-
logical stations in the vicinity, preventing direct comparison of the data to reference data.
However, the city serves as an excellent area for proof-of-concept tests.

The tests conducted in Juru, Paraiba, showed values with some peaks in wind speed,
which can be attributed to oscillations caused by small displacements at the base or cor-
rections of the sensor in relation to the horizontal plane. The results presented below in
Figure 17 correspond to observations collected over 30 days of continuous monitoring,
namely, the observed maximum and average wind speed wind speed.

Figure 18b shows the variation in the average wind by the inertial sensor over time. The
average wind speed measured remains around 4-5 m/s but with significant fluctuations in
wind speed throughout the analyzed period. It is likely to observe some patterns in the
variation of wind speed, such as peaks and valleys. In general, peaks were observed during
the daytime period and valleys during the nighttime period. This behavior is common
and is affected by local events, such as rain and cold fronts. The location of the testing site,
being a mountainous area with an elevation of 500 m above sea level, directly influences

the wind regime.
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Figure 18. Temporal analysis of (a) maximum speed measured by the inertial sensor [m/s] and
(b) average speed measured by the inertial sensor [m/s]. The values correspond to the velocity
measured by the inertial sensor during the proof-of-concept tests.

Comparing the results obtained with the studies by Silva [9], Ribeiro [11], and Ya-
dav [13], it is observed that the development of anemometers shows limitations in the
speed measurement range, especially between 1 m/s and 2 m/s, where typical errors often
exceed 5% due to the effects of low wind speed and vortex formation. The errors start
to stabilize in the range of 2 m/s to 5 m/s, but they still remain close to 5%. However,
the ideal speed range for measurements, where errors are generally below 5%, is above
5 m/s. In this range, anemometers demonstrate more reliable and consistent performance,
minimizing the effects of flow distortion and turbulence induced by the sensor itself.

Figure 19 illustrates the wind rose with the following directions and their respective
angles: North (N): 0° to 45°, Northeast (NE): 45° to 90°, East (E): 90° to 135°, Southeast
(SE): 135° to 180°, South (S): 180° to 225°, Southwest (SW): 225° to 270°, West (W): 270°
to 315°, and Northwest (NW): 315° to 360°. Figure 18 presents the wind rose diagram,
demonstrating the frequency and direction of winds during the testing period. According
to the experimental data, the Juru region in Paraiba exhibits a predominance of winds
coming from the west and northwest. The results of the wind direction tests show errors in
approximating the values in determining the direction, mainly caused by positions with
higher turbulence, such as the east and southeast directions.
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Figure 19. Wind rose with the respective wind directions.

4. Conclusions

In the present investigation, a prototype for an Internet of Things (IoT)-based anemome-
ter, designed for the measurement of wind speed, was successfully developed and imple-
mented. The prototype incorporated an inertial sensor and a microcontroller integrated
with IoT technology, facilitating wireless data collection and transmission. Subsequently,
the acquired data underwent thorough processing and analysis to yield precise estimations
of wind speed.

The inertial anemometer described in this paper was designed to operate under real-
world conditions of varying wind speed. However, during experimental testing, it was
observed that the instrument performs more solidly under conditions of slower-varying
wind flows. It may exhibit fluctuations in readings, especially in conditions of rapid or
highly dynamic flow. In scenarios where wind conditions change rapidly, the measured
values exhibit high variability, resulting in measurements with errors exceeding 10%. The
presented anemometer performs optimally at wind speeds between 1.2 m/s and 10 m/s,
where the accuracy and reliability of the results are around 95%. In more stable flow
conditions, the instrument, especially when combined with the application of a moving
average filter, can provide more accurate and reliable measurements.

The developed inertial anemometer demonstrated good accuracy in measuring wind
speed. At low intensities (up to 1.2 m/s), the results exhibit a reliability close to 90%. The
calibration, based on machine learning, ensures reliable results, comparable to conven-
tional mechanical anemometers. The integration with IoT enables remote and real-time
monitoring, expanding the possibilities of application.

Although the Kalman filter and calibration minimize the errors caused by vibration,
extreme wind conditions can still affect the accuracy of the measurements.

The sensor exhibits high angular resolution (3°), which can be further improved by
adjusting the length of the rod.

This versatility, coupled with low cost, makes the anemometer a promising solution for
various applications. The wind speed measurement method based on inertial sensors, as
presented in this study, was compared to traditional methods, such as cup anemometers and
sonic anemometers. The analysis revealed that, while traditional methods are widely used
and reliable in moderate to strong wind conditions, they present significant limitations
in low wind speed ranges, where measurement errors can exceed 5%. In contrast, the
proposed system demonstrated greater accuracy in light wind conditions, with reduced
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systematic errors, especially at speeds below 5 m/s, where most traditional anemometers
fail to provide reliable readings.

Furthermore, the use of an inertial sensor allows for a faster response to changes in
wind conditions, which is crucial for real-time applications.

This topic is of great interest, especially in regions where the number of monitoring
stations is limited, and there is a need to develop low-cost monitoring systems that can
operate with less supervision and simple calibration and in remote areas where access to
traditional equipment is limited due to cost or geographical isolation.

Another significant advantage of this system is its potential to open a new line of
study in the field of wind speed measurement. With further research, this inertial-sensor-
based method could evolve into an innovative technology, capable of becoming a viable
alternative to current measurement systems, such as ultrasonic anemometers. In this way,
the inertial system could play a role similar to that of sonic anemometers today, offering a
new technological approach to precise wind measurement.

The research demonstrates the feasibility of integrating IoT into wind speed measure-
ment systems, paving the way for smarter and more sustainable solutions.
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