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Abstract: Dye-based angiography is the main imaging modality in evaluating the vasculature of
the eye. Although most commonly used to assess retinal vasculature, it can also delineate normal
and abnormal blood vessels in the anterior segment diseases—but is limited due to its invasive,
time-consuming methods. Thus, anterior segment optical coherence tomography angiography (AS-
OCTA) is a useful non-invasive modality capable of producing high-resolution images to evaluate
the cornea and ocular surface vasculature. AS-OCTA has demonstrated the potential to detect
and delineate blood vessels in the anterior segment with quality images comparable to dye-based
angiography. AS-OCTA has a diverse range of applications for the cornea and ocular surface, such as
objective assessment of corneal neovascularization and response to various treatments; diagnosis and
evaluation of ocular surface squamous neoplasia; and evaluation of ocular surface disease including
limbal stem cell deficiency and ischemia. Our review aims to summarize the new developments and
clinical applications of AS-OCTA for the cornea and ocular surface.

Keywords: anterior segment; cornea; ocular surface; optical coherence tomography angiography

1. Introduction

Optical coherence tomography (OCT) is an indispensable ocular imaging modality
in our routine clinical practice [1]. It creates three-dimensional tomographic images by
applying low-coherence light and measuring the echo time delay of light backscattered
from tissue structures [2]. OCT is non-invasive and can provide fast, high-resolution images
of the eye to assess both its anterior and posterior segments [3].

Fluorescein angiography (FA) and indocyanine green angiography (ICGA) are stan-
dard imaging modalities for evaluating the vasculature of the eye. Although most com-
monly used for the retina, they can also delineate normal and abnormal blood vessels
in anterior segment diseases, even for those potentially obscured by corneal scarring [4].
FA and ICGA can reliably quantify various vessel parameters and maturity [5]. Contrast
leakage in angiography can shed insight into vessel maturity and pathological states while
differentiating between afferent and efferent vessels [6]. However, it also can obstruct the vi-
sualization of deeper vessels, resulting in an underestimation of the vascularity [7]. FA and
ICGA are also limited due to their invasive, time-consuming, and subjective nature. They
are also contraindicated in patients who are pregnant or have significant hepatic or renal
impairments. There is also an inherent risk of adverse effects from the intravenous infusion
of contrast such as nephrotoxicity and even life-threatening anaphylactic reactions [8].

OCT angiography (OCTA) is a relatively recent non-invasive imaging modality ca-
pable of producing high-resolution angiographic images of the eyes, in multiple coronal
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planes, within seconds [9]. It performs additional analyses of signal decorrelation be-
tween consecutive OCT scans by comparing phase speckle contrast, changes in intensities,
and variations in the OCT signal [1]. OCTA produces high-resolution images with an
acquisition time comparable to FA and ICGA while avoiding the risks of contrast-related
complications [10]. While a clinician is required for the administration of intravenous
contrast in contrast-based angiography, OCTA only requires a technician to operate the
device. Currently, OCTA is utilized when imaging the vasculature of the posterior segment,
such as the retina, choroid, and optic nerve, and for patients who are contraindicated
for FA and ICGA [11,12]. With growing interest in anti-angiogenic therapies for anterior
segment diseases, there is an increasing preference for a safe, rapid, and non-invasive
method to assess the anterior segment vasculature [13]. Available anterior segment OCTA
(AS-OCTA) systems for the cornea and ocular surface include AngioVue (Optovue Inc.
Fremont, CA, USA), Angioscan (Nidek Co. Ltd, Gamagori, Japan), DRI OCT Triton (Top-
con, Tokyo, Japan), PlexElite (Carl Zeiss Meditec, Dublin, California, USA), Angioplex
(Carl Zeiss Meditec, Dublin, California, USA), Spectralis OCTA (Heidelberg Engineering,
Heidelberg, Germany), and Yalkaid and BMizar (TowardPi Medical Technology Co., Ltd.,
Beijing, China), all of which merely require an additional adaptor lens to image the anterior
segment [1,14,15]. Table 1 summarizes the advantages and disadvantages of AS-OCTA and
dye-based angiography for the anterior segment.

Table 1. Advantages and disadvantages of anterior segment optical coherence tomography (AS-OCT)
angiography vs. traditional dye-based angiography.

Advantages Disadvantages

AS-OCT angiography
1. Non-invasive and relatively time-efficient
2. Zero risks of contrast-related adverse effects
3. Does not require clinician to operate

1. Image quality can be affected due to image,
motion and projection artefacts
2. Operator-dependent

Traditional dye-based
angiography (fluorescein

angiography and indocyanine
green angiography)

1. Ability to differentiate normal and abnormal
vessels even in corneal scarring
2. Contrast leakage helps differentiate afferent
and efferent vessels while providing details
about vessel maturity and pathology

1. Contrast leakage can obscure visualization
of deeper vessels
2. Invasive and time-consuming
3. Risks of contrast-related adverse effects
4. Limited use in hepatic and renal
impairments
5. Requires clinician to perform
6. Operator-dependent

In this review, we aim to summarize the recent developments and applications of
AS-OCTA for the cornea and ocular surface, specifically the conjunctiva, episclera, and
sclera, as well as discuss potential areas for further research.

2. Methodology

We conducted a literature review on PubMed, Web of Science, and Google Scholar with
articles identified through multiple search methods. These included but were not limited
to key terms such as “optical coherence tomography angiography”, “OCTA”, “anterior
segment”, and “ocular surface”. Articles were included only if they were less than 5 years
old and relevant to our review. A total of 138 articles were identified initially prior to
selection. An overview of the recent applications of OCTA for the anterior segment, which
we included in our review, is provided in Table 2.
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Table 2. Potential applications of anterior segment optical coherence tomography angiography in the
cornea and ocular surface.

Anatomical Location Pathologies Potential Applications

Cornea Corneal neovascularization
(CoNV)

Diagnosis: superficial or mid-stromal CoNV in interstitial keratitis is
suggestive of varicella zoster virus while deep CoNV suggests herpes

simplex virus [16,17]
Assessment: correlation of vessel density to CoNV severity and visual

acuity [18,19]
Assessment/treatment response: pre-operative selection of vessels for

FND as well as post-treatment monitoring response to FND with
anti-VEGF in human eyes with CoNV and corneal scarring [20]

Treatment response: depth of corneal vascularity post-PK and DALK [21]

Ocular surface

Limbal stem cell deficiency Assessment: objective staging of limbal ischemia [22,23]

Dry eye disease Assessment: positive correlation between number of conjunctival vessels
and severity of disease [24]

Conjunctiva, episclera,
and Sclera

Ocular surface squamous
neoplasia (OSSN)

Diagnosis: greater diameter and peri-lesional vessel depth and diameter
in malignant lesions compared to benign lesions [25]

Diagnosis: differentiation from other lesions such as pterygium (“zigzag
vessels” in both the superficial and deep layers in OSSN and “straight

vessels” in the superficial layer in pterygium) [26]
Treatment response: decreased subepithelial vessel area density

post-treatment with topical immunotherapy or chemotherapy [27]

Pterygium and conjunctival
autografts

Treatment response: inverse correlation between post-operative thickness
and revascularization of autograft [28,29]

Episcleritis and scleritis

Diagnosis: greater vessel density index in scleritis compared to
episcleritis [30]

Assessment: positive correlation between vessel density and severity of
scleritis [31]

Glaucoma
Treatment response: decreased episcleral vessel density post-MIGS [32]
Treatment response: lower IOP in hypovascularized conjunctival blebs

compared to hypervascularized blebs post-trabeculectomy [31]

DALK—deep anterior lamellar keratoplasty; FND—fine needle diathermy; IOP—intraocular pressure;
MIGS—minimally invasive glaucoma surgery; PK—penetrating keratoplasty.

3. Vascular Anatomy of the Cornea and Ocular Surface

The cornea is a transparent connective tissue in the anterior segment that provides a
structural barrier for the intraocular structures against the external environment, whilst
providing two-thirds of its refractive power [33]. It consists of five different avascular
layers—epithelium, Bowman layer, stroma, Descemet’s membrane, and endothelium [34].
The main source of nutrients to the cornea is derived from the aqueous humor in the
anterior chamber, supplemented by diffusion via the limbal vessels [33]. The transparency
of a healthy cornea is dependent on its avascularity, allowing for optimal transmission of
light and refraction for visual processing [35]. Avascularity of the cornea is achieved via a
delicate balance between angiogenic (vascular endothelial growth factor (VEGF), fibrob-
last growth factor, angiogenin, etc.) and anti-angiogenic factors (angiostatin, endostatin,
matrix metalloproteinases, etc.) through the inhibition of both inflammatory and immune
responses [6,36,37]. Corneal neovascularization (CoNV) is a pathological development of
blood vessels in the cornea that occurs within the deep or superficial layers of the cornea.
CoNV can arise from a myriad of etiologies, ranging from infections such as bacterial infec-
tious keratitis secondary to Pseudomonas infection; inflammatory conditions like marginal
keratitis, atopic keratoconjunctivitis, or corneal graft rejection; to chronic hypoxic states
secondary to contact lens overuse, limbal stem cell deficiency (LSCD), or chemical injury to
the eye [37]. CoNV can result in corneal scarring, edema, and persistent inflammation—all
of which can worsen visual outcomes [38,39]. CoNV can also disrupt the immunologically
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privileged state of the cornea, which results in higher rates of corneal graft rejection and
failure [40]. These complications of CoNV, which can eventually lead to blindness, can be
avoided with early CoNV detection and intervention, whether medical or surgical [41].
The detection of ghost vessels (remnant vessels from CoNV), can also provide insight into
previous ocular insults in patients.

The ocular surface includes the conjunctiva, a continuous vascular membrane extend-
ing from the palpebral portion of the eyelids at its margins to the fornix and the bulbar
portion over the anterior sclera at the limit of the corneoscleral limbus [42]. It is composed
of a surface layer of non-keratinizing stratified squamous epithelium with underlying
vascular stroma [33]. Beneath the bulbar conjunctiva is the episclera, a thin vascular layer
of connective tissue with fibers that blend with the underlying scleral stroma. The sclera is
a dense and avascular fibrous layer that provides structure to the globe and protects the
intraocular structures against external injury. The irregular arrangement of its connective
tissue matrix contributes to its opacity, which reduces internal light scattering for optimal
image processing by the retina [43]. The vasculature of the conjunctiva, episclera, and
sclera consists of extensive anatomical networks of branching capillaries, arterioles, and
venules. The conjunctival vessels are mainly derived from the ophthalmic artery, which
includes the marginal and peripheral tarsal arcades, and the anterior and deep ciliary
systems [44]. The episcleral vessels branch off from the anterior ciliary vessels and have
extensive anastomoses to form the deep episcleral capillary circulation. The episcleral
vessels also enter the bulbar conjunctiva at the limbus to form the anterior conjunctival
arteries, communicating with branches of the posterior conjunctival arteries, and giving
rise to the pericorneal plexus [44]. The episcleral venous plexus and mid and deep scleral
venous plexuses are formed from the anastomoses of the ciliary venous plexus and collector
channels from Schlemm’s canal [10]. The translucent appearance of the conjunctiva allows
for in vivo, non-invasive visualization of the conjunctival and episcleral/sclera vasculatures
and microcirculation. Pathologies of the conjunctiva and episclera/sclera often respond
with vasodilation and observable hyperemia. These conditions can be infectious and non-
infectious, local or systemic, including viral conjunctivitis, episcleritis, scleritis, anterior
uveitis, ocular surface squamous neoplasia (OSSN), vascular tumors, and glaucoma [44,45].
Characterization and quantitative assessment of the ocular surface vasculature can assist in
diagnosis, clinical grading of severity, and monitoring of response to treatments (Table 2).

4. Optical Coherence Tomography Angiography of the Cornea

Currently, CoNV is clinically assessed via slit-lamp examination, which can be highly
subjective depending on clinical experience. AS-OCTA has demonstrated the potential to
detect and delineate CoNV in a rapid, non-invasive manner, allowing for the evaluation of
vessel depth and density with good image quality and repeatability [40,46]. Early CoNV
may not be detectable clinically on slit-lamp examination but was readily visualized on
AS-OCTA, even in eyes with corneal opacification [47]. AS-OCTA is capable of visualization
of deep CoNV, vessel depth measurement, and three-dimensional vasculature mapping,
aiding clinicians in investigating the possible etiology of corneal injury (Figure 1). For
example, interstitial keratitis secondary to herpes simplex virus would exhibit deep CoNV,
whereas superficial or mid-stromal CoNV suggests varicella zoster virus [16,17]. Other
than vessel depth, AS-OCTA also measures parameters such as vessel density (VD) and
branch area. In addition to clinical assessment of CoNV severity and visual acuity [18,19],
these AS-OCTA parameters have been shown to correlate well with contrast-based CoNV
grading and leakage time [47]. This illustrates that AS-OCTA has the potential for adjunct
usage in the clinical assessment of CoNV, as it is rapid and non-invasive, with results
comparable or even superior to the current standard of contrast-based imaging.
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Figure 1. AS-OCTA scan of corneal neovascularization from traumatic corneal injury. (A) An en face
image with whole blood flow signals. (B) Image with the total CoNV lesion area demarcated in yellow.
(C) Cross-sectional scan along the green line on panel (A). Areas of vascularity are demarcated in red.
(D) Close-up image of the dotted white box in panel (C). Image courtesy: Prof. Aijun Deng, Affiliated
Hospital of Weifang Medical University, Shandong, China Device: BMizar, BM-400K, TowardPi
Medical, China.

CoNV is not only potentially sight-threatening but is also a significant risk factor for
graft failure post-keratoplasty, as the cornea’s immunologically privileged state can be
disrupted, increasing graft failure post-keratoplasty [6,21,48,49]. Pre-keratoplasty angiore-
gressive treatment has therefore been explored to reduce the risk of graft failure in eyes
with CoNV [50]. A diverse range of treatment options is available for CoNV, including
topical steroids, cyclosporine, fine needle diathermy (FND), laser photocoagulation, and
anti-VEGF therapy [21,50–54]. A reliable imaging modality to monitor the response to
treatment is therefore essential for the optimization of CoNV treatment and management.
Devarajan et al. compared the use of AS-OCTA and ICGA in rabbit models to monitor
CoNV response to anti-VEGF treatment, and showed that both modalities were compara-
ble in being able to detect CoNV regression [55]. Similarly, Foo et al. utilized AS-OCTA
to evaluate treatment response to FND with anti-VEGF in human eyes with CoNV and
corneal scarring, demonstrating that AS-OCTA can guide the pre-operative selection of
vessels for FND as well as post-treatment monitoring [20]. In a study by Chan et al., CoNV
was evaluated in eyes that had undergone penetrating keratoplasty (PK) or deep anterior
lamellar keratoplasty (DALK) [21]. AS-OCTA was able to determine the depth of corneal
vascularity post-keratoplasty. Hence, AS-OCTA can aid in the non-invasive assessment
of CoNV, response to angioregressive treatment, as well as adding to the current imaging
modalities available for post-operative monitoring of keratoplasty.
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5. Optical Coherence Tomography Angiography of the Ocular Surface

AS-OCTA can also be used to assess limbal vasculature and its resultant impact on the
ocular surface [56]. Limbal stem cell dysfunction can be associated with persistent corneal
inflammation, abnormal vascularization, and corneal opacification with loss of visual
acuity [22]. LSCD can arise from surgeries, topical ocular medications, Stevens–Johnson
syndrome, and chemical injuries, among other causes [57–59]. Chemical ocular injury is
one of the most common ophthalmic emergencies that can lead to LSCD [60,61], which is
often preceded by ischemia of the limbus in the acute phase [23]. Chemical ocular injuries
are largely evaluated at first presentation based on the Dua and Roper–Hall classifications,
which determine the severity and prognosis of recovery [62]. These classifications could,
however, be subjective and dependent on the clinician’s experience. Tey et al. showed
that AS-OCTA can be used to assess the extent of limbal ischemia in the acute phase
in rabbit models, and proposed a modified classification method using AS-OCTA [23].
The findings were similarly reproducible in human subjects, as demonstrated by Ang
et al., demonstrating greater interrater agreement when assessing limbal disruption using
AS-OCTA, as compared to slit-lamp examination (κ = 0.7 vs. κ = 0.4, respectively) [56].
Furthermore, Fung et al. also observed that limbal ischemia was more extensive when
assessed using AS-OCTA compared to clinical examination, suggesting that AS-OCTA
provides a more accurate and objective assessment of chemical ocular injury [63]. The
use of AS-OCTA in the staging of primary LSCD has also been proposed by Binnoti et al.,
as the group found that two AS-OCTA derived parameters, namely, maximum corneal
vascular extension and corneal vascular thickness, demonstrated good correlation with
visual acuity and disease severity [22]. Therefore, AS-OCTA could potentially become an
important adjunct imaging tool in providing an objective and reliable clinical assessment for
chemical ocular injuries and LSCD (Figure 2), aiding clinicians in identifying, diagnosing,
and grading the severity and prognosis of the disease.
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Figure 2. AS-OCTA scan of the conjunctival/sclera vasculature in a healthy eye versus an eye with
limbal stem cell deficiency. (A) An en face image with whole blood flow signals in the healthy eye.
(B) Cross-sectional scan along the green line on panel (A). Areas of vascularity are demarcated in
red. (C) An en face image with whole blood flow signals in the eye with limbal stem cell deficiency.
(D) Cross-sectional scan along the green line on panel (C) showing decreased areas of vascularity
compared to the healthy eye in panel (B). (E) Slit-lamp photography image of the eye with limbal
stem cell deficiency shown in panels (C,D).
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AS-OCTA also has shown application in dry eye disease (DED). It was shown in a
study by Yang et al. that conjunctival microvascular density was increased in patients with
Sjogren’s disease and DED diagnoses [24]. AS-OCTA has also enabled insight into the
interplay of inflammation, hypoxia, and angiogenesis in the development of DED [64]. In
particular, the number of conjunctival vessels tends to increase with the severity of DED,
and this could be explained by hypoxia and inflammation leading to activation of angio-
genic factors and angiogenesis. Given that DED is a debilitating condition that requires
more research, a greater understanding of the disease would enable timely diagnosis, better
treatments, and outcomes in the long run. On the other hand, eyes with unstable tear films,
as in DED, have been shown to potentially affect the quality of AS-OCTA images, as well
as its repeatability [65], suggesting that more developments are required for AS-OCTA to
contribute to clinical DED evaluation.

6. Optical Coherence Tomography Angiography of the Conjunctiva, Episclera,
and Sclera

AS-OCTA has been shown to provide a consistent quantitative assessment of ocular
surface vasculature in both healthy and diseased eyes [66]. It can be employed to visu-
alize and characterize the vasculature of various ocular surface lesions such as OSSN,
melanocytic lesions, and other benign lesions [45,67]. OSSN is a heterogeneous group
of pathologies of the ocular surface epithelium, ranging from cornea and conjunctiva in-
traepithelial neoplasia to carcinoma in situ and invasive squamous cell carcinoma. Clinical
differentiation of OSSN can be challenging due to similar presentations, and the thickness
of the lesion is not always indicative of a more invasive or severe pathology [68]. The
advent of AS-OCTA has shed insight into angiogenesis in OSSN, such as the breakdown
of normal conjunctival vasculature [26]. Liu et al. demonstrated that AS-OCTA could
delineate the vascular network of an OSSN with its surrounding structure. Specifically, a
greater vessel area density (VAD) in the subepithelial tissue and the tissue underneath the
conjunctival component of the tumor was observed, compared to an unaffected eye [45].
When comparing the vasculature of benign and malignant lesions, there seemed to be
marked morphological and quantitative differences between both lesions when seen on
AS-OCTA—malignant lesions tend to have a greater diameter and peri-lesional vessel
depth and diameter, which may represent feeder vessels [25]. Treatment response in OSSN
can also be observed and monitored with AS-OCTA. Theotoka et al. conducted a study on
OSSN treated with topical immunotherapy or chemotherapy, which revealed a significant
decrease in subepithelial VAD during treatment and final VAD, comparable to the non-
affected eye with tumor resolution [27]. Tumor vascular density derived from AS-OCTA
could potentially be used in future criteria for malignancy grading [60].

OSSN can sometimes be difficult to differentiate clinically from other benign lesions
such as pterygium, especially in the early stages of disease or history of ocular surgery [26].
AS-OCTA could potentially be used to aid the differentiation between OSSN and other
ocular surface lesions such as pterygium and melanoma [69]. Nampei et al. found and
described the different flow patterns in OSSN and pterygium on AS-OCTA—“zigzag
vessels” in both the superficial and deep layers in OSSN, but “straight vessels” in the
superficial layer in pterygium [26]. Kiseleva et al. also demonstrated AS-OCTA’s ability to
differentiate conjunctival melanoma and nevus based on conjunctival perfusion density
(PD)—conjunctival PD was significantly higher in conjunctival melanoma when compared
to nevus [70].

AS-OCTA has also recently been utilized in the management of pterygium. The
reperfusion of conjunctival autografts (CAGs) in eyes after pterygium removal surgery was
evaluated via AS-OCTA, demonstrating an inverse correlation between CAG thickness and
revascularization density [28,29]. AS-OCTA, hence, could be utilized for post-operative
monitoring of autograft survival in pterygium surgery.

AS-OCTA is also beneficial in evaluating pathologies of the sclera and episclera, most
commonly scleritis and episcleritis. Scleritis affects the superficial and deep episcleral capil-
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lary plexus, whereas episcleritis only affects the superficial episcleral capillary plexus [30].
Routine clinical examination can usually differentiate between the two conditions: the
vascular engorgement in scleritis produces a characteristic bluish-violet hue while a distinct
red hue can be seen in episcleritis [71]. The use of topical phenylephrine could also be
used to clinically distinguish between the two entities [72]. However, these signs can be
subjective and subtle. Furthermore, the clinical symptoms of globe tenderness and pain,
typically indicating scleritis, can be confounded with the use of analgesia. While episcleritis
itself is often benign, scleritis can be a harbinger of something sinister such as systemic vas-
culitis like systemic lupus erythematosus or polyarteritis nodosa [73,74]. Timely diagnosis
is important, as late treatment could lead to scleral thinning, perforation, melting, and ulti-
mately permanent blindness [75]. Specific patterns on FA and ICGA such as leakage scores
have been shown to help discriminate episcleritis and scleritis, but are often limited due to
their invasive nature and associated adverse effects of contrast use [76,77]. Studies have
demonstrated the added utility of AS-OCTA in diagnosing and distinguishing between
episcleritis and scleritis. For example, a study by Hau et al. revealed a significant increase
in overall vessel density index (VDI) in the episclera–sclera complex of eyes with scleritis
and episcleritis compared to healthy eyes, as well as greater VDI in scleritis compared to
episcleritis [30]. This highlights potential quantitative markers derived from AS-OCTA
that can aid in the diagnostic workup and management for both conditions. Another longi-
tudinal study also revealed an AS-OCTA-derived parameter, scleral area VD, which was
shown to directly correlate with the severity of anterior scleritis [31]. This parameter can
potentially enable the clinical and objective quantification of scleral inflammation, allowing
for identification and further workup for eyes that are refractory to initial scleritis treatment.

AS-OCTA also provides a non-invasive and less time-consuming alternative that can
quantitively evaluate the intrascleral and conjunctival vessels implicated in glaucoma, at
varying depths and locations [10]. Akagi et al. discussed the role of AS-OCTA images
in objectively assessing conjunctival hyperemia in treated glaucoma eyes [78]. An exten-
sion to the study has been applied to trabecular bypass minimally invasive glaucoma
surgery (MIGS), where episcleral VD was found to decrease post-operatively, which can
be attributed to increased aqueous outflow within the episcleral veins and hence reduced
signal intensity detected by AS-OCTA [79]. A separate study by Okamoto et al. also found
that lower intrascleral VD corresponded to greater surgical success rate and intraocular
pressure (IOP) reduction post-MIGS [32]. In trabeculectomies, the success of IOP reduction
is dependent on the function of conjunctival blebs [78]. A study by Hayek et al. found
lower IOP post-trabeculectomy in conjunctival blebs that were hypovascularized compared
to those that were hypervascularized, as determined by AS-OCTA [31]. Less vascularized
blebs were also associated with less inflammation and a lower risk of fibrosis and bleb
failure. AS-OCTA was also able to measure and quantify microcyst density in blebs, which
showed an inverse correlation with IOP [31]. Given that the signs of early bleb failure
are subtle, early detection and intervention could be difficult without objective assess-
ment. There is potential for AS-OCTA to be incorporated in routine assessment pre- and
post-trabeculectomy to provide an objective analysis of the risk of bleb failure.

7. Limitations and Future Development

OCTA systems were initially introduced for evaluation of the posterior segment of
the eye. While the research and implementation of OCTA for the posterior segment are
fairly robust, adaptation for the anterior segment vasculature is still a relatively recent
development with its own set of limitations. Firstly, various sources of image artefacts
can affect the analyses of AS-OCTA of the cornea and ocular surface. For example, OCTA
systems that are employed for the anterior segment are unassumingly posterior segment
OCTA systems with the addition of an anterior segment adaptor lens and modified scan-
ning protocols [1,80]. Hence, image analysis software that is inherently built for posterior
segment analyses may lead to non-parallel segmentation and artefacts caused by light
scatter due to corneal refraction, causing imprecise vasculature density calculations during
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depth-resolved analyses [4]. Motion artefacts secondary to saccadic eye movements are
prevalent in AS-OCTA imaging, as motion correction systems have yet to be designed or
implemented, leading to poorer image quality [81]. Projection artefacts on the deeper vas-
culature layers caused by more superficial vessels due to light scattering can inadvertently
cause misinterpretation as abnormal or additional vessels by image analysis software,
thereby affecting vasculature density computation [81]. AS-OCTA currently also lacks
tracking capabilities for comparing serial scans in the same precise location.

These can be, however, circumvented by performing and comparing multiple scans or
correlation with other imaging modalities such as slit-lamp photography [82]. Furthermore,
advancements in machine learning and artificial intelligence can produce analysis software
with superior auto-segmentation capabilities to reduce image artefacts [83]. The area
examined by AS-OCTA has also been fairly limited when compared to its posterior segment
counterpart, which, although initially limited, was expanded when wide-field OCTA (using
a montage technique) was introduced. This could similarly be applied in the anterior
segment, which would enable greater clarity of the examined area.

8. Conclusions

AS-OCTA is an emerging imaging modality that permits a rapid, non-invasive assess-
ment of the vasculature of the anterior segment. Although initially designed for posterior
segment evaluation, there has been an increasing number of studies on the clinical transla-
tion of AS-OCTA for the diagnosis and management of ocular pathologies. These include
anterior segment vascular lesions and tumors, ocular surface diseases, and prognostication
of graft rejection post-keratoplasty [4,84]. The en face imaging of AS-OCTA in multiple
coronal planes provides an intuitive perspective on the anterior segment vasculature that
clinicians can directly correlate with their observations on a clinical slit-lamp examination.
While still in its infancy, further optimization of AS-OCTA and image processing software,
along with the integration of artificial intelligence, presents a foreseeable future for its use
in clinical practice.
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