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Abstract: The incidence of Mycobacterium marinum infection is on the rise; however, the existing drug
treatment cycle is lengthy and often requires multi-drug combination. Therefore, there is a need to
develop new and effective anti-M. marinum drugs. Cochliomycin A, a 14-membered resorcylic acid
lactone with an acetonide group at C-5′ and C-6′, exhibits a wide range of antimicrobial, antimalarial,
and antifouling activities. To further explore the effect of this structural change at C-5′ and C-6′ on
this compound’s activity, we synthesized a series of compounds with a structure similar to that of
cochliomycin A, bearing ketal groups at C-5′ and C-6′. The R/S configuration of the diastereoisomer
at C-13′ was further determined through an NOE correlation analysis of CH3 or CH2 at the derivative
C-13′ position and the H-5′ and H-6′ by means of a 1D NOE experiment. Further comparative
1H NMR analysis of diastereoisomers showed the difference in the chemical shift (δ) value of the
diastereoisomers. The synthetic compounds were screened for their anti-microbial activities in vitro.
Compounds 15–24 and 28–35 demonstrated promising activity against M. marinum, with MIC90

values ranging from 70 to 90 µM, closely approaching the MIC90 of isoniazid. The preliminary
structure–activity relationships showed that the ketal groups with aromatic rings at C-5′ and C-6′

could enhance the inhibition of M. marinum. Further study demonstrated that compounds 23, 24,
29, and 30 had significant inhibitory effects on M. marinum and addictive effects with isoniazid and
rifampicin. Its effective properties make it an important clue for future drug development toward
combatting M. marinum resistance.

Keywords: 14-membered resorcylic acid lactones; Mycobacterium marinum; anti-Mycobacterium marinum;
ketal groups; diastereoisomers

1. Introduction

Mycobacterium marinum (M. marinum), a nontuberculous mycobacterium (NTM), is
one of the major contributors to extrapulmonary mycobacterial infections [1,2]. M. marinum
infects human skin and soft tissues, leading to the development of a single papulonodular,
verrucose, or ulcerated granulomatous lesion at the infected site [3–7]. Notably, such a local
infection may spread to the tendon sheaths or joints [8]. In recent years, the incidence of
M. marinum infection has shown an increasing trend [9]. In the United States, the incidence
of this disease can reach 0.27 infections per 100,000 people, with the highest incidence
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observed among individuals who come into contact with fish and fish containers [2].
For M. marinum infection, drugs such as rifambutin, ethambutol, clarithromycin, and
others are often used in combinations of two or three, and the duration of medication is
generally 2 weeks to 18 months [10–12]. However, the existing drug treatments are less than
satisfactory. The treatment period for M. marinum is lengthy, and multi-drug combinations
are required. In addition, there is no standard for the treatment of M. marinum infection in
terms of drug selection, dose, and concentration [13]. These problems have led to an urgent
need to optimize treatments and develop novel and effective anti-M. marinum drugs.

Natural products are of outstanding significance in drug development, and numerous
drugs or lead compounds are inspired by them [14,15]. In the decades from 1981 to 2019,
more than 50% of small-molecule drugs developed globally were influenced by natural
products [16,17]. Microorganisms are capable of producing secondary metabolites with
novel structures and significant biological activity, and these metabolites have served as a
source of inspiration for the development of many new drugs [18–22]. The natural products
derived from marine microorganisms possess many unique properties and important value,
distinct from terrestrial natural products available on land. Marine natural products exhibit
rich diversity, extensive medicinal value, and biological activities [23,24].

Marine fungi have been shown to have complex and varied structures and can produce
secondary metabolites with various biological activities that have considerable synthetic
value and great significance. They hold significant promise in the research and development
of new pharmaceuticals [25,26]. Our laboratory has also focused further attention and
research on marine-derived fungi, with the expectation of finding and developing more
natural products and derivatives with multifarious activities [27,28].

The 14-membered resorcylic acid lactones (RALs) are polyketides characterized by a
14-membered macrocyclic ring fused to a resorcylic acid residue, and they are classified
as natural products [29,30]. In our previous research, we isolated a series of 14-membered
RALs, including cochliomycins A–G, 5-Bromozeaenol, and 3, 5-Dibromozeaenol, from
the marine-derived fungus Cochliobolus lunatus [29,31–33]. The 14-membered RALs have
various biological activities such as antibacterial, antifouling, antimalarial, and antiviral
activity [20,31,34–37].

Cochliomycin A, a natural product of 14-membered RALs with an acetonylic group,
can significantly reduce barnacle settlement at a concentration of 1.2 µg/mL [35]. In
addition, it has the advantage of exhibiting low toxicity and is an environmentally effective
antifouling compound [35]. In our previous study, the cochliomycin A derivative 2 showed
strong selective algal inhibitory activity [20]. In particular, the selective inhibition of the
diatoms of Navicula laevissima and Navicula exigua was close to that of SeaNine 211 [20].
Derivatives 5 and 6 showed strong antimalarial activity and non-toxicity when used
against Plasmodium falciparum [20]. Furthermore, cochliomycin A derivatives also exhibited
anti-M. marinum activity (Figure 1) [33,36].

Cochliomycin A and its derivatives with acetonide or deuterium acetonyl groups
at C-5′ and C-6′ have potent antimalarial and antifouling activity [20]. It is thought that
increasing the number of ketal groups at C-5′ and C-6′ would enhance the activity of
cochliomycin A derivatives. In this study, we synthesized new compounds, 10–37, which
are a series of marine-derived 14-membered RALs with ketal groups. The aim was to
obtain 14-membered RAL derivatives with novel structures and evaluate their structure–
activity relationships. The synthetic derivatives were screened for in vitro activity against
M. marinum and five other bacteria and fungi. The activity-screening results showed that
derivatives 15–24 and 28–35 exhibited selective inhibition against M. marinum.
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Figure 2. 

Figure 1. Cochliomycin A (1) and its derivatives (2–8) with strong antialgal and antiplasmodial
activities or antibacterial activity.

2. Results and Discussion
2.1. Chemistry

The crude extracts obtained from Cochliobolus lunatus (CHNSCLM-0009) were sepa-
rated via silica gel column chromatography. After further recrystallization, about 5.4 g of
zeaenol (38) was obtained [20]. Using zeaenol (38) as the initial raw material, derivatives
10–37 with novel ketal groups were semi-synthesized through either a one-step reaction or
a two-step chemical reaction (Scheme 1).
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Scheme 1. The synthetic route. i p-TsOH, K2CO3, R1COR2, 25 ◦C, 2–4 h; ii SO2Cl2, 0 ◦C.

Twenty-eight newly synthesized compounds, 10–37, with ketal groups are shown in
Figure 2.
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Figure 2. Cochliomycin A (1) and its derivatives (9–37).

It is worth noting that the R/S configuration of the C-13′ position was the key point
for structural identification. The final determination of the R/S configuration was achieved
by analyzing the correlation between the CH3 or CH2 at the C-13′ position and the H-5′ and
H-6′ of the adjacent chiral center (Figure 3). Compounds 23 and 24 were used to illustrate
the detailed structural determination by irradiating H-14′ (δH 1.40) in compound 23, which
resulted in an enhancement of the signal for H-6′ (δH 4.60), suggesting that H-14′ and H-6′

should be placed on the same side of the ring. Conversely, irradiating H-14′ (δH 1.32) in
compound 24 enhanced the signal of H-5′ (δH 3.90), indicating that H-14′ and H-5′ should
be placed on the same side of the ring. Therefore, the absolute configuration at the C-13′

position of compound 23 was determined to be 13′S, and the absolute configuration at



Mar. Drugs 2024, 22, 431 5 of 18

C-13′ position of compound 24 was determined to be 13′R. The absolute configuration
of the C-13′ position of the other derivatives (11−16, 25, 26, and 28−31) was confirmed
through analysis of the same experiments (Figure 3, Supplementary Figures S1–S98).
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Figure 3. NOE analysis of compounds 23 and 24 and key NOE correlations of other compounds
containing ketal groups.

Meanwhile, the absolute configuration at the C-13′ position was also distinguished by
changes in the corresponding chemical shift (δ) value of H-5′. In the 1H NMR spectrum,
the chemical shifts of H-5′ signals were more affected by the shielding effect compared
with the data on compound 1 when the absolute configuration of C-13′ position is S. The
chemical shift of H-5′ in the S configuration for derivative 23 shifted from 3.90 to 3.79 ppm.



Mar. Drugs 2024, 22, 431 6 of 18

On the contrary, there was no difference regarding the chemical shift of H-5′ in the R
configuration for derivative 24 compared with the data of compound 1 (δH 3.90 in 24, δH
3.90 in 1) (Figure 4). The key 1H NMR data (δ) for diastereoisomers are presented in Table 1,
and key 13C NMR data (δ) for diastereoisomers are presented in Table S2.
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Table 1. Key 1H NMR data (δ) for diastereoisomers a.

Compound 4′ 5′ 6′

11 4.19, m 3.68, dd (8.5, 2.5) 4.62, t (8.5)
12 4.32, m 3.93, dd (8.5, 2.3) 4.49, t (8.5)
13 4.20, m 3.74, dd (8.4, 2.4) 4.58, t (8.4)
14 4.27, m 3.91, dd 8.4, 2.3) 4.49, t (8.4)
15 4.32, m 3.73, dd (7.3, 2.2) 4.70, dd (9.5, 7.3)
16 4.22, m 4.03, dd (8.3, 2.2) 4.59, t (8.3)
17 4.31, m 3.71, dd (7.3, 2.2) 4.69, dd (9.5, 7.3)
18 4.22, m 4.02, dd (8.4, 2.2) 4.58, t (8.4)
19 4.34, m 3.73, dd (7.3, 2.2) 4.72, dd (9.4, 7.3)
20 4.26, m 4.02, dd (8.4, 2.3) 4.55, t (8.4)
21 4.30, m 3.69, dd (7.3, 2.2) 4.69, dd (9.4, 7.3)
22 4.22, m 4.02, dd (8.3, 2.2) 4.56, t (8.3)
23 4.19, m 3.79, dd (8.5, 2.4) 4.60, t (8.5)
24 4.21, m 3.90, dd (8.3, 2.1) 4.58, t (8.3)
25 4.23, m 3.89, dd (8.4, 2.3) 4.62, t (8.4)
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Table 1. Cont.

Compound 4′ 5′ 6′

26 4.26, m 3.96, dd (7.6, 2.1) 4.62, t (7.6)
29 4.17, m 3.71, dd (8.7, 2.5) 4.59, t (8.7)
30 4.20, m 3.81, dd (8.6, 2.2) 4.56, t (8.6)
31 4.30, m 3.65, dd (9.0, 2.4) 4.69, t (9.0)
32 4.20, m 3.94, dd (8.6, 2.2) 4.53, t (8.6)
33 4.32, m 3.64, dd (8.1, 2.3) 4.70, t (8.1)
34 4.24, m 3.95, dd (8.7, 2.4) 4.51, t (8.7)
36 4.17, m 3.67, dd (8.7, 2.5) 4.57, t (8.7)
37 4.25, m 3.82, dd (8.7, 2.4) 4.45, t (8.7)

a Solvent: CDCl3.

2.2. Evaluation of Biological Activity
2.2.1. Anti-M. marinum and Other-Antimicrobial Activity

The treatment period for M. marinum is long and requires multi-drug combination
therapy. However, there is a lack of criteria for the optimal antimicrobial regimen and
duration of treatment after M. marinum infection [13,38]. In this study, we assessed the
antibacterial and antifungal activities of 30 14-membered RAL derivatives. We found that
most of the compounds demonstrated significant antibacterial activity, as shown in Table 2.
The remaining derivatives (MIC90 > 200 µM) were categorized as less effective, as shown
in Table 2. Derivatives 15–24 and 28–35 exhibited promising activity against M. marinum
compared to the positive isoniazid with an MIC90 of 40 µM. It is worth noting that most of
the compounds displayed a degree of antibacterial selectivity.

Table 2. Antimicrobial activity of representative compounds of the RALs with ketal groups 1.

Compound
MIC90 (µM)

M. marinum S. aureus E. coli P. aeruginosa C. albicans V. vulnificus

11 >200 >100 >100 >100 >100 >100
15 80 25 >100 >100 >100 >100
16 80 >100 >100 >100 >100 >100
17 80 >100 >100 >100 >100 >100
18 70 >100 >100 >100 >100 >100
19 70 >100 >100 >100 >100 >100
20 70 >100 >100 >100 >100 >100
21 80 25 >100 >100 >100 >100
22 80 >100 nt >100 >100 nt
23 80 >100 >100 >100 >100 >100
24 70 >100 >100 >100 >100 25
28 70 >100 >100 >100 >100 >100
29 70 50 >100 >100 >100 >100
30 80 >100 25 >100 >100 >100
31 80 >100 >100 >100 >100 >100
32 80 >100 nt >100 >100 nt
33 80 >100 nt >100 >100 nt
34 90 >100 nt >100 >100 nt
35 80 >100 nt >100 >100 nt

Isoniazid 40 nt nt nt nt nt
Rifampicin 10 nt nt nt nt nt

Ciprofloxacin nt 3.13 0.10 1.56 nt nt
Amphotericin B nt nt nt nt 0.84 nt
Chloramphenicol nt nt nt nt nt 9.75

1 Results are the average of three independent experiments, each performed in duplicate. Standard deviations
were less than ±10%. nt = not tested.
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By summarizing the MIC90 data and structures of the above 30 compounds, we ob-
tained preliminary insights into structure–activity relationships (SARs) (Figure 5): (1) through
a comparison of compounds 11 and 35, it was found that the 14-membered RALs had no
obvious activity after the introduction of ketal groups bearing chain alkane groups, but the
activity levels increased significantly after the further introduction of chlorine atoms at C-5;
(2) by comparing the MICs of 23, 24, 25, and 26, it was observed that the introduction of
ketal groups that bear a carbonyl group and are separated by two saturated carbon atoms
from the ketal center at C-5′ and C-6′ significantly enhanced anti-M. marinum activity;
(3) by comparing the MICs of compounds 15–22, it was observed that the introduction
of ketal groups bearing phenyl groups or phenyl groups with halogen atoms (F/Cl) at
C-5′ and C-6′ largely enhanced activity; and (4) after the introduction of ketal groups
bearing phenyl groups at C-5′ and C-6′ and the further introduction of chlorine atoms at
C-5, the anti-M. marinum activity of the products changed little compared with that before
introduction (15–22, 28, and 31–34).
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2.2.2. Anti-M. marinum Effects of Compounds 23, 24, 29, and 30 in Combination with
Positive Drugs

Currently, the clinical management of M. marinum infections typically involves combi-
nation therapy, wherein two or three drugs are administered concurrently [33,39]. Com-
pounds 23, 24, 29, and 30 had significant anti-M. marinum activity, close to that of the
positive drug isoniazid, as shown in Figure 6. Compounds 23, 24, 29, and 30 were eval-
uated in conjunction with two standard antibiotics (isoniazid and rifampicin) using the
checkerboard method for drug sensitivity testing [33]. The MIC90 values obtained from
these combinations are presented in Tables 3 and 4.
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Table 3. Anti-M. marinum effects of compounds 23, 24, 29, and 30 in combination with the positive
drug isoniazid.

Isoniazid MIC90 (µM) Compounds MIC90 (µM)
FICI 1 Mode of Action

Alone Combined Alone Combined

23 40 20 80 40 1 additive
24 40 20 70 8.75 0.625 additive
29 40 20 70 8.75 0.625 additive
30 40 20 80 40 1 additive

1 The mode of action was determined via fractional inhibitory concentration index (FICI): (1) FICI ≤ 0.5, synergistic
effect; (2) 0.5 < FICI ≤ 1, additive effect; (3) 1 < FICI ≤ 2, irrelevant; (4) FICI > 2, antagonistic effect.

Table 4. Anti-M. marinum effects of compounds 23, 24, 29, and 30 in combination with the positive
drug rifampicin.

Rifampicin MIC90 (µM) Compounds MIC90 (µM)
FICI 1 Mode of Action

Alone Combined Alone Combined

23 10 5 80 20 0.75 additive
24 10 5 70 8.75 0.625 additive
29 10 5 70 8.75 0.625 additive
30 10 5 80 20 0.75 additive

1 The mode of action was determined via fractional inhibitory concentration index (FICI): (1) FICI ≤ 0.5, synergistic
effect; (2) 0.5 < FICI ≤ 1, additive effect; (3) 1 < FICI ≤ 2, irrelevant; (4) FICI > 2, antagonistic effect.

The findings indicate that all the compounds effectively reduced the required dosages
of the standard antibiotics while exhibiting antibacterial activity. Notably, at a concentration
of 8.75 µM for compounds 24 and 29, M. marinum’s sensitivity to both rifampicin and
isoniazid increased twofold, demonstrating a significant addictive effect. It is important to
highlight that following combination therapy, the dosages of both compounds and standard
antibiotics decreased; this reduction contributed to mitigating resistance in M. marinum to
some extent.

3. Materials and Methods
3.1. General Experimental Procedures

Column chromatography (CC) was performed using silica gel (Qingdao Haiyang
Chemical Group Co., Qingdao, China; 200–300 mesh) and Sephadex LH-20 (Amersham
Biosciences, Amersham, UK). TLC silicone plate (Yantai Zifu Chemical Group Co., Yantai,
China; G60, F-254) was used to meet the needs of thin-layer chromatography analysis. Semi-
preparative HPLC was performed using a Waters 1525 system with a semi-preparative
C18 column (Amsterdam, The Netherlands; Kromasil, 5 µm, 10 × 250 mm) and a Waters
2996 photodiode array detector with a flow rate of 2.0 mL/min. NMR spectra were recorded
using a Bruker Advance NEO 400. Chemical shifts δ were measured in ppm, using TMS
as the internal standard, and coupling constants (J) were measured in Hz. A Micromass
Q-TOF mass spectrometer was used to detect HRESIMS spectra.

3.2. Fungal Material

The fungal strain Cochliobolus lunatus (CHNSCLM-0009) was isolated from a piece of
tissue from the inner part of the gorgonian coral Dichotella gemmacea (GX-WZ-20080034)
collected from the Weizhou coral reef in the South China Sea in September 2008. Through
16S rRNA gene analysis, the fungus was identified as Clostridium selenospora with the
access code ZJ2008002. The fungal strain is currently in storage at the Key Laboratory
of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy,
Ocean University of China, Qingdao, China.
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3.3. Fermentation, Extraction, and Isolation

Cochliobolus lunatus (CHNSCLM-0009) was cultivated under liquid fermentation conditions.
Fermentation was carried out using 500 mL flasks, each filled with 200 mL liquid

medium (soluble starch (2 g), NaNO3 (1 g), NaOAc (0.2 g), 1% salinity). The flasks were
cultivated at 28 ◦C for 10 days on a rotary shaker at 120 rpm [20,40]. The fermentation
liquid in each flask was extracted three or four times with the same volume of EtOAc.
The combined EtOAc solution was evaporated until dryness under a vacuum to obtain
19 g crude extract. Ethyl acetate and petroleum ether were selected as eluents, and the
crude extracts were separated via silica gel column chromatography (CC). Zeaenol (38) was
obtained at a 4:1 (v/v) ratio of petroleum ether/ethyl acetate eluent. After recrystallization
with ethyl acetate/petroleum ether/methanol reagent, 5.4 g of zeaenol (38) was obtained.

3.4. General Synthetic Methods for Compounds 10–37

Here, we describe in detail the steps of synthesizing the new compounds 10–37.
Compounds 10–37 were identified using NMR and HRESIMS data, and more details are
provided in the Supplementary Data.

3.4.1. General Procedure for the Synthesis of 10–26

Zeaenol (38, 30 mg, 82.33 µmol), ketone reagent (2 mL, Supplementary Table S1), and
p-TsOH (trace) in dry CH2Cl2 (2 mL) were stirred at 25 ◦C for 2–4 h. During the reaction,
TLC was used to monitor the reaction progress. The reaction solution was extracted with
H2O and CH2Cl2, and the organic layer was evaporated until dry to obtain the crude
product. Compounds 10–14 and 17–22 were obtained by separating the crude products
on silica gel CC (200–300 mesh) using petroleum ether and ethyl acetate as eluents. After
this separation process, we used semipreparative HPLC (65%–85% CH3CN-H2O) to obtain
pure compounds 15, 16, and 23–26.

3.4.2. General Procedure for the Synthesis of 28, 31, 33, and 34

Compound 39 (30 mg, 73.36 µmol), ketone reagent (2 mL, Supplementary Table S1),
and p-TsOH (trace) in dry CH2Cl2 (2 mL) were stirred at 25 ◦C for 2–4 h. During the reaction,
TLC was used to monitor the reaction progress. The reaction solution was extracted with
H2O and CH2Cl2, and the organic layer was evaporated until dry to obtain the crude
product. Compounds 28, 31, 33, and 34 were obtained by separating the crude products on
silica gel CC (200–300 mesh) using petroleum ether and ethyl acetate as eluents.

3.4.3. General Procedure for the Synthesis of 27, 29, 30, 32, 35, and 37

Compound 10 (30 mg, 69.41 µmol) and SO2Cl2 (10 µL) were dissolved in CH2Cl2
(2 mL). The SO2Cl2 mixture was slowly dripped into the reaction system under ice-bath
conditions and stirred for 1–3 h. The reaction was detected via TLC and stopped with ice
water. The reaction solution was extracted with H2O and CH2Cl2, and the organic layer
was evaporated until dry to obtain the crude product. Compound 27 was obtained by
separating the crude products on silica gel CC (200–300 mesh) using petroleum ether and
ethyl acetate as eluents. The synthesis and separation of compounds 29, 30, 32, 35, and
37 were the same as those noted above. Notably, in obtaining compounds 29 and 30, we
further used semipreparative HPLC (65–85% CH3CN-H2O).

3.4.4. Characterization Data of Compounds 10–37

The planar structures of the new compounds 10–37 were determined using NMR data
and HRESIMS spectrum, and the data are as follows. The 1D-NOE was used to determine
its spatial structure, and other details were included in the Supplementary Data.

Compound 10: white, solid; yield, 93.0%; 1H NMR (400 MHz, CDCl3) δ 11.50 (1H, s),
7.16 (1H, dd, J = 15.4, 2.4 Hz), 6.47 (1H, d, J = 2.6 Hz), 6.40 (1H, d, J = 2.6 Hz), 6.01 (1H, m),
5.72 (1H, ddd, J = 15.4, 10.5, 3.1 Hz), 5.54–5.43 (2H, overlapped), 4.56 (t, J = 8.4 Hz, 1H),
4.25 (m, 1H), 3.85 (dd, J = 8.4, 2.4 Hz, 1H), 3.82 (s, 3H), 2.76 (m, 1H), 2.58–2.38 (overlapped,
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3H), 2.30 (m, 1H), 1.69 (qd, J = 7.5, 1.9 Hz, 2H), 1.61 (d, J = 7.5 Hz, 2H), 1.44 (3H, d, J = 6.4
Hz), 0.94 (3H, t, J = 7.5 Hz), 0.87 (3H, t, J = 7.5 Hz). 13C NMR (100 MHz, CDCl3) δ 170.9 (C),
164.9 (C), 164.1 (C), 142.3 (C), 134.2 (CH), 132. (CH), 129.7 (CH), 126.5 (CH), 112.3 (C), 107.3
(CH), 104.6 (C), 100.2 (CH), 81.6 (CH), 75.5 (CH), 70.7 (CH), 69.2 (CH), 55.6 (OCH3), 38.1
(CH2), 36.1 (CH2), 30.5 (CH2), 30.0 (CH2), 19.3 (CH3), 8.4 (CH3), 8.2 (CH3). HRESIMS m/z
433.2221 [M + H]+ (calcd for C24H33O7

+, 433.2221).
Compound 11: white, solid; yield, 79.4%; 1H NMR (400 MHz, CDCl3) δ 11.48 (1H, s),

7.14 (1H, dd, J = 15.4, 2.4 Hz), 6.45 (1H, d, J = 2.6 Hz), 6.39 (1H, d, J = 2.6 Hz), 6.05 (1H, m),
5.68 (1H, ddd, J = 15.4, 10.3, 3.0 Hz), 5.53–5.38 (2H, overlapped), 4.62 (1H, t, J = 8.5 Hz), 4.19
(1H, m), 3.81 (3H, s), 3.68 (1H, dd, J = 8.5, 2.5 Hz), 2.75 (1H, m), 2.58–2.39 (3H, overlapped),
2.32 (1H, m), 1.44 (3H, d, J = 6.4 Hz), 1.35 (3H, s), 0.93 (9H, s). 13C NMR (100 MHz, CDCl3)
δ 170.9 (C), 164.8 (C), 164.1 (C), 142.5 (C), 134.2 (CH), 131.2 (CH), 130.0 (CH), 126.5 (CH),
113.9 (C), 107.4 (CH), 104.6 (C), 100.2 (CH), 82.9 (CH), 75.1 (CH), 70.7 (CH), 68.7 (CH), 55.6
(OCH3), 39.3 (CH2), 38.2 (CH2), 35.7 (C), 25.4 (CH3 × 3), 21.1 (CH3), 19.4 (CH3). HRESIMS
m/z 447.2367 [M + H]+ (calcd for C25H35O7

+, 447.2377).
Compound 12: white, solid; yield, 24.1%; 1H NMR (400 MHz, CDCl3) δ 11.49 (1H, s),

7.16 (1H, dd, J = 15.4, 2.4 Hz), 6.48 (1H, d, J = 2.6 Hz), 6.40 (1H, d, J = 2.6 Hz), 5.98 (1H, m),
5.73 (1H, ddd, J = 15.4, 10.4, 3.0 Hz), 5.55–5.42 (2H, overlapped), 4.49 (1H, t, J = 8.5 Hz), 4.32
(1H, m), 3.93 (1H, dd, J = 8.5, 2.3 Hz), 3.82 (3H, s), 2.75 (1H, m), 2.57–2.38 (3H, overlapped),
2.30 (1H, m), 1.44 (3H, d, J = 6.4 Hz), 1.28 (3H, s), 1.00 (9H, s). 13C NMR (100 MHz, CDCl3)
δ 170.9 (C), 164.9 (C), 164.1 (C), 142.2 (C), 134.2 (CH), 133.7 (CH), 129.3 (CH), 126.4 (CH),
113.5 (C), 107.3 (CH), 104.6 (C), 100.2 (CH), 80.8 (CH), 75.9 (CH), 70.6 (CH), 69.7 (CH), 55.6
(OCH3), 38.8 (CH2), 38.1 (CH2), 36.3 (C), 25.6 (CH3 × 3), 20.6 (CH3), 19.3 (CH3). HRESIMS
m/z 447.2372 [M + H]+ (calcd for C25H35O7

+, 447.2377).
Compound 13: white, solid; yield, 69.7%; 1H NMR (400 MHz, CDCl3) δ 11.50 (1H, s),

7.15 (1H, dd, J = 15.4, 2.4 Hz), 6.46 (1H, d, J = 2.6 Hz), 6.40 (1H, d, J = 2.6 Hz), 6.02 (1H, m),
5.70 (1H, ddd, J = 15.4, 10.4, 3.1 Hz), 5.53–5.39 (2H, overlapped), 4.58 (1H, t, J = 8.4 Hz), 4.20
(1H, m), 3.81 (3H, s), 3.74 (1H, dd, J = 8.4, 2.4 Hz), 2.75 (1H, m), 2.64–2.38 (3H, overlapped),
2.30 (1H, m), 1.83–1.60 (6H, overlapped), 1.44 (3H, d, J = 6.4 Hz), 1.32 (3H, s), 1.22–0.96 (5H,
overlapped). 13C NMR (100 MHz, CDCl3) δ 170.9 (C), 164.9 (C), 164.1 (C), 142.4 (C), 134.2
(CH), 132.0 (CH), 129.8 (CH), 126.6 (CH), 112.0 (C), 107.3 (CH), 104.6 (C), 100.2 (CH), 82.1
(CH), 75.0 (CH), 70.7 (CH), 68.8 (CH), 55.6 (OCH3), 47.3 (CH2), 38.1 (CH2), 35.9 (C), 27.7
(CH), 27.5 (CH), 26.4 (CH), 26.4 (CH), 26.3 (CH), 22.6 (CH3), 19.4 (CH3). HRESIMS m/z
473.2522 [M + H]+ (calcd for C27H37O7

+, 473.2534).
Compound 14: white, solid; yield, 33.2%; 1H NMR (400 MHz, CDCl3) δ 11.50 (1H, s),

7.16 (1H, dd, J = 15.4, 2.3 Hz), 6.47 (1H, d, J = 2.6 Hz), 6.40 (1H, d, J = 2.6 Hz), 5.98 (1H, m),
5.73 (1H, ddd, J = 15.4, 10.5, 3.1 Hz), 5.56–5.40 (2H, overlapped), 4.49 (1H, t, J = 8.4 Hz), 4.27
(1H, m), 3.91 (1H, dd, J = 8.4, 2.3 Hz), 3.81 (3H, s), 2.75 (1H, m), 2.56–2.37 (3H, overlapped),
2.29 (1H, m), 1.89–1.65 (6H, overlapped), 1.44 (3H, d, J = 6.4 Hz), 1.25 (3H, s), 1.22–1.01
(5H, overlapped). 13C NMR (101 MHz, CDCl3) δ 170.9 (C), 164.9 (C), 164.1 (C), 142.2 (C),
134.2 (CH), 133.4 (CH), 129.5 (CH), 126.5 (CH), 111.5 (C), 107.3 (CH), 104.6 (C), 100.2 (CH),
80.9 (CH), 75.5 (CH), 70.7 (CH), 69.4 (CH), 55.6 (OCH3), 47.3 (CH2), 38.0 (CH2), 36.2 (CH),
27.7 (CH2), 27.6 (CH2), 26.4 (CH2×2), 26.3 (CH2), 22.6 (CH3), 19.3 (CH3). HRESIMS m/z
473.2523 [M + H]+ (calcd for C27H37O7

+, 473.2534).
Compound 15: white, solid; yield, 63.7%; 1H NMR (400 MHz, CDCl3) δ 11.49 (1H, s),

7.45–7.42 (2H, overlapped), 7.23–7.27 (3H, overlapped), 7.02 (1H, dd, J = 15.4, 2.4 Hz), 6.43
(1H, d, J = 2.6 Hz), 6.35 (1H, d, J = 2.6 Hz), 5.94 (1H, m), 5.68 (1H, ddd, J = 15.4, 10.5, 3.0 Hz),
5.42 (1H, m), 5.11 (1H, m), 4.70 (1H, dd, J = 9.5, 7.3 Hz), 4.32 (1H, m), 3.79 (3H, s), 3.73 (1H,
dd, J = 7.3, 2.2 Hz), 2.79 (1H, m), 2.68 (1H, s), 2.39–2.19 (3H, overlapped), 1.65 (3H, s), 1.41
(3H, d, J = 6.5 Hz). 13C NMR (125 MHz, CDCl3) δ 170.6 (C), 164.9 (C), 164.0 (C), 144.4 (C),
141.9 (C), 134.0 (CH), 133.5 (CH), 129.0 (CH), 128.4 (CH × 2), 128.1 (CH), 125.7 (CH), 125.4
(CH × 2), 109.2 (C), 107.1 (CH), 104.4 (C), 100.2 (CH), 81.6 (CH), 76.5 (CH), 70.3 (CH), 69.1
(CH), 55.6 (OCH3), 37.8 (CH2), 36.3 (CH2), 29.1 (CH3), 19.0 (CH3). HRESIMS m/z 467.2081
[M + H]+ (calcd for C27H29O7

+, 467.2064).
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Compound 16: white, solid; yield, 43.1%; 1H NMR (400 MHz, CDCl3) δ 11.50 (1H, s),
7.51–7.48 (2H, overlapped), 7.40–7.36 (2H, overlapped), 7.30 (1H, m), 7.15 (1H, dd, J = 15.4,
2.3 Hz), 6.46 (1H, d, J = 2.6 Hz), 6.40 (1H, d, J = 2.6 Hz), 6.08 (1H, m), 5.71 (1H, ddd, J = 15.4,
10.6, 3.1 Hz), 5.62 (1H, m), 5.46 (1H, m), 4.59 (1H, t, J = 8.3 Hz), 4.22 (1H, m), 4.03 (1H, dd,
J = 8.3, 2.2 Hz), 3.82 (3H, s), 2.65 (1H, m), 2.61–2.42 (2H, overlapped), 2.19 (1H, m), 1.90
(1H, m), 1.65 (3H, s), 1.45 (3H, d, J = 6.4 Hz). 13C NMR (125 MHz, CDCl3) δ 170.9 (C), 164.9
(C), 164.1 (C), 144.6 (C), 142.3 (C), 134.1 (CH), 131.8 (CH), 130.5 (CH), 128.9 (CH × 2), 128.3
(CH), 126.8 (CH), 124.6 (CH × 2), 109.1 (C), 107.4 (CH), 104.5 (C), 100.2 (CH), 82.9 (CH),
75.7 (CH), 70.7 (CH), 69.4 (CH), 55.6 (OCH3), 38.1 (CH2), 35.9 (CH2), 29.2 (CH3), 19.4 (CH3).
HRESIMS m/z 467. 2057 [M + H]+ (calcd for C27H31O7

+, 467.2064).
Compound 17: white, solid; yield, 64.8%; 1H NMR (400 MHz, CDCl3) δ 11.49 (1H, s),

7.43–7.39 (2H, overlapped), 7.03 (1H, dd, J = 15.4, 2.4 Hz), 7.01– 6.95 (2H, overlapped), 6.44
(1H, d, J = 2.6 Hz), 6.35 (1H, d, J = 2.6 Hz), 5.95 (1H, m), 5.68 (1H, ddd, J = 15.4, 10.5, 3.0 Hz),
5.43 (1H, m), 5.10 (1H, m), 4.69 (1H, dd, J = 9.5, 7.3 Hz), 4.31 (1H, m), 3.79 (3H, s), 3.71 (1H,
dd, J = 7.3, 2.2 Hz), 2.79 (1H, m), 2.67 (1H, s), 2.38–2.35 (2H, overlapped), 2.25 (1H, m), 1.63
(3H, s), 1.41 (3H, d, J = 6.5 Hz). 13C NMR (100 MHz, CDCl3) δ 170.6 (C), 165.0 (C), 164.0 (C),
162.6 (C, d, J = 244.1 Hz), 141.8 (C), 140.3 (C, d, J = 3.2 Hz), 134.0 (CH), 133.3 (CH), 129.2
(CH), 127.3 (CH × 2, d, J = 8.1 Hz), 125.6 (CH), 115.2 (CH × 2, d, J = 21.5 Hz), 108.8 (C),
107.2 (CH), 104.4 (C), 100.2 (CH), 81.7 (CH), 76.5 (CH), 70.2 (CH), 69.0 (CH), 55.5 (OCH3),
37.8 (CH2), 36.3 (CH2), 29.2 (CH3), 19.0 (CH3). HRESIMS m/z 485.1974 [M + H]+ (calcd for
C27H31O7F+, 485.1970).

Compound 18: white, solid; yield, 41.7%; 1H NMR (400 MHz, CDCl3) δ 11.49 (1H, s),
7.43–7.39 (2H, overlapped), 7.16 (1H, dd, J = 15.4, 2.3 Hz), 7.01–6.95 (2H, overlapped), 6.46
(1H, d, J = 2.6 Hz), 6.40 (1H, d, J = 2.6 Hz), 6.07 (1H, m), 5.71 (1H, ddd, J = 15.4, 10.5, 3.1 Hz),
5.60 (1H, m), 5.47 (1H, m), 4.58 (1H, t, J = 8.4 Hz), 4.22 (1H, m), 4.02 (1H, dd, J = 8.4, 2.2 Hz),
3.82 (3H, s), 2.67 (1H, m), 2.61–2.44 (2H, overlapped), 2.20 (1H, m), 1.90 (1H, s), 1.62 (3H,
s), 1.45 (3H, d, J = 6.4 Hz). 13C NMR (100 MHz, CDCl3) δ 170.9 (C), 164.9 (C), 164.1 (C),
162.6 (C, d, J = 244.9 Hz), 142.3 (C), 140.4 (C, d, J = 3.5 Hz), 134.2 (CH), 131.6 (CH), 130.6
(CH), 126.7 (CH), 126.5 (CH × 2, d, J = 8.4 Hz), 115.7 (CH × 2, d, J = 21.5 Hz), 108.7 (C),
107.4 (CH), 104.5 (C), 100.2 (CH), 82.9 (CH), 75.8 (CH), 70.7 (CH), 69.2 (CH), 55.6 (OCH3),
38.0 (CH2), 35.9 (CH2), 29.2 (CH3), 19.4 (CH3). HRESIMS m/z 485.1973 [M + H]+ (calcd for
C17H30O7F+, 485.1970).

Compound 19: white, solid; yield, 65.4%; 1H NMR (400 MHz, CDCl3) δ 11.48 (1H, s),
7.60 (1H, m), 7.34 (1H, m), 7.22–7.18 (2H, overlapped), 7.04 (1H, dd, J = 15.4, 2.4 Hz), 6.45
(1H, d, J = 2.6 Hz), 6.35 (1H, d, J = 2.6 Hz), 5.95 (1H, m), 5.71 (1H, ddd, J = 15.4, 10.5, 3.0 Hz),
5.42 (1H, m), 5.10 (1H, m), 4.72 (1H, dd, J = 9.4, 7.3 Hz), 4.34 (1H, m), 3.79 (3H, s), 3.73 (1H,
dd, J = 7.3, 2.2 Hz), 2.80 (1H, m), 2.68 (1H, s), 2.40–2.33 (2H, overlapped), 2.26 (1H, m), 1.78
(3H, s), 1.41 (3H, d, J = 6.5 Hz). 13C NMR (100 MHz, CDCl3) δ 170.7 (C), 164.9 (C), 164.0 (C),
141.9 (C), 140.6 (C), 134.0 (C), 132.9 (CH), 132.0 (CH), 131.6 (CH), 129.6 (CH), 129.3 (CH),
127.9 (CH), 126.8 (CH), 125.9 (CH), 108.7 (CH), 107.2 (CH), 104.4 (C), 100.2 (CH), 81.6 (CH),
76.3 (CH), 70.3 (CH), 69.0 (CH), 55.6 (OCH3), 37.8 (CH2), 36.4 (CH2), 26.5 (CH3), 19.0 (CH3).
HRESIMS m/z 501.1692 [M + H]+ (calcd for C27H30O7Cl+, 501.1675).

Compound 20: white, solid; yield, 33.8%; 1H NMR (400 MHz, CDCl3) δ 11.49 (1H, s),
7.65 (1H, dd, J = 7.5, 2.0 Hz), 7.40 (1H, dd, J = 7.5, 1.7 Hz), 7.29 (1H, dd, J = 7.4, 1.7 Hz),
7.24 (1H, dd, J = 7.4, 2.1 Hz), 7.14 (1H, dd, J = 15.3, 2.3 Hz), 6.45 (1H, d, J = 2.6 Hz), 6.40
(1H, d, J = 2.6 Hz), 6.10 (1H, m), 5.75–5.56 (2H, overlapped), 5.48 (1H, m), 4.55 (1H, t,
J = 8.4 Hz), 4.26 (1H, m), 4.02 (1H, dd, J = 8.4, 2.3 Hz), 3.82 (3H, s), 2.65 (1H, m), 2.60–2.45
(2H, overlapped), 2.19 (1H, m), 1.93 (1H, s), 1.77 (3H, s), 1.45 (3H, d, J = 6.4 Hz). 13C NMR
(100 MHz, CDCl3) δ 170.9 (C), 164.9 (C), 164.1 (C), 142.3 (C), 140.9 (C), 134.2 (C), 131.8 (CH),
131.4 (CH), 131.3 (CH), 130.9 (CH), 129.7 (CH), 127.4 (CH), 127.0 (CH), 126.5 (CH), 108.8 (C),
107.4 (CH), 104.5 (C), 100.2 (CH), 82.9 (CH), 75.5 (CH), 70.6 (CH), 69.2 (CH), 55.6 (OCH3),
38.1 (CH2), 35.8 (CH2), 27.0 (CH3), 19.4 (CH3). HRESIMS m/z 501.1672 [M + H]+ (calcd for
C27H30OCl+, 501.1675).
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Compound 21: white, solid; yield, 56.6%; 1H NMR (400 MHz, CDCl3) δ 11.49 (1H,
s), 7.39–7.36 (2H, overlapped), 7.29–7.26 (2H, overlapped), 7.03 (1H, dd, J = 15.4, 2.4 Hz),
6.43 (1H, d, J = 2.6 Hz), 6.35 (1H, d, J = 2.6 Hz),5.95 (1H, m), 5.68 (1H, ddd, J = 15.4, 10.5,
3.0 Hz), 5.44 (1H, m), 5.09 (1H, dd, J = 15.2, 9.4, 1.3 Hz), 4.69 (1H, dd, J = 9.4, 7.3 Hz), 4.30
(1H, m), 3.79 (3H, s), 3.69 (1H, dd, J = 7.3, 2.2 Hz), 2.79 (1H, m), 2.63 (1H, s), 2.38–2.19 (3H,
overlapped), 1.62 (3H, s), 1.41 (3H, d, J = 6.5 Hz). 13C NMR (100 MHz, CDCl3) δ 170.6 (C),
165.0 (C), 164.0 (C), 143.0 (C), 141.8 (C), 134.1 (C), 134.0 (CH), 133.3 (CH), 129.3 (CH), 128.6
(CH × 2), 127.0 (CH × 2), 125.6 (CH), 108.7 (C), 107.2 (CH), 104.4 (C), 100.2 (CH), 81.7 (CH),
76.5 (CH), 70.2 (CH), 69.0 (CH), 55.6 (CH), 37.8 (OCH3), 36.3 (CH2), 29.0 (CH3), 19.0 (CH3).
HRESIMS m/z 501.1685 [M + H]+ (calcd for C27H30O7Cl+, 501.1675).

Compound 22: white, solid; yield, 32.3%; 1H NMR (400 MHz, CDCl3) δ 11.49 (1H, s),
7.45–7.42 (2H, overlapped), 7.36–7.33 (2H, overlapped), 7.16 (1H, dd, J = 15.4, 2.3 Hz), 6.46
(1H, d, J = 2.6 Hz), 6.40 (1H, d, J = 2.5 Hz), 6.07 (1H, m), 5.71 (1H, ddd, J = 15.4, 10.5, 3.1 Hz),
5.60 (1H, m), 5.46 (1H, m), 4.56 (1H, t, J = 8.3 Hz), 4.22 (1H, m), 4.02 (1H, dd, J = 8.3, 2.2 Hz),
3.82 (3H, s), 2.66 (1H, m), 2.59–2.44 (2H, overlapped), 2.20 (1H, m), 1.88 (1H, d, J = 1.5 Hz),
1.61 (3H, s), 1.44 (3H, d, J = 6.3 Hz). 13C NMR (101 MHz, CDCl3) δ 170.9 (C), 164.9 (C), 164.1
(C), 143.0 (C), 142.3 (C), 134.2 (C), 134.1 (CH), 131.5 (CH), 130.7 (CH), 129.0 (CH × 2), 126.7
(CH), 126.2 (CH × 2), 108.6 (C), 107.4 (CH), 104.5 (C), 100.2 (CH), 82.9 (CH), 75.9 (CH), 70.7
(CH), 69.2 (CH), 55.6 (OCH3), 38.1 (CH2), 35.9 (CH2), 29.1 (CH3 ), 19.5 (CH3 ). HRESIMS
m/z 501.1684 [M + H]+ (calcd for C27H30O7Cl+, 501.1675).

Compound 23: white, solid; yield, 52.8%; 1H NMR (400 MHz, CDCl3) δ 11.50 (1H, s),
7.15 (1H, dd, J = 15.4, 2.3 Hz), 6.46 (1H, d, J = 2.6 Hz), 6.40 (1H, d, J = 2.6 Hz), 6.03 (1H, m),
5.70 (1H, ddd, J = 15.4, 10.4, 3.0 Hz), 5.52–5.42 (2H, overlapped), 4.60 (1H, t, J = 8.5 Hz), 4.19
(1H, m), 3.82 (3H, s), 3.79 (1H, dd, J = 8.5, 2.4 Hz), 2.76 (1H, m), 2.58–2.38 (5H, overlapped),
2.29 (1H, m), 2.13 (3H, s), 1.93 (2H, t, J = 6.4 Hz), 1.44 (3H, d, J = 6.4 Hz), 1.40 (3H, s). 13C
NMR (100 MHz, CDCl3) δ 208.2 (C), 170.9 (C), 164.9 (C), 164.1 (C), 142.2 (C), 134.3 (CH),
131.8 (CH), 130.3 (CH), 126.3 (CH), 109.4 (C), 107.4 (CH), 104.5 (C), 100.2 (CH), 82.3 (CH),
75.4 (CH), 70.6 (CH), 68.8 (CH), 55.6 (OCH3), 38.4 (CH2), 38.0 (CH2), 36.0 (CH2), 33.8 (CH3),
30.1 (CH2), 25.5 (CH3), 19.3 (CH3). HRESIMS m/z 461.2157 [M + H]+ (calcd for C25H33O8

+,
461.2170).

Compound 24: white, solid; yield, 35.2%; 1H NMR (400 MHz, CDCl3) δ 11.50 (1H, s),
7.15 (1H, dd, J = 15.4, 2.3 Hz), 6.47 (1H, d, J = 2.6 Hz), 6.39 (1H, d, J = 2.6 Hz), 5.99 (1H, m),
5.73 (1H, ddd, J = 15.4, 10.6, 3.1 Hz), 5.57–5.41 (2H, overlapped), 4.58 (1H, t, J = 8.3 Hz), 4.21
(1H, m), 3.90 (1H, dd, J = 8.3, 2.1 Hz), 3.81 (3H, s), 2.75 (1H, m), 2.65–2.35 (5H, overlapped),
2.27 (1H, m), 2.17 (3H, s), 2.11 (1H, m), 1.96 (1H, m), 1.44 (3H, d, J = 6.4 Hz), 1.32 (3H, s).
13C NMR (100 MHz, CDCl3) δ 210.2 (C), 170.9 (C), 164.9 (C), 164.1 (C), 142.2 (C), 134.0 (CH),
133.1 (CH), 129.6 (CH), 126.8 (CH), 109.3 (C), 107.3 (CH), 104.5 (C), 100.2 (CH), 81.9 (CH),
77.4 (CH), 70.7 (CH), 69.0 (CH), 55.6 (OCH3), 38.5 (CH2), 38.0 (CH2), 36.6 (CH2), 33.7 (CH3),
29.8 (CH2), 25.8 (CH3), 19.3 (CH3). HRESIMS m/z 461.2155 [M + H]+ (calcd for C2H33O8

+,
461.2170).

Compound 25: white, solid; yield, 54.4%; 1H NMR (400 MHz, CDCl3) δ 11.48 (1H, s),
7.15 (1H, dd, J = 15.4, 2.3 Hz), 6.46 (1H, d, J = 2.6 Hz), 6.40 (1H, d, J = 2.6 Hz), 6.03 (1H, m),
5.70 (1H, ddd, J = 15.4, 10.5, 3.0 Hz), 5.55–5.39 (2H, overlapped), 4.62 (1H, t, J = 8.4 Hz), 4.23
(1H, m), 3.89 (1H, dd, J = 8.4, 2.3 Hz), 3.81 (3H, s), 2.75 (3H, m), 2.57–2.38 (3H, overlapped),
2.29 (1H, m), 2.17 (3H, s), 1.48 (3H, s), 1.44 (3H, d, J = 6.4 Hz). 13C NMR (100 MHz, CDCl3)
δ 205.6 (C), 170.9 (C), 164.9 (C), 164.1 (C), 142.2 (C), 134.3 (CH), 131.7 (CH), 130.4 (CH),
126.4 (CH), 107.8 (C), 107.4 (CH), 104.5 (C), 100.2 (CH), 82.1 (CH), 75.5 (CH), 70.6 (CH), 68.6
(CH), 55.6 (OCH3), 53.4 (CH2), 38.0 (CH2), 36.0 (CH2), 32.0 (CH3), 25.8 (CH3), 19.3 (CH3).
HRESIMS m/z 447.2026 [M + H]+ (calcd for C24H31O8

+, 447.2013).
Compound 26: white, solid; yield, 36.3%; 1H NMR (400 MHz, CDCl3) δ 11.48 (1H, s),

7.14 (1H, dd, J = 15.4, 2.4 Hz), 6.48 (1H, d, J = 2.6 Hz), 6.39 (1H, d, J = 2.6 Hz), 6.01 (1H, m),
5.76 (1H, ddd, J = 15.4, 10.6, 3.1 Hz), 5.54–5.41 (2H, overlapped), 4.62 (1H, t, J = 7.6 Hz),
4.26 (1H, m), 3.96 (1H, dd, J = 7.6, 2.1 Hz), 3.81 (3H, s), 2.97 (1H, d, J = 14.1 Hz), 2.82–2.71
(2H, overlapped), 2.57–2.37 (2H, overlapped), 2.28–2.18 (5H, overlapped), 1.44 (3H, d,
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J = 6.4 Hz), 1.40 (3H, s). 13C NMR (100 MHz, CDCl3) δ 207.2 (C), 170.9 (C), 164.9 (C), 164.1
(C), 142.2 (C), 133.9 (CH), 133.0 (CH), 130.0 (CH), 126.8 (CH), 107.7 (C), 107.2 (CH), 104.5
(C), 100.2 (CH), 82.1 (CH), 76.0 (CH), 70.5 (CH), 69.1 (CH), 55.6 (OCH3), 51.2 (CH2), 37.9
(CH2), 36.6 (CH2), 32.9 (CH3), 27.3 (CH3), 19.2 (CH3). HRESIMS m/z 447.1998 [M + H]+

(calcd for C24H31O8
+, 447.2013).

Compound 27: white, solid; yield, 58.8%; 1H NMR (400 MHz, CDCl3) δ 11.39 (1H, s),
6.63 (1H, dd, J = 16.2, 1.3 Hz), 6.47 (1H, s), 6.00 (1H, m), 5.54–5.33 (3H, overlapped), 4.54
(1H, t, J = 8.6 Hz), 4.23 (1H, m), 3.91 (3H, s), 3.77 (1H, dd, J = 8.6, 2.5 Hz), 2.86 (1H, m),
2.62–2.31 (4H, overlapped), 1.75–1.60 (4H, overlapped), 1.39 (3H, d, J = 6.4 Hz), 0.93 (3H, t,
J = 7.5 Hz), 0.88 (3H, t, J = 7.5 Hz). 13C NMR (100 MHz, CDCl3) δ 170.7 (C), 162.5 (C), 160.0
(C), 140.0 (C), 131.1 (CH), 130.7 (CH), 130.5 (CH), 129.0 (CH), 114.1 (C), 112.5 (CH), 106.4
(C), 99.5 (CH), 81.2 (CH), 75.7 (CH), 71.5 (CH), 68.6 (CH), 56.6 (OCH3), 37.2 (CH2), 34.8
(CH2), 30.5 (CH2), 30.3 (CH2), 19.4 (CH3), 8.3 (CH3), 8.3 (CH3). HRESIMS m/z 467.1817 [M
+ H]+ (calcd for C24H32O7Cl+, 467.1831).

Compound 28: white, solid; yield, 54.5%; 1H NMR (400 MHz, CDCl3) δ 11.45 (1H,
s), 7.40–7.37 (2H, overlapped), 7.29–7.27 (2H, overlapped), 6.56 (1H, d, J = 14.8 Hz), 6.42
(1H, s), 5.96 (1H, m), 5.43 (1H, ddd, J = 14.8, 8.5, 3.8 Hz), 5.35 (1H, m), 5.17 (1H, m), 4.68
(1H, t, J = 8.1 Hz), 4.29 (1H, m), 3.88 (3H, s), 3.62 (1H, dd, J = 8.1, 2.3 Hz), 2.90 (1H, m),
2.63 (1H, m), 2.51 (1H, m), 2.42–2.25 (2H, overlapped), 1.62 (3H, s), 1.37 (3H, d, J = 6.5 Hz).
13C NMR (100 MHz, CDCl3) δ 170.5 (C), 162.6 (C), 160.0 (C), 143.0 (C), 139.7 (C), 134.0 (C),
131.7 (CH), 130.2 (CH), 130.1 (CH), 129.1 (CH), 128.6 (CH × 2), 126.8 (CH × 2), 114.0 (C),
108.7 (CH), 106.2 (C), 99.6 (CH), 81.1 (CH), 76.7 (CH), 71.3 (CH), 68.4 (CH), 56.6 (OCH3),
37.1 (CH2), 34.8 (CH2), 28.9 (CH3), 19.1 (CH3). HRESIMS m/z 535.1283 [M + H]+ (calcd for
C27H29O7Cl2+, 535.1285).

Compound 29: white, solid; yield, 53.9%; 1H NMR (400 MHz, CDCl3) δ 11.41 (1H, s),
6.62 (1H, d, J = 16.1 Hz), 6.47 (1H, s), 6.02 (1H, m), 5.54–5.34 (3H, overlapped), 4.59 (1H, t,
J = 8.7 Hz), 4.17 (1H, m), 3.91 (3H, s), 3.71 (1H, dd, J = 8.7, 2.5 Hz), 2.86 (1H, m), 2.62–2.47
(4H, overlapped), 2.47–2.31 (2H, overlapped), 2.13 (3H, s), 1.95 (2H, t, J = 7.4 Hz), 1.40–1.38
(6H, overlapped). 13C NMR (125 MHz, CDCl3) δ 208.3 (C), 170.6 (C), 162.5 (C), 160.0 (C),
139.9 (C), 131.1 (CH), 130.4 (CH), 130.2 (CH), 129.1 (CH), 114.1 (C), 109.5 (CH), 106.4 (C),
99.6 (CH), 81.8 (CH), 75.6 (CH), 71.4 (CH), 68.2 (CH), 56.6 (OCH3), 38.4 (CH2), 37.2 (CH2),
34.7 (CH2), 33.9 (CH3), 30.1 (CH2), 25.6 (CH3), 19.4 (CH3). HRESIMS m/z 495.1765 [M +
H]+ (calcd for C25H32O8Cl+, 495.1780).

Compound 30: white, solid; yield, 32.3%; 1H NMR (400 MHz, CDCl3) δ 11.37 (1H, s),
6.63 (1H, dd, J = 16.1, 1.6 Hz), 6.46 (1H, s), 5.98 (1H, m), 5.52 (1H, ddd, J = 16.1, 9.1, 3.5 Hz),
5.47–5.34 (2H, overlapped), 4.56 (1H, t, J = 8.6 Hz), 4.20 (1H, m), 3.91 (3H, s), 3.81 (1H, dd,
J = 8.6, 2.2 Hz), 2.87 (1H, m), 2.61–2.51 (4H, overlapped), 2.46–2.28 (2H, overlapped), 2.17
(3H, s), 2.10 (1H, m), 1.96 (1H, m), 1.96 (3H, d, J = 6.3 Hz), 1.33 (3H, s). 13C NMR (100 MHz,
CDCl3) δ 209.8 (C), 170.7 (C), 162.4 (C), 160.0 (C), 140.0 (C), 131.4 (CH), 131.1 (CH), 130.4
(CH), 128.9 (CH), 114.1 (C), 109.4 (CH), 106.5 (C), 99.5 (CH), 81.4 (CH), 75.9 (CH), 71.4 (CH),
68.5 (CH), 56.6 (OCH3), 38.5 (CH2), 37.2 (CH2), 35.4 (CH2), 33.7 (CH3), 29.9 (CH2), 25.7
(CH3), 19.5 (CH3). HRESIMS m/z 495.1761 [M + H]+ (calcd for C25H32O8Cl+, 495.1780).

Compound 31: white, solid; yield, 58.5%; 1H NMR (400 MHz, CDCl3) δ 11.44 (1H, s),
7.49–7.41 (2H, overlapped), 7.35–7.27 (3H, overlapped), 6.55 (1H, d, J = 17.4 Hz), 6.42 (1H,
s), 5.95 (1H, m), 5.43 (1H, ddd, J = 16.1, 8.5, 3.8 Hz), 5.33 (1H, m), 5.19 (1H, m), 4.69 (1H,
t, J = 9.0 Hz), 4.30 (1H, m), 3.88 (3H, s), 3.65 (1H, dd, J = 9.0, 2.4 Hz), 2.90 (1H, m), 2.67
(1H, s), 2.50 (1H, m), 2.40–2.27 (2H, overlapped), 1.65 (3H, s), 1.37 (3H, d, J = 6.5 Hz). 13C
NMR (100 MHz, CDCl3) δ 170.5 (C), 162.6 (C), 160.0 (C), 144.3 (C), 139.8 (C), 131.9 (CH),
130.3 (CH), 130.0 (CH), 129.0 (CH), 128.4 (CH × 2), 128.1 (CH), 125.3 (CH × 2), 114.0 (C),
109.1 (CH), 106.2 (C), 99.5 (CH), 81.0 (CH), 76.6 (CH), 71.3 (CH), 68.4 (CH), 56.5 (OCH3),
37.1 (CH2), 34.8 (CH2), 29.0 (CH3), 19.1 (CH3). HRESIMS m/z 501.1664 [M + H]+ (calcd for
C27H30O7Cl+, 501.1675).

Compound 32: white, solid; yield, 37.6%; 1H NMR (400 MHz, CDCl3) δ 11.35 (1H, s),
7.49 (2H, d, J = 7.5 Hz), 7.38 (2H, t, J = 7.5 Hz), 7.31 (1H, d, J = 7.2 Hz), 6.62 (1H, dd, J = 16.1,
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2.4 Hz), 6.47 (1H, s), 6.04 (1H, m), 5.58–5.41 (3H, overlapped), 4.53 (1H, t, J = 8.6 Hz), 4.20
(1H, m), 3.94 (1H, dd, J = 8.6, 2.2 Hz), 3.91 (3H, s), 2.76 (1H, m), 2.65–2.41 (3H, overlapped),
2.23 (1H, m), 1.65 (3H, s), 1.39 (3H, d, J = 6.3 Hz). 13C NMR (100 MHz, CDCl3) δ 170.7 (C),
162.4 (C), 160.0 (C), 144.6 (C), 140.0 (C), 131.3 (CH), 130.9 (CH), 130.0 (CH), 128.9 (CH × 3),
128.2 (CH), 124.5 (CH × 2), 114.1 (C), 109.1 (CH), 106.5 (C), 99.5 (CH), 82.4 (CH), 75.9 (CH),
71.3 (CH), 68.8 (CH), 56.6 (OCH3), 37.2 (CH2), 34.7 (CH2), 29.3 (CH3), 19.6 (CH3). HRESIMS
m/z 501.1662 [M + H]+ (calcd for C27H30O7Cl+, 501.1675).

Compound 33: white, solid; yield, 55.7%; 1H NMR (400 MHz, CDCl3) δ 11.41 (1H, s),
7.62 (1H, dd, J = 6.0, 3.6 Hz), 7.35 (1H, dd, J = 6.0, 3.6 Hz), 7.24–7.20 (2H, overlapped), 6.56
(1H, dd, J = 16.1, 1.4 Hz), 6.42 (1H, s), 5.95 (1H, m), 5.45 (1H, ddd, J = 16.2, 8.7, 3.8 Hz), 5.32
(1H, m), 5.18 (1H, m), 4.70 (1H, t, J = 8.1 Hz), 4.32 (1H, m), 3.88 (3H, s), 3.64 (1H, dd, J = 8.1,
2.3 Hz), 2.90 (1H, m), 2.68 (1H, s), 2.51 (1H, m), 2.42–2.25 (2H, overlapped), 1.79 (3H, s), 1.37
(3H, d, J = 6.4 Hz). 13C NMR (100 MHz, CDCl3) δ 170.5 (C), 162.5 (C), 160.0 (C), 140.6 (C),
139.8 (C), 132.0 (C), 131.6 (CH), 131.4 (CH), 130.4 (CH), 130.2 (CH), 129.6 (CH), 129.0 (CH),
127.7 (CH), 126.7 (CH), 114.0 (C), 108.7 (CH), 106.2 (C), 99.5 (CH), 81.0 (CH), 76.4 (CH), 71.4
(CH), 68.3 (CH), 56.6 (OCH3), 37.1 (CH2), 34.9 (CH2), 26.5 (CH3), 19.1 (CH3). HRESIMS
m/z 535.1282 [M + H]+ (calcd for C27H29O7Cl2+, 535.1285).

Compound 34: white, solid; yield, 31.9%; 1H NMR (400 MHz, CDCl3) δ 11.36 (1H, s),
7.64 (1H, dd, J = 7.5, 2.0 Hz), 7.40 (1H, dd, J = 7.5, 1.7 Hz), 7.28 (1H, dd, J = 7.5, 1.7 Hz), 7.23
(1H, dd, J = 7.5, 2.0 Hz), 6.61 (1H, dd, J = 16.1, 1.5 Hz), 6.47 (1H, s), 6.06 (1H, m), 5.60–5.46
(2H, overlapped), 5.43 (1H, m), 4.51 (1H, t, J = 8.7 Hz), 4.24 (1H, m), 3.95 (1H, dd, J = 8.7, 2.4
Hz), 3.91 (3H, s), 2.76 (1H, m), 2.60 (1H, m), 2.47 (1H, m), 2.24 (1H, m), 2.01 (1H, s), 1.77
(3H, s), 1.39 (3H, d, J = 6.3 Hz). 13C NMR (100 MHz, CDCl3) δ 170.7 (C), 162.4 (C), 160.0
(C), 140.8 (C), 139.9 (C), 131.8 (CH), 131.7 (CH), 131.5 (CH), 130.7 (CH), 129.7 (CH × 2),
129.0 (CH), 127.4 (CH), 126.9 (CH), 114.1 (C), 108.9 (CH), 106.4 (C), 99.5 (CH), 82.4 (CH),
75.7 (CH), 71.3 (CH), 68.6 (CH), 56.6 (OCH3), 37.2 (CH2), 34.6 (CH2), 27.0 (CH3), 19.5 (CH3).
HRESIMS m/z 535.1285 [M + H]+ (calcd for C27H29O7Cl2+, 535.1285).

Compound 35: white, solid; yield, 49.3%; 1H NMR (400 MHz, CDCl3) δ 11.42 (1H, s),
6.60 (1H, dd, J = 16.1, 1.2 Hz), 6.47 (1H, s), 6.05 (1H, m), 5.52–5.34 (3H, overlapped), 4.61
(1H, t, J = 8.7 Hz), 4.17 (1H, m), 3.91 (3H, s), 3.63 (1H, dd, J = 8.7, 2.6 Hz), 2.86 (1H, m),
2.64–2.52 (2H, overlapped), 2.49–2.30 (2H, overlapped), 1.39 (3H, d, J = 6.4 Hz), 1.35 (3H, s),
0.94 (9H, s). 13C NMR (100 MHz, CDCl3) δ 170.7 (C), 162.5 (C), 159.9 (C), 140.1 (C), 130.9
(CH), 130.5 (CH), 129.9 (CH), 129.0 (CH), 114.1 (C), 114.1 (CH)106.4 (C), 99.5 (CH), 82.2
(CH), 75.4 (CH), 71.4 (CH), 68.1 (CH), 56.6 (OCH3), 39.3 (CH2), 37.3 (CH2), 34.4 (C), 25.4
(CH3 × 3), 20.9 (CH3), 19.4 (CH3). HRESIMS m/z 461.2519 [M + H]+ (calcd for C26H37O7

+,
461.2534).

Compound 36: white, solid; yield, 62.5%; 1H NMR (400 MHz, CDCl3) δ 11.42 (1H, s),
6.61 (1H, dd, J = 16.1, 1.4 Hz), 6.46 (1H, s), 6.02 (1H, m), 5.53–5.35 (3H, overlapped), 4.57
(1H, t, J = 8.7 Hz), 4.17 (1H, m), 3.91 (3H, s), 3.67 (1H, dd, J = 8.7, 2.5 Hz), 2.86 (1H, m),
2.64–2.51 (2H, overlapped), 2.48–2.30 (2H, overlapped), 1.84–1.61 (6H, overlapped), 1.39
(3H, d, J = 6.4 Hz), 1.32 (3H, s), 1.22–0.97 (5H, overlapped). 13C NMR (100 MHz, CDCl3) δ
170.7 (C), 162.5 (C), 160.0 (C), 140.0 (C), 130.7 (CH), 130.6 (CH), 130.4 (CH), 129.0 (CH), 114.1
(C), 112.0 (CH), 106.4 (C), 99.5 (CH), 81.6 (CH), 75.2 (CH), 71.5 (CH), 68.2 (CH), 56.6 (OCH3),
47.4 (CH2), 37.2 (CH2), 34.6 (C), 27.6 (CH), 27.4 (CH), 26.4 (CH), 26.4 (CH), 26.3 (CH), 22.7
(CH3), 19.4 (CH3). HRESIMS m/z 507.21 [M + H]+ (calcd for C27H36O7Cl+, 507.2144).

Compound 37: white, solid; yield, 41.7%; 1H NMR (400 MHz, CDCl3) δ 11.38 (1H, s),
6.63 (1H, dd, J = 16.1, 1.4 Hz), 6.46 (1H, s), 5.97 (1H, m), 5.51 (1H, ddd, J = 16.1, 8.9, 3.7 Hz),
5.47–5.36 (2H, overlapped), 4.45 (1H, t, J = 8.7 Hz), 4.25 (1H, m), 3.91 (3H, s), 3.82 (1H,
dd, J = 8.7, 2.4 Hz), 2.86 (1H, m), 2.60–2.52 (2H, overlapped), 2.48–2.28 (2H, overlapped),
1.89–1.62 (6H, overlapped), 1.38 (3H, d, J = 6.4 Hz), 1.26 (3H, s), 1.10 (5H, overlapped). 13C
NMR (100 MHz, CDCl3) δ 170.7 (C), 162.4 (C), 160.0 (C), 140.0 (C), 131.5 (CH), 130.7 (CH),
130.4 (CH), 129.1 (CH), 114.1 (C), 111.7 (CH), 106.5 (C), 99.5 (CH), 80.4 (CH), 75.8 (CH),
71.4 (CH), 68.8 (CH), 56.6 (OCH3), 47.4 (CH2), 37.2 (CH2), 34.9 (CH), 27.7 (CH2×2), 26.4
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(CH2×2), 26.3 (CH2), 22.7 (CH3 ), 19.5 (CH3 ). HRESIMS m/z 507.2162 [M + H]+ (calcd for
C27H36O7Cl+, 507.2144).

3.5. Antimicrobial Activity

The broth dilution method was used to screen antibacterial activity in vitro. Broth
micro- or macro-dilution is the most basic method for antibiotic susceptibility testing [38,40].
In the screening of anti-M. marinum activity, the commonly used isoniazid and rifampicin
were selected as positive controls. Ciprofloxacin and chloramphenicol were positive in
antibacterial tests. Amphotericin B was used as a positive drug in the antifungal test. The
strains were inoculated into the corresponding medium, cultured at 32 ◦C for 8 h, and
diluted to 105 CFU/mL with the corresponding blank medium, and then a 198 µL bacterial
solution and a 2 µL sample were added into the 96-well plates, using DMSO as a negative
control. The treated 96-well plates were also cultured at 32 ◦C for 24 h or 48 h.

3.6. Statistical Analysis

GraphPad Prism 8 software was used for data analysis. Data are represented using
the means ± SD. Data can only be considered statistically significant when p < 0.05. Data
are presented as the means of three experiments.

4. Conclusions

In conclusion, 28 new derivatives with ketal groups were synthesized through a
one-to-two-step chemical semi-synthetic reaction, enriching the structural diversity of the
14-membered RALs. In vitro activity evaluation of the synthesized derivatives showed
that compounds 15–24 and 28–35 showed effective anti-M. marinum activity. Preliminary
structure–activity relationship analysis of the compounds showed that the introduction
of ketal groups with aromatic rings in C-5′ and C-6′ significantly enhanced the activity
of the compounds. The 14-membered RALs showed no significant activity after the in-
troduction of chain ketal groups at the C-5′ and C-6′ positions, but the activity increased
significantly after the further introduction of chlorine atoms at C-5. The introduction of
ketal groups to the hydroxyl groups at C-5′ and C-6′ and the ketone reaction, in which two
carbonyl groups in the molecule are separated by two saturated carbon atoms, significantly
increased anti-M. marinum activity. Further combined-administration experiments showed
that compounds 23, 24, 29, and 30 enhanced the anti-M. marinum activity of the positive
drug. Therefore, compounds 23, 24, 29, and 30 have effective anti-M. marinum activity
in vitro, providing a new idea for the development of new anti-M. marinum drugs.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/md22100431/s1. Table S1: Different ketone reagents used to
generate compounds 10–37. Table S2: Key 13C NMR data (δ) for diastereoisomers. Figure S1–S98: 1H
NMR, 13C NMR, 1D NOE, and HRESIMS results for compounds 10–37.
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