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Abstract: The availability of fixed nitrogen limits overall agricultural crop production worldwide.
The so-called modern “green revolution” catalyzed by the widespread application of nitrogenous
fertilizer has propelled global population growth. It has led to imbalances in global biogeochemical
nitrogen cycling, resulting in a “nitrogen problem” that is growing at a similar trajectory to the
“carbon problem”. As a result of the increasing imbalances in nitrogen cycling and additional envi-
ronmental problems such as soil acidification, there is renewed and increasing interest in increasing
the contributions of biological nitrogen fixation to reduce the inputs of nitrogenous fertilizers in
agriculture. Interestingly, biological nitrogen fixation, or life’s ability to convert atmospheric dini-
trogen to ammonia, is restricted to microbial life and not associated with any known eukaryotes. It
is not clear why plants never evolved the ability to fix nitrogen and rather form associations with
nitrogen-fixing microorganisms. Perhaps it is because of the large energy demand of the process,
the oxygen sensitivity of the enzymatic apparatus, or simply failure to encounter the appropriate
selective pressure. Whatever the reason, it is clear that this ability of crop plants, especially cereals,
would transform modern agriculture once again. Successfully engineering plants will require creat-
ing an oxygen-free niche that can supply ample energy in a tightly regulated manner to minimize
energy waste and ensure the ammonia produced is assimilated. Nitrogen-fixing aerobic bacteria can
perhaps provide a blueprint for engineering nitrogen-fixing plants. This short review discusses the
key features of robust nitrogen fixation in the model nitrogen-fixing aerobe, gamma proteobacteria
Azotobacter vinelandii, in the context of the basic requirements for engineering nitrogen-fixing plants.
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1. Introduction

Nitrogen availability is the main limiting factor of agricultural productivity, so syn-
thetic nitrogen fertilizers have been introduced to increase yields. These additions ensure
food security but are costly and negatively affect the environment by damaging sensitive
ecosystems, reducing air quality, and contributing to the nitrogen problem [1,2]. The ad-
dition of fertilizer increases the amount of reactive nitrogen in the soil. However, when
rates of nitrogen addition and denitrification are unequal, the excess is transported to
bodies of water, resulting in eutrophication [3,4]. This scenario is comparable to excess
anthropogenic carbon dioxide production beyond the amount that can be used by plants
or buried. The nitrogen problem has led to an increased interest in biological nitrogen
fixation (BNF) in diazotrophs. Diazotrophs are responsible for an estimated 60% of all
fixed nitrogen and are found free-living in soil, the rhizosphere of plants, or in the N-fixing
nodules of legumes [5–7]. In the absence of other nitrogen sources, these organisms can
convert nitrogen gas to ammonia enzymatically and release ammonia for use by crop plants.
Increasing the productivity of BNF would help reduce the need for synthetic fertilizers and
decrease the negative impacts of their use [8].

Nitrogen fixation is performed by many types of bacteria and archaea using nitro-
genase [9,10]. Nitrogenase contains oxygen-sensitive iron-sulfur clusters and requires
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high amounts of ATP and low-potential electrons to reduce N2. Across diazotrophs,
many mechanisms have been developed to ensure an oxygen-free environment for ni-
trogenase [11–14]. Some organisms create physical barriers to create compartments free
of oxygen [15]. Obligate anaerobes and facultative anaerobes fix nitrogen in the absence
of oxygen [16,17]. Photosynthetic diazotrophs fix nitrogen when photosynthesis is not
being performed [12,16,18,19]. Aerobes have high respiration rates of consuming oxygen,
which allows them to protect nitrogenase [17,20]. Though oxygen presence is detrimental
to nitrogenase, oxygen is beneficial in aerobes, allowing greater ATP production [20]. The
higher amounts of ATP produced in aerobes allow higher levels of N2 reduction than by
anaerobic organisms.

Eukaryotic plants and algae have not evolved to have the ability to fix nitrogen;
perhaps they have not had the right selective pressures to incorporate nitrogen fixation ma-
chinery [21]. There is significant interest in using synthetic biology and genetic engineering
to transfer the ability to fix nitrogen from bacteria to plants or algae [22,23]. A potential
solution is to engineer the mitochondria to express nitrogenase and cofactor biosynthesis
proteins and so far has been carried out in yeast [24–30]. Like aerobic diazotrophs, the
mitochondria produce high levels of ATP and consume oxygen. However, in addition to
its complex environmental requirements, nitrogenase needs many components for assem-
bly [31,32]. Regulatory systems would also be necessary to ensure that energy requirements
and ammonia produced would be balanced with plant needs. Azotobacter vinelandii is
an aerobic diazotroph that meets the needs of nitrogenase and can serve as a model for
how to engineer the mitochondria to fix nitrogen effectively in the presence of oxygen.
This short review outlines the features of the metabolism of A. vinelandii that could be
employed as a blueprint for engineering nitrogen fixation into the mitochondria toward
the goal of more sustainable agriculture. While the direct incorporation of these features
into the mitochondria may be difficult, we hope to highlight the utility of these systems in
A. vinelandii and that the role they play is vital to balancing nitrogen fixation with normal
metabolic processes.

In order to engineer nitrogen fixation into the mitochondria, a number of essential
requirements must be met [33]. One of the foremost requirements, which at first approx-
imation seems unachievable in oxygenic phototrophs, is a niche free of oxygen. The
second is meeting the high energy demand of nitrogen fixation since nitrogenase requires
16 equivalents of MgATP for each dinitrogen reduced. A third requirement is a source
of low-potential electrons since eight electrons are required to reduce dinitrogen, and
electrons with a reducing potential of NADH are inadequate for nitrogenase catalysis [34].
The fourth is high fidelity regulation that responds to energy status, carbon/nitrogen ratio,
and oxygen presence [35]. A. vinelandii is a well-studied model diazotroph that has an
inherent high rate of respiration, which is (1) an inspiration for the idea that one could
successfully express active nitrogenase in the mitochondria and (2) the metabolic blueprint
for implementing such a herculean feat.

2. A. vinelandii as a Blueprint

A. vinelandii possesses a fascinating mechanism that protects the nitrogen fixation
apparatus from oxygen while enabling robust nitrogen fixation. The “respiratory protection
mechanism”, as it is termed, takes advantage of alternative paths of electrons through the
respiratory chain to modulate the rates of oxygen reduced with the amount of proton force
available for ATP production [36]. Typically, electrons enter the electron transfer chain
through respiratory complex I, where the oxidation of NADH is coupled to the reduction of
quinone to quinol. Electrons are transferred in a similar manner through the remainder of
the respiratory chain, where complex III oxidizes quinol and reduces cytochrome c, which
is subsequently oxidized by complex IV coupled to the reduction of oxygen to water. The
free energy release through the transfer of electrons down an electrochemical potential
gradient in all three complexes (I, III, and IV) is coupled to the translocation of protons
from the mitochondrial matrix of the microbial cell cytoplasm to the inner membrane space
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or microbial periplasm. The translocation of protons generates a proton gradient, or proton
motive force, to produce ATP.

The respiratory chain of A. vinelandii includes the prototypical complexes but is supple-
mented with alternatives to complex I (NDHII) and complex IV (Cyt bd) (Figure 1) [37–40].
These alternative complexes are capable of oxidizing NADH and reducing O2 at higher
rates than the standard complexes, but only the activity of Cyt bd translocates protons and
contributes to the proton motive force (Figure 2). Modulating the expression and activity
of the entire suite of respiratory complexes allows for high fidelity control of the rate of
O2 reduction to protect nitrogenase from oxygen damage [37]. The respiratory protection
mechanism is really the inspiration for engineering nitrogen fixation into the mitochondria
of plants, where the large respiratory capacity of the organelle should be able to provide a
similar reducing environment for maintaining active nitrogenase while at the same time
regulating the production of ATP in concert.
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Figure 1. A. vinelandii respiratory protection, electron transport chain, and low-potential electron
mechanisms. NDHII and Cyt bd are additional machinery used to increase A. vinelandii’s oxygen
consumption. This occurs through the oxidation of NADH and subsequent reduction of quinone.
The electrons are then transferred to Cyt bd where 2 protons are released across the membrane and
2 protons are used to form water. The typical electron transport chain consists of NDHI, Cyt bc1, Cyt
c, and Cyt o. NDHI oxidizes NADH and transfers electrons to quinone while pumping out 4 protons.
Quinone then passes electrons to Cyt bc1, then Cyt c, then Cyt o, where oxygen is reduced. Fix and
Rnf reduce ferredoxin or flavodoxin using electrons from NADH. Solid lines indicate the movement
of electrons, and dashed lines show the proton movement.
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Figure 2. Electron transport paths. Electrons from NADH can go through one of 4 paths. The first
branch (shown in red) is the partially coupled branch involving NDHII and Cyt bd, where electron
transport is only coupled to proton translocation in Cyt bd. The fully coupled branch (shown in
blue) utilizes the typical electron transport chain machinery to pump protons out. The other two
paths involve Fix and Rnf (shown in black), which generate low-potential electrons using electron
bifurcation or proton motive force, respectively.

Low-potential electrons are required for biological nitrogen fixation, and the stan-
dard currency of electrons in the mitochondria and A. vinelandii is NADH. NADH has
an insufficient reduction potential for nitrogenase catalysis even at very high ratios of
NADH to NAD+ where the reduction potential approaches ~−400 mV. Reduction poten-
tials approaching −500 mV are required and provided by low-potential ferredoxin and
flavodoxin [41]. NADH is the primary metabolic currency of reducing equivalents in A.
vinelandii; however, there are two elegant mechanisms intimately coupled to the respiratory
chain and under the control of nitrogen-fixation-specific gene expression (Figure 3) [41–43].
The first mechanism is encoded by the Fix gene locus, which is thus termed because it
has a function related to nitrogen fixation but is not formally part of the nif gene loci [44].
The FixABCX complex is a membrane-associated, heterotetrameric complex with multiple
redox cofactors. This complex catalyzes an electron bifurcation reaction where the oxi-
dation of NADH can result in the reduction of the more negative potential ferredoxin or
flavodoxin when the reaction is stoichiometrically coupled to the reduction of the more
positive potential quinone [43,45,46]. In this manner, half of an electron pair is diverted
from the respiratory chain oxidation of NADH to the reduction of ferredoxin or flavodoxin,
thereby impacting the flux of electrons to oxygen reduction and the generation of proton
motive force. The second mechanism also diverts electrons from NADH away from oxygen
reduction and the generation of proton motive force and simultaneously results in the
consumption of proton motive force. The enzyme responsible for this activity is encoded
by the Rnf genes, which are so called because their activity was implicated to be related to
nitrogen f ixation function [47,48]. The enzyme complex catalyzes the oxidation of NADH
and the reduction of ferredoxin coupled to proton translocation from the periplasm to the
cytoplasm. This exergonic translocation of protons provides the necessary free energy to
drive the endergonic reduction of ferredoxin by NADH [49]. Deletion mutant analysis
has shown that A. vinelandii can tolerate the deletion of either the FixABCX or the Rnf
complex with limited effects under growth conditions [50]. However, the deletion of both
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mechanisms results in a nif -phenotype of A. vinelandii strains incapable of diazotrophic
growth, indicating the requirement of these systems for low-potential electron generation
for nitrogen fixation [43].
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Figure 3. NADH utilization comparison. Solid arrows indicate electron flow. (A) Complex I oxidizes
NADH and transfers electrons to reduce quinone, coupling with proton transport. (B) Fix utilizes
electron bifurcation to transfer one electron to high-potential quinone and one electron to low-
potential ferredoxin. (C) Rnf couples electron transfer with proton motive force to reduce flavodoxin.

Respiratory protection and the activities of FixABCX and Rnf in generating low-
potential electrons are two key factors that make nitrogen fixation possible in obligate
aerobes. However, these additions add to the energy burden of metabolism. When you
layer on the requirement of 16 ATP to reduce one N2 to two NH3 and H2, it is clear
that there needs to be a highly coordinated and high-fidelity regulation system. This
system must ensure that the amount of fixed nitrogen needed is balanced with oxygen
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reduction, generation and utilization of proton motive force, production of low-potential
reducing equivalents, and production and utilization/hydrolysis of ATP. Looking forward
to using these features of A. vinelandii to engineer mitochondria of crops plants for biological
nitrogen fixation, it is clear without the appropriate coordinate regulation, the gene transfers
would simply result in very sick plants and low crop yields [21,51].

The expression of nitrogen fixation (nif ) genes is controlled in response to several
factors and is intimately linked to the regulation of nitrogen assimilation. Fixed nitrogen,
usually ammonium ions or ammonia available in the cell’s environment, is then assimilated
into amino acids. Many organisms, including bacteria and plants, use common machinery
for the incorporation of fixed nitrogen, or nitrogen assimilation (Figure 4). Once imported
by an Amt transporter, ammonium ions can then be assimilated by one of two different en-
zymatic paths [52]. The first path proceeds via the coupled reactions of glutamine synthase
and glutamate synthase (also known as glutamine oxoglutarate aminotransferase), often
termed GS-GOGAT. GS catalyzes the ATP-dependent incorporation of ammonium ions into
glutamate to form glutamine. Then in sequence, GOGAT catalyzes the transfer of an amino
group from resulting glutamine to α-ketoglutarate to form two glutamates [53–55]. The
second enzymatic path is catalyzed by a single enzyme, glutamate dehydrogenase (GDH).
GDH catalyzes the incorporation of ammonium ions onto α-ketoglutarate to form gluta-
mate in a redox-dependent manner resulting in the oxidation of NADPH [56,57]. Though
A. vinelandii contains a gene annotated as GDH, the GS-GOGAT has been shown to be the
primary pathway for nitrogen assimilation [58]. Plants contain isoforms of GS, GOGAT,
and GDH based on the cell location and their role in one of three assimilation pathways:
primary assimilation, reassimilation of photorespiratory ammonia, and reassimilation of
recycled nitrogen. In general, GS-GOGAT enzymes are used primarily due to GDH’s low
affinity for ammonia [59–61].
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Figure 4. Nitrogen assimilation pathways in bacteria. Ammonium ions are transported into cells
through Amt B, and it can then be utilized by either glutamine synthetase (GS) or glutamate dehy-
drogenase (GDH) to produce glutamine or glutamate, respectively. Glutamine can be utilized as a
nitrogen donor to α-ketoglutarate (α-KG) to produce glutamate. Glutamine synthetase is reversibly
modified by GlnE based on GlnK’s uridylyation status. In plants, ammonia is assimilated in the
cytoplasm or chloroplast by GS. Ammonia can be uptaken by the roots and, in some species, produced
in the mitochondria from photorespiration and proposed to passively move to the cytoplasm.
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The expression of nitrogen assimilation genes is regulated by the NtrBC two compo-
nent regulatory system. NtrB is a sensor histidine kinase and responds to nitrogen status
through the activity of the PII protein, GlnB. Under nitrogen-limiting conditions, Gln B
interactions stimulate NtrB phosphatase activity resulting in autophosphorylation on the
conserved histidine in an ATP-dependent reaction where one monomer phosphorylates the
other [62,63]. This process activates and phosphorylates NtrC, a σ54-dependent response
regulator [64–66]. Under nitrogen-sufficient conditions, NtrB inactivates NtrC through
dephosphorylation.

NtrC is a σ54-dependent response regulator with three domains [67–70]. The N-
terminal domain acts as the receiver domain containing a conserved aspartate phospho-
rylation site. The central domain contains the nucleotide binding site, and the C-terminal
domain contains a helix-turn-helix motif for DNA binding. When the aspartate residue on
the N-terminal domain is phosphorylated, NtrC is competent to activate transcription; this
induces oligomerization at upstream activator sequences and ATPase activity [71,72]. The
ATPase activity, in combination with the interaction of the central domain with the sigma
factor-containing RNA polymerase, activates transcription [73–75]. The helix-turn-helix
motif of the C-terminal domain mediates DNA binding of the upstream activator sequence
where the RNA polymerase binds [76,77]. NtrC’s DNA binding properties allow it to act as
a transcriptional repressor when not phosphorylated.

In some nitrogen-fixing organisms, NtrBC is directly involved in the regulation of
nitrogen fixation (nif ) gene expression, but A. vinelandii has another layer of regulation
of nitrogen fixation specific regulation that has some features in common with the NtrBC
regulatory mechanisms but also some interesting twists of the two-component regulatory
paradigm. The NifLA two-component regulatory system is constitutively expressed, and it
regulates nitrogen fixation gene expression in response to redox status (oxygen), energy sta-
tus (ATP/ADP ratios), and nitrogen status through crosstalk with the nitrogen assimilation
apparatus [11].

In Proteobacteria, including A. vinelandii, nitrogen fixation (nif ) gene expression is
controlled by NifLA, which is an interesting variation of the two-component regulatory
system paradigm [35,78,79]. NifA is a σ54-dependent transcriptional activator that stimu-
lates the expression of nif genes [80–84]. NifL is homologous to sensor histidine kinases
(SHKs) like NtrB. However, NifL does not hydrolyze ATP and does not function as a
kinase/phosphatase like NtrB. It is also not subject to phosphorylation in its role in modu-
lating NifA activity [84]. NifL undergoes conformational changes in response to cellular
signals of oxygen, energy, and fixed nitrogen status and modulates NifA activity by binding
or releasing NifA (Figure 5) [85].
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Figure 5. NifLA system mechanism. To activate nif gene expression, NifA cannot be interacting with
NifL. This complex dissociates when NifL is reduced or when NifA is saturated by α-ketoglutarate
(a-KG). When nitrogen levels in the cell are low, GlnK is uridylylated by GlnD and unable to bind NifL.
When nitrogen levels are high, GlnK is de-uridylyated and binds NifL, stimulating the formation of
the NifLA-GlnK complex.
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NifL senses these cellular cues and propagates the signal via its four discrete domains,
similar to class I SHKs [84,86–88]. The amino-terminal (N-terminal) portion of NifL contains
tandem PAS domains, PAS1 and PAS2. The PAS1 domain includes a solvent-accessible
FAD cofactor that is readily oxidized by intracellular oxygen and is the only part of NifL
with a known structure [89–91]. Oxidation of the PAS1 FAD causes reorganization of
hydrogen bonds within the FAD-binding pocket. These changes lead to a reorientation
of the non-FAD-containing PAS2 domain to stimulate NifL binding to NifA, inhibiting
nitrogenase expression in oxidizing conditions [92–95]. The carboxy-terminal (C-terminal)
kinase-like DH and GHKL domains perceive energy and fixed nitrogen signals [96]. The
NifL DH domain is homologous to the dimerization and histidine phosphotransfer (DHp)
domain that contains the conserved His in SHKs, and the GHKL domain closely resembles
the catalytic domain of canonical SHKs [96,97]. However, NifL does not function either
as a kinase or a phosphatase. Rather than hydrolyzing ATP to catalyze phosphorylation,
the GHKL domain binds adenosine nucleotides ADP and ATP, sensing the cellular energy
status via the ADP/ATP ratio and assuming a NifA-binding conformation when bound
to ADP. NifL exhibits a 10-fold higher affinity for ADP than ATP, which ensures that
nitrogenase is only expressed in energy-rich conditions that can support the energetic
demands of nitrogenase [88]. Similar to the sensor kinase domain of NtrB, NifL also
perceives nitrogen status through interactions with the PII protein GlnK [98–100].

As a member of the PII protein family, GlnK is post-translationally modified by GlnD
based on the α-ketoglutarate/glutamine ratio in the cell [100]. The uridylylation state
of GlnK modulates interactions with NifL; GlnK is reversibly uridylylated by GlnD. In
low-nitrogen conditions, GlnK is uridylylated and it is unable to interact with NifL. Once
deuridylylated in high-nitrogen conditions, GlnK can interact with NifL and stimulate the
formation of the NifLA complex [98]. Though the interactions between NifL and GlnK
and the role of alpha-ketoglutarate and nucleotides in these interactions are not clearly
understood, it is clear that GlnK plays an important role in communicating information
about the cell’s fixed nitrogen status.

NifLA’s regulation is robust and can respond to elements needed to identify optimal
conditions for nitrogen fixation in bacteria, which suggests that it should be effective at
responding to these elements in plants to ensure the process is balanced with the plant
metabolism. It is unclear whether there will be compatibility with the plant’s nitrogen
assimilation machinery and NifLA’s regulation; however, NifLA’s mechanism for sensing
carbon/nitrogen status will compensate for incompatibility. The role of GlnE in nitrogen
assimilation is to promote the inactivation of glutamine synthetase (GS) based on the
uridylylation status of GlnK. In the absence of GlnE, GS is always active, and glutamine is
continuously produced in the presence of ammonium ions. Previous work in microbial
systems that do not fix nitrogen has shown that the deletion of GlnE results in growth
limitations in the presence of excess ammonium ions [101,102]. This has been interpreted to
result from the absence of GS regulation and the consumption of α-ketoglutarate, resulting
in a stall in carbon metabolism. In our previous work, we have shown that when GlnE is
deleted in A. vinelandii, an analogous phenotype is observed when grown under nitrogen-
replete conditions, but growth in diazotrophic conditions overcomes this deleterious growth
phenotype [103]. We attributed this growth phenotype to previous observations that
NifA can bind α-ketoglutarate and that binding regulates NifA’s ability to promote the
transcription of nif genes. These results indicate that the NifLA system has its own high-
fidelity sensor of carbon/nitrogen status and is not dependent on the crosstalk with the
nitrogen assimilation regulatory machinery.

3. Conclusions

The quest for engineering nitrogen fixation plants has several perceived barriers, and
probably some that still need to be realized. The perceived barriers include providing an ap-
propriate niche in a plant where the nitrogen fixation enzymatic machinery can be protected
from oxygen and where there are ample energy reserves to accomplish energy-intensive
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nitrogen reduction. The mitochondrion is a niche that can satisfy these requirements, and
nitrogenase and cofactor synthesis proteins have been successfully expressed and targeted
for localization in the mitochondria of yeast [29,30]. Still, several modifications are needed
to convert it to a nitrogen-fixing organelle in a manner that does not simply result in severe
growth limitations. A. vinelandii utilizes a high respiration rate, membrane-associated
complexes for low-potential electron generation, and robust transcriptional regulation to
fix nitrogen efficiently in the air, making it an ideal blueprint for several features (Figure 6).
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