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Abstract: Background: Adjuvant chemotherapy, particularly cisplatin, is recommended for non‑
small cell lung carcinoma (NSCLC) patients at high risk of recurrence. EF‑hand domain‑containing
protein D2 (EFHD2) has been recently shown to increase cisplatin resistance and is significantly asso‑
ciatedwith recurrence in early‑stageNSCLCpatients. Natural products, commonly used as phytonu‑
trients, are also recognized for their potential as pharmaceutical anticancer agents. Result: In this
study, a range of Chinese herbs known for their antitumor or chemotherapy‑enhancing properties
were evaluated for their ability to inhibit EFHD2 expression inNSCLC cells. Among the herbs tested,
Stephania tetrandra (S. tetrandra) exhibited the highest efficacy in inhibiting EFHD2 and sensitizing
cells to cisplatin. Through LC‑MS identification and functional assays, coclaurine was identified as
a key molecule in S. tetrandra responsible for EFHD2 inhibition. Coclaurine not only downregulated
EFHD2‑related NOX4‑ABCC1 signaling and enhanced cisplatin sensitivity, but also suppressed the
stemness and metastatic properties of NSCLC cells. Mechanistically, coclaurine disrupted the inter‑
action between the transcription factor FOXG1 and the EFHD2 promoter, leading to a reduction in
EFHD2 transcription. Silencing FOXG1 further inhibited EFHD2 expression and sensitized NSCLC
cells to cisplatin. Conclusions: S. tetrandra and its active compound coclaurine may serve as effective
adjuvant therapies to improve cisplatin efficacy in the treatment of NSCLC.

Keywords: NSCLC; cisplatin; EFHD2; Stephania tetrandra; coclaurine; FOXG1

1. Introduction
Lung cancer is the leading cause of cancer‑related incidence and death worldwide [1].

Non‑small cell lung cancer (NSCLC), which accounts for 85% of newly diagnosed cases, is
the most common type of lung cancer [2]. Surgical resection remains the standard treat‑
ment for patients with early‑stage (stage I and II) NSCLC [3]. However, 30–55% of these
patients relapse within five years of surgical resection, with recurrence primarily associ‑
ated with postsurgical mortality in NSCLC patients [4]. The high‑risk clinical features for
NSCLC recurrence include poorly differentiated tumors, tumors larger than 4 cm, vascu‑
lar invasion, visceral pleural involvement, and unknown lymph node status [5]. Adjuvant
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chemotherapy, particularly with cisplatin, has been recommended to reduce the risk of re‑
currence by eliminating remaining tumor cells, but it results in only a 4% increase in 5‑year
survival compared to patients who do not receive treatment [6].

EF‑hand domain‑containing protein 2 (EFHD2) is a conserved calcium‑binding pro‑
tein with F‑actin bundling ability [7]. Apart from neurons, it has recently been found to
be highly expressed in normal intestinal tissues, where it plays a role in protecting the
intestine from inflammation [8]. EFHD2 enhances invadopodia formation by modulat‑
ing actin dynamics, thereby increasing cancer invasion and metastasis [9]. Our previous
study demonstrated that EFHD2 promotes epithelial‑to‑mesenchymal transition (EMT) in
NSCLC cells and is significantly associated with postsurgical recurrence in patients with
stage I NSCLC [10], suggesting EFHD2 as a molecular marker for predicting recurrence.
Additionally, EFHD2 activates the NOX4‑ROS‑ABCC1 signaling pathway to reduce intra‑
cellular cisplatin levels, thereby conferring cisplatin resistance onNSCLC cells [11]. Conse‑
quently, EFHD2‑targeting strategies may offer an opportunity to enhance responsiveness
of NSCLC patients to adjuvant chemotherapy.

Specific inhibitors against EFHD2are currently unavailable. Ibuprofen, a non‑steroidal
anti‑inflammatory drug (NSAID), has been shown to downregulate EFHD2 by promoting
its proteasomal and lysosomal degradation [11]. NSAIDs have been tested for their abil‑
ity to improve adjuvant chemotherapy over the past decade [12,13]. The administration of
NSAIDs after surgical operation is associatedwith longer overall and progression‑free sur‑
vival in patients with NSCLC [14]. However, the long‑term use of high‑dose NSAIDs can
potentially cause severe adverse effects, including gastrointestinal damage, kidney dys‑
function, hematological abnormalities, and allergic reactions [15]. Therefore, despite the
substantial efficacy benefit of adding NSAIDs, the long‑term use of ibuprofen as a sensitizer
for adjuvant chemotherapy remains a concern.

Herbal remedies, with a history spanning thousands of years in Asian societies, have
seen a rapid global expansion in use over the past three decades [16]. Although certain
medicinal plants naturally contain toxic substances that can cause adverse reactions if used
inappropriately, herbal products are well‑recognized for long‑term therapy and as phy‑
tonutrients in healthy supplements [17]. Historically, natural compounds with diverse
anticancer activities have been viewed as a plentiful source of new anticancer agents. To
date, more than 60% of pharmaceutical anticancer agents have been derived from natural
compounds [18]. Additionally, natural compounds exhibit the potential to attenuate resis‑
tance against cancer chemotherapy, and numerous clinical trials have been conducted to
evaluate the sensitizing effects of natural compounds on various types of cancers, includ‑
ing lung cancer [19].

Stephania tetrandra S. Moore (S. tetrandra) is widely distributed in the tropical and sub‑
tropical regions of Asia and Africa. The root of S. tetrandra, known in traditional Chinese
medicine as Fang Ji, is commonly used for its diuretic, antimicrobial, anti‑inflammatory, an‑
tirheumatic, and neuroprotective properties to treat a range of illnesses, including rheuma‑
tism, arthralgia, edema, beriberi, and eczema [20]. To date, a total of 67 alkaloids and
5 non‑alkaloids have been identified from the root of S. tetrandra [21]. The pharmacologi‑
cal efficacy has been largely attributed to its rich content of bisbenzylisoquinoline alkaloids,
mainly cyclanoline, fangchinoline, and tetrandrine. Cyclanoline is composed of two ben‑
zylisoquinoline moieties connected by a berberine bridge [22]. Its structure includes hy‑
droxyl and methoxy groups, contributing to its solubility and reactivity. The compound
shows anti‑inflammatory and antimicrobial activities, and its hydrophobic nature aids its
interaction with cellular membranes [23]. Both fangchinoline and tetrandrine have a sim‑
ilar bisbenzylisoquinoline structure with ether‑linked moieties, except that fangchinoline
has a hydroxyl (‑OH) group, while tetrandrine has a methoxy (‑OCH3) group at C7 [24].
Similar to cyclanoline, its structural features, such as multiple aromatic rings andmethoxy
groups, facilitate its lipophilicity and interaction with membrane proteins. In addition to
the properties of anticancer, anti‑inflammatory, and cardiovascular actions, the antiviral
effects of fangchinoline have recently garnered widespread attention [25,26]. Tetrandrine
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is the most extensively and thoroughly studied molecule in the alkaloid components iso‑
lated from S. tetrandra [27]. It is a calcium channel blocker and is well‑characterized for
its anticancer, anti‑inflammatory, and immunosuppressive properties [28]. Its chemical
characteristics, such as hydrophobicity, aromaticity, and functional group positioning, al‑
low for effective action against hepatocellular carcinoma, as indicated by the quantitative
structure‑activity relationship (QSAR) model [29].

In the present study, we hypothesized that herbal extracts could sensitizeNSCLC cells
to cisplatin through EFHD2 inhibition. To test this hypothesis, a series of Chinese herbs re‑
ported to have antitumor or chemotherapy‑supporting properties were evaluated for their
ability to inhibit EFHD2 expression in NSCLC cells. Among the herbs tested, S. tetrandra
exhibited the highest efficacy in inhibiting EFHD2 expression inNSCLC cells. Through LC‑
MS identification and functional assays, coclaurinewas characterized as a vital molecule in
S. tetrandra responsible for EFHD2 inhibition. Consequently, we investigated the underly‑
ing mechanisms of coclaurine in EFHD2 inhibition and evaluated its effects on sensitizing
NSCLC cells to cisplatin.

2. Results
2.1. Aqueous Extracts of S. tetrandra Inhibit EFHD2 Expression

To identify potential compounds for EFHD2 inhibition, we acquired testing materials
by performing aqueous extraction on a series of Chinese herbs reported to have antitu‑
mor or chemotherapy‑supporting properties (Table 1). To enhance extraction efficiency,
the herbal raw materials were cut into small pieces (length < 1 cm) and extracted with dis‑
tilled water (2 g herbs in 25 mL H2O) with stirring at 170 ◦C for 30 min. After high‑speed
centrifugation to remove precipitates and residues, the suspensions were filtered using a
0.22 µm pore size membrane (#6534; Sartorius, Göttingen, Germany). The concentration
of each extract was determined by speed‑vacuum drying and weighting (Table 1).

Table 1. The contents in the aqueous extractions of Chinese herbs.

NO. Herbal Medicine Symbol Chinese Name Conc. (mg/mL) IC90 (Dilution
Fold)

HM 01 Atractylodes
macrocephala AM 白朮 57 100×

HM 02 Curcuma zedoaria CZ 莪術 12 200×
HM 03 Hedyotis diffusa HD 白花蛇舌草 29 3000×
HM 04 Paeonia lactiflora PL 赤芍 44 100×
HM 05 Paris polyphylla PP 蚤休 28 500×

HM 06 Scutellaria barbata
D. Don SB 半枝蓮 27 200×

HM 07 Smilax china SC 菝葜 19 100×
HM 08 Salvia miltiorrhiza SM 丹參 26 100×

HM 09 Stephania tetrandra
S.Moore ST 石蟾蜍 20 200×

HM 10 Trichosanthes
kirilowii TK 栝蔞 33 100×

HM 11 Tripterygium
wilfordii TW 雷公藤 18 500×

HM 12 Vaccaria hispanica VH 王不留行 9 500×

Safety and suitable quality are essential issues in the use of herbal remedies for pub‑
lic healthcare [16]. To this end, we tested the minimal dose of herbal extracts (IC90 for
the NSCLC cell line H1299 in this study) for EFHD2 inhibition to reduce adverse effects,
such as herb‑drug interactions, which may alter the systemic bioavailability and pharma‑
cokinetics of these drugs. The IC90 dose of each herbal extract was determined by MTT
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assay (Figure 1A), and the corresponding dilution folds of the herbal extracts are listed in
Table 1. The IC90 dose was further used to evaluate the effect of herbal extracts on sensi‑
tizing H1299 to cisplatin by MTT assay. Both S. tetrandra and Smilax china (S. china) sig‑
nificantly increased cisplatin efficacy with synergy (Figure 1B). Additionally, S. tetrandra
and S. china showed potent inhibition of EFHD2 in H1299 cells using Western blot assay
(Figure 1C). Because S. tetrandra exhibited greater effectiveness in suppressing EFHD2 com‑
pared to S. china, we aimed to explore the characteristics of S. tetrandra in cisplatin sensiti‑
zation in this study.
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Figure 1. Aqueous extracts of S. tetrandra inhibit EFHD2 expression. (A) Cell viabilities of H1299
cells treated with the indicated dilution doses of aqueous herbal extracts were determined by MTT
assay. The red dash line represents 90% of cell viability (n = 3). (B) Cell viabilities of H1299
cells treated with or without the IC90 dose of each herbal extract, followed by the indicated doses of
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cisplatin, were determined by MTT assay (n = 3). (C) EFHD2 expression in H1299 cells treated with
the IC90 dose of each herbal for 24 h was determined by Western blot. β‑actin, loading control. The
relative expression levels are shown as the ratio of EFHD2 to β‑actin, with the untreated control
group serving as the normalized control. Data are displayed as the means  ±  SD. For statistical
analysis, a 2‑tailed unpaired Student’s t‑test was used (B). ⋆, p < 0.05.

2.2. S. tetrandra Decreases Migration and Invasion of NSCLC Cells
Western blot validation revealed that S. tetrandra suppresses EFHD2 expression in a

dose‑ and time‑dependent manner (Figure 2A,B). Notably, the proliferation of the normal
human bronchial epithelium cell line BEAS‑2B was unaffected by S. tetrandra (Figure 2C),
indicating no significant toxicity to normal lung cells under S. tetrandra treatment. Our
previous study demonstrated that EFHD2 impacts the migration and invasion abilities of
NSCLC cells [10]. Therefore, we verified whether S. tetrandra affects these metastatic prop‑
erties. As expected, S. tetrandra significantly attenuated the cell migration and invasion of
H1299 cells in a dose‑dependent manner (Figure 2D,E).
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Figure 2. Aqueous extracts of S. tetrandra suppress the migration and invasion of NSCLC cells.
(A) EFHD2 levels in H1299 cells treated with the indicated dilution doses of S. tetrandra were de‑
termined by Western blot. (B) EFHD2 levels in H1299 cells treated with a 100× dilution dose of
S. tetrandra for the indicated times were determined by Western blot. β‑actin, loading control.
(C) Cell viability of BEAS‑2B cells treated with the indicated dilution doses of S. tetrandra was de‑
termined by MTT assay. Relative cell survival was normalized to the untreated control (n = 3).
(D,E) Cell migration and invasion assays of H1299 cells were conducted with the indicated dilution
doses of S. tetrandra. Signal quantification with crystal violet extract was measured by colorimet‑
ric analysis at 570 nm. Relative migration/invasion ability was normalized to the untreated control
(n = 3). Scale bar, 0.1 cm. Data are displayed as the means  ±  SD. NS, no significant. For statistical
analysis, one‑way ANOVA with Tukey’s post hoc test (D,E). ⋆⋆, p < 0.01.

2.3. Purification of the Key Components in S. tetrandra Responsible for EFHD2 Inhibition
To gain insight into the critical molecules of S. tetrandra responsible for EFHD2 inhi‑

bition, reversed‑phase high‑performance liquid chromatography (RP‑HPLC, C18 column; Agi‑
lent 1260 Infinity II; SantaClara, CA,USA)was conducted to analyze the component profile
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and purify the major fractions for identification. The HPLC signal pattern was primarily
divided into four fractions, F1–F4 (Figure 3A). According to previously published reports,
fractions F2–F4 represent the standard pattern of S. tetrandra, mainly containing the active
components cyclanoline, tetrandrine, and fangchinoline [30,31]. The relative content of
the major peaks F2–F4 was calculated by the ratio of peak area of each phytochemical to
the total peak areas in the chromatogram monitored at 280 nm (Figure 3B). These major
fractions, F1–F4, were collected and dried to remove solvents by a vacuum centrifugation
concentrator, then reconstructedwith the same volume of distilledwater. Western blot val‑
idation indicated that fraction F1 exhibits the highest potential for EFHD2 inhibition and
also suppresses the EFHD2‑related signaling molecules ATP‑binding cassette subfamily C
member 1 (ABCC1) and NADPH oxidase 4 (NOX4) [11] (Figure 3C). To further identify
the effective component in F1, two major peaks, f1‑1 and f1‑2, were purified for activity
examination. Western blot revealed that the f1‑2 fraction shows predominant inhibition of
EFHD2, ABCC1, and NOX4 in a dose‑dependent manner (Figure 3D).
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Figure 3. HPLC purification of aqueous extracts of S. tetrandra. (A) Aqueous extracts of S. tetrandra
(50 µL) were subjected to C18 HPLC separation using an acetonitrile gradient: 5–30% (0–30 min);
30–60% (30–50min); 60–5% (50–60min). The effluent wasmonitored at 214 nm. The eluate was dried
using a vacuumcentrifugation concentrator and reconstructedwith the samevolumeofwater (50µL).
(B) The relative content of themajor peaks (F2–F4) alongwith coclaurine‑glucosidewas calculated by
the ratio of peak area of each phytochemical to the total peak areas in the chromatogrammonitored at
280 nm. (C) A 100× dilution of fractions F1–F4 were used to treat H1299 cells for 24 h. (D) Fractions
f1‑2 and f1‑2 were further purified and used to treat H1299 cells at the indicated dilution doses for
24 h. The protein expression levels of ABCC1, NOX4, and EFHD2 were determined byWestern blot.
Untreated H1299 cells served as the protein expression control. β‑actin, loading control.

2.4. Coclaurine Is a Critical Compound of f1‑2 Responsible for EFHD2 Inhibition
To decipher the chemical composition of fraction f1‑2, the molecules in this fraction

were analyzed using an MS‑based approach. Total ion chromatogram (TIC) profiles of



Pharmaceuticals 2024, 17, 1356 7 of 21

fraction f1‑2 were determined using a Q‑Exactive Plus mass spectrometer (Thermo Scien‑
tific, San Jose, CA, USA) equipped with an UltiMate 3000 UHPLC system (Thermo Scien‑
tific, San Jose, CA, USA) in positive ion mode (Figure 4A, upper) and negative ion mode
(Figure 4B, lower). The precise molecular weights of precursor ions and tandem mass
product ions were used for molecule identification by Compound Discoverer software
(v3.3; Thermo Scientific, San Jose, CA, USA) (Figure 4B). Apart from amino acids, nucle‑
osides, and metabolites, small molecules such as catechin, adefovir, salsolinol, coclaurine,
and its glucoside derivative were identified from fraction f1‑2 (Figure 4C). To understand
which compound is involved in EFHD2 inhibition, pure compounds of these molecules
were used to treat H1299 cells. The results fromWestern blot indicated that coclaurine and
argininosuccinic acid have EFHD2 inhibition activity in H1299 cells (Figure 4D). Argini‑
nosuccinic acid can be generated either from citrulline and aspartate by argininosuccinate
synthetase or from fumarate and arginine by argininosuccinate lyase in the urea cycle [32].
Compared to argininosuccinate lyase, coclaurine is more commonly found in plant extract
components; therefore, we prioritize coclaurine for exploring its roles in EFHD2 inhibition.
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Figure 4. Coclaurine is a critical compound of fraction f1‑2 responsible for EFHD2 inhibition.
(A) Fraction f1‑2 was analyzed by an UHPLC‑Q‑Exactive Plus MS using both positive ion mode (up‑
per) and negative ion mode (lower). (B) The identified compounds corresponding to the indicated
peaks of the TIC profiles in (A). (C) The tandem mass profile and molecular structure of coclaurine.
(D) EFHD2 expression in H1299 cells treated with pure compounds identified from fraction f1‑2 was
determined by Western blot. β‑actin, loading control. Coc, coclaurine; Asa, argininosuccinic acid;
Sal, salsolinol; Ade, adefovir; Cat, catechin.

2.5. Characterization of Coclaurine in EFHD2 Inhibition and Cancer Biology
Our previous study indicated that EFHD2 activates the NOX4‑ROS‑ABCC1 pathway,

thereby increasing resistance ofNSCLC cells to cisplatin [11]. Accordingly, we investigated
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the effects of coclaurine on modulating this signaling pathway. Firstly, we assessed the cy‑
totoxicity of coclaurine in NSCLC cells. The MTT assay revealed that coclaurine exhibits
low toxicity in both H1299 and A549 cells, with IC50 values of 0.95 mM and 2 mM, respec‑
tively (Figure 5A). To minimize the impact of cytotoxic effects on the experimental results,
we set the coclaurine dose at its IC90 value, which is 200 µM, for subsequent experimen‑
tal analyses. As expected, coclaurine suppressed EFHD2 expression and attenuated the
EFHD2‑related signalingmolecules ABCC1 andNOX4 as well as the intracellular ROS lev‑
els in NSCLC cells (Figure 5B,C). Additionally, coclaurine significantly sensitized NSCLC
cells to cisplatin, reducing the IC50 value from 69.7 µM to 47.4 µM in H1299 cells and from
75.7 µM to 57.3 µM in A549 cells (Figure 5D). This result suggests that coclaurine could
be a key molecule in S. tetrandra responsible for enhancing cisplatin sensitivity. Moreover,
we examined the impact of coclaurine onNSCLC cancer biology, as its anticancer activities
were largely unknown.
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Figure 5. Characterization of coclaurine in EFHD2 inhibition and cancer biology. (A) Cell viabil‑
ity of H1299 and A549 cells treated the indicated doses of coclaurine was analyzed by MTT assay.
(B) The expression of EFHD2 and its related signaling molecules in H1299 and A549 cells treated
or untreated with coclaurine (200 µM) were determined by Western blot. (C) The intracellular ROS
levels in H1299 andA549 cells treated or untreatedwith coclaurine were determined using the tracer
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dyeCM‑H2DCFDA (DCF, Invitrogen). (D) Cell viability ofH1299 andA549 cells treated or untreated
with coclaurine (200 µM) at the indicated doses of cisplatin was analyzed by MTT assay. (E) Colony
formation assay in H1299 and A549 cells and (F,G) cell migration assay and invasion assay in H1299
cells treated with the indicated doses of coclaurine. Signal quantification using crystal violet extract
was measured by colorimetric analysis at 570 nm. The relative signal intensities were normalized
to the untreated control (n = 3). Scale bar, 0.1 cm. (H) H1299 and A549 cells were treated with the
indicated doses of coclaurine for 10 d, the number of spheroid formation was counted manually
under a bright‑field microscope (n = 3). Scale bar, 100 µm. (I) The expression of stemness‑related
proteins in H1299 and A549 cells treated or untreated with coclaurine (200 µM) was determined by
Western blot. β‑actin, loading control. Data are displayed as themeans ±  SD. For statistical analysis,
a 2‑tailed unpaired Student’s t‑test (C,E–H). ⋆, p < 0.05; ⋆⋆, p < 0.01.

Coclaurine dose‑dependently impaired the unlimited division of NSCLC cells in a
colony formation assay [33] (Figure 5C). It also reduced the migration and invasion abil‑
ities of NSCLC cells in a dose‑dependent manner (Figure 5D,E). Furthermore, coclaurine
significantly decreased the spheroid formation in NSCLC cells (Figure 5F), suggesting that
coclaurine could impair stemness properties, which are closely associated with chemore‑
sistance andmetastasis [34,35]. In linewith this result, stemness‑relatedmarkers CD44 [36]
and epithelial cell adhesion molecule EpCAM [37] were reduced by coclaurine in Western
blot analysis (Figure 5G). Collectively, our results suggest that coclaurine could not only
sensitize NSCLC cells to cisplatin but also reduce the stemness and metastatic characteris‑
tics of NSCLC cells.

2.6. Coclaurine Suppresses EFHD2 Via Inhibiting Transcriptional Activity of FOXG1
To understand how coclaurine suppresses EFHD2, we conducted a pulse‑chase ex‑

periment to determine the protein level alteration of EFHD2. NSCLC cells were treated
with cycloheximide, an inhibitor of protein synthesis [38], either alone or in combination
with coclaurine. Western blot analysis revealed that EFHD2 levels remained unchanged
under both conditions (Figure 6A), suggesting that coclaurine does not affect the protein
stability of EFHD2. Therefore, we investigated whether coclaurine impacts the gene ex‑
pression of EFHD2. qPCR analyses showed that coclaurine significantly down‑regulates
EFHD2 mRNA levels (Figure 6B).

Next, we constructed sequential promoter sequences of EFHD2 into a vector with a
luciferase reporter to verify the transcriptional activity (Figure 6C). Compared to the un‑
treated control, the luciferase activity of the promoter region from −1001 to −1500 was
most affected by coclaurine (Figure 6D). This region contains four transcription factor bind‑
ing sites, including transcription factors Sp1 (SP1), forkhead box protein P1 (FOXP1) and
G1 (FOXG1), and homeobox protein Hox‑A13 (HOXA13) (Figure 6E). The ligand‑binding
domain plays a crucial role in the interaction between a kinase protein and its ligand. How‑
ever, in drug development, most efforts targeting transcriptional regulators focus on the
interface or pockets of the protein that interact with DNA [39]. To predict which tran‑
scription factormight interact with coclaurine, we performed amolecular docking analysis
using BIOVIA Discovery Studio software (DS2022; RRID: SCR_015651). This analysis cal‑
culated multiple potential binding pockets for the ligand. The conformation with the most
likely binding pocket and the lowest binding energy was selected as the final pose. The
interaction between FOXG1 and coclaurine resulted in the greatest reduction in binding
free energy (−36.90 kcal/mol) using the CDOCKER method (Figure 6E), suggesting that
FOXG1 has a higher affinity for coclaurine than other transcription factors.

Molecular docking modeling revealed that coclaurine primarily binds to two pocket
domains of FOXG1 to interferewith the interaction between FOXG1 andDNA: one domain
containing amino acids K181, F184, and T270 (Figure 6F) and another domain containing
N236, K237, C238, K272, and R274 (Figure 6G). To further confirm whether coclaurine
impacts on FOXG1 protein stability, we examined the effect of coclaurine on the thermal
stabilization of FOXG1 using a cellular thermal shift assay [40]. Western blot validation
indicated that coclaurine decreases FOXG1 protein thermal stability from 70 ◦C to 60 ◦C
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(Figure 6H), suggesting that coclaurinemay cause conformational changes in FOXG1, lead‑
ing to its thermal instability.
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(A) After cycloheximide (CHX, 10 mg/mL) treatment for 1 h, H1299 and A549 cells were treated or
untreated with coclaurine (200 µM) for the indicated times. EFHD2 expression in each experimental
group was determined byWestern blot. (B) EFHD2mRNA levels of H1299 and A549 cells treated or
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untreated with coclaurine (200 µM) for 24 h were determined by qPCR. GADHP and 18S rRNA
served as internal controls for gene expression. (C) Schematic illustration showing the construction
of the EFHD2 promoter sequence in the luciferase expression vector. (D) Relative luciferase activity
with various EFHD2 promoter sequences in H1299 cells treated with coclaurine (200 µM) compared
to the untreated control. (E) Schematic illustration showing the binding sites of transcription factors
and the alteration of CDOCKER energy by coclaurine binding. (F,G) Three‑ and two‑dimensional
interactions between transcription factor FOXG1 (green), DNA (gray), and coclaurine (red) in two
potential binding pockets. The binding amino acids in FOXG1 andDNAnucleotides with coclaurine
are shown in the two‑dimensional structures. (H) FOXG1 thermal stability in H1299 cells treated
or untreated with coclaurine (200 µM) at the indicated temperatures was determined by Western
blot. The relative FOXG1 level (FOXG1/actin) was normalized to the unheated control of each group.
(I) FOXG1 and EFHD2 expression and (J) cell viability of H1299 cells with or without FOXG1/KD
in the presence or absence of coclaurine (200 µM) were determined by Western blot and MTT assay,
respectively. Data are displayed as the means  ±  SD. For statistical analysis, a 2‑tailed unpaired
Student’s t‑test (J). ⋆⋆, p < 0.01.

To determine whether coclaurine inhibits EFHD2 via FOXG1, we knocked down
FOXG1 (FOXG1/KD) using shRNA inH1299 cells. Western blot assay showed that FOXG1/
KDpartially suppresses EFHD2 compared to coclaurine treatment, suggesting that FOXG1
contributes to EFHD2 expression (Figure 6I). The combination of coclaurine and FOXG1/
KD did not induce more EFHD2 inhibition compared to coclaurine alone (Figure 6I), in‑
dicating that coclaurine inhibits EFHD2 expression partially by interrupting FOXG1 activ‑
ity. Functional assays revealed that FOXG1/KD sensitizes NSCLC cells to cisplatin, while
the combination of coclaurine and FOXG1/KD does not increase the sensitivity of NSCLC
cells to cisplatin compared to coclaurine treatment alone (Figure 6J), consistent with the
Western blot finding. In summary, coclaurine suppresses EFHD2 expression partially by
modulating the transcriptional activity of FOXG1.

3. Discussion
Due to advanced screening techniques and the increasing use of regular screening,

the prevalence of NSCLC diagnosis at an early stage has increased [41]. Surgical resection
is the primary curative treatment for these patients [3]. However, approximately one‑third
to one‑half of patients develop recurrent disease without additional treatment [42]. Conse‑
quently, adjuvant strategies have been considered for patients who have high‑risk clinical
features of recurrence, such as undifferentiated status, large tumor size, and vascular inva‑
sion [5]. Molecular markers have also been investigated to predict the risk of recurrence,
including circulating DNA and RNA [43,44], cell cycle and immune‑related genes [45,46],
and alteration of specific protein expression [10,47]. Targeted therapy, such as inhibitors of
mutant EGFR, serves as an available adjuvant approach, but only a small proportion of pa‑
tients have targetable mutations [48]. Immunotherapy with immune‑checkpoint inhibitor
(ICI) has been exploited therapeutically to maximize clinical outcomes in patients with ad‑
vanced NSCLC [49]. Nevertheless, determining the optimal combination, sequence, and
duration of ICI treatment and evaluating robust biomarkers and endpoints in the adjuvant
settings remains challenging [50]. Cisplatin‑based adjuvant therapy is currently the stan‑
dard of care for completely resectedNSCLC. Unfortunately, such treatment only improves
patient outcome with approximately a 4% increase in 5‑year survival [6]. Numerous fac‑
tors may contribute to this unsatisfactory outcome, including tumor intrinsic and acquired
chemoresistance, lack of biomarker for treatment responsiveness, and drug toxicity. The
earlier analyses indicated that approximately 50% of these patients do not complete the
entire adjuvant treatment due to toxicity, including neutropenia, fatigue, dyspnea, pain,
and loss of appetite [51,52]. Therefore, an increase in sensitivity is critical for lowering
drug dosage and improving responsiveness, thereby enhancing the effectiveness of adju‑
vant chemotherapy. Our previous studies demonstrated that the expression of EFHD2
is not only significantly associated with postsurgical recurrence in patients with stage I
NSCLC [10], but also increasesNSCLC resistance to cisplatin through activating theNOX4‑
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ROS‑ABCC1 signaling pathway [11]. Accordingly, EFHD2‑targeting strategies may pro‑
vide an alternate approach for enhancing patient responsiveness to cisplatin‑based adju‑
vant chemotherapy.

Combining chemotherapeutic drugs to reduce resistance and synergically increase ef‑
ficacy is broadly applied in various cancers. However, the accumulation of toxicity from
each drug, especially for long‑term treatment, can cause deleterious systemic effects [19].
As a result, natural‑based alternatives with lower toxicity have emerged as an attractive
regimen for adjuvant chemotherapy. Herbal medicine is a crucial component of Tradi‑
tional Chinese Medicine (TCM), which typically includes multiple herbs and ingredients
necessary for efficacy [53]. Recently, Chinese medicine prescriptions such as Shenyi cap‑
sule and Yifei Qinghua granules have been clinically evaluated for adjuvant efficacy, show‑
ing improvements in survival outcomes [54]. Unlike double‑blind tests, the grouping of
recruited subjects at postoperative stage of NSCLC and Chinese medicine intervention
were based on the main syndromic types and constitutions of individual patients, cate‑
gorized into pulmonary qi deficiency, qi and yin deficiency, and stagnation of phlegm and
blood stasis according to the eight principles in TCM theory [55,56]. Traditionally, the
primary purpose of natural compounds as chemotherapeutic sensitizers is to broaden the
therapeutic window of chemotherapeutic drugs and reduce the incidence of chemother‑
apy resistance. The functional mechanisms of these compounds mainly involve targeting
drug‑induced oxidative stress and NF‑κB signaling to increase cytotoxicity [57]. Apart
from mixtures, several single herbal molecules were reported to sensitize NSCLC cells
to chemotherapy, including celastrol [58], curcumin [59], ethoxysanguinarine [60], ost‑
hole [61], phloretin [62], and resveratrol [63]. Based on evidence of their molecular func‑
tions, an alternative EFHD2‑targeting strategy was used to screen potential compounds
from herbal extracts. In this study, we found that coclaurine, a compound in S. tetrandra,
effectively sensitizesNSCLC cells to cisplatin and also inhibits tumorigenesis and stemness
characteristics in NSCLC cells, suggesting that coclaurine may serve as a lead compound
for developing EFHD2 inhibitors.

S. tetrandra, a medicinal herb widely used in traditional Chinese medicine, has gar‑
nered increasing attention for its anticancer properties. Its bioactive compounds, particu‑
larly bisbenzylisoquinoline alkaloids, exhibit promising potential in cancer treatment [64].
Tetrandrine induces cell cycle G1 arrest via increasing the degradation of G1‑S‑specific
cyclin‑dependent kinases and apoptosis via activation of caspase and cleavage of poly
(ADP ribose) polymerase in various cancer cells, including colon cancer, liver cancer, oral
cancer, and pancreatic cancer [27,65–67]. Another main bioactive compound, fangchino‑
line, and its derivatives can induce cell cycle G1 arrest via suppression of the PI3K/AKT
and MAPK signaling pathways in vitro and in vivo [68,69]. S. tetrandra has been demon‑
strated to reverse cisplatin resistance in lung cancer xenografts through downregulating
multidrug resistance‑associated proteins [23]. Both tetrandrine and fangchinoline also en‑
hance the efficacy of cisplatin in the treatment of lung cancer [70,71]. Moreover,
tetrandrine/CBT‑01® and its 5‑bromo derivative has been applied to the stage of clinical
trials [72]. These studies suggest the potential of S. tetrandra and its active components as
a chemosensitizer to improve treatment.

Coclaurine is one of the benzylisoquinoline alkaloids, which are recognized as sources
of pharmacologically significant chemical components in both organic andmedicinal chem‑
istry [73]. Despite their structural diversity, quinoline alkaloid derivatives obtained from
different plants have been reported to exhibit antineoplastic effects on various tumor
cells [74,75]. Coclaurine, identified from the sugar apple plant Annona squamosal, induces
apoptosis in breast cancer cells by increasing the expression of p53, BAX, and caspase 3 and
9 proteins [76]. The bioavailability of coclaurine has not been extensively studied in detail.
A pharmacokinetic study demonstrated that when aqueous extracts of Ziziphi Spinosae
Semen containing coclaurine were administered intragastrically at a dose of 6.8 g/kg in a
SpragueDawley ratmodel, theCmax of coclaurinewas reached at 0.3 h post‑administration
in the plasma, suggesting rapid absorption from the gastrointestinal tract [77]. Addition‑
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ally, coclaurine was rapidly eliminated from the rat plasma after intragastric administra‑
tion, with a T1/2 of 0.45 ± 0.17 h, indicating a short duration of action [77]. According to
the general principles of alkaloid metabolism, the liver and gut likely play significant roles
in phase I and II metabolic transformations of coclaurine, mediated by cytochrome P450
enzymes and uridine diphosphate glycosyltransferases [78]. Due to its rapid absorption
and elimination, achieving a 200 µM concentration of coclaurine in human plasma is un‑
likely. Thus, developing more effective derivatives of coclaurine may be a more practical
approach for clinical application.

Several mechanisms are involved in the development of cisplatin resistance, such as
decreased intracellular drug accumulation and decreased mismatch‑repair activity. Accu‑
mulating data reveal that transcription factors potentially contribute to generating resis‑
tance in various cancers [79]. Despite lack of the HMG domain, which is commonly as‑
sociated with proteins involved in recognizing DNA lesions, both transcriptional factors
Y‑box binding protein 1 (YB‑1) and Zinc Finger Protein 143 (ZNF143) can bind to cisplatin‑
modified DNA, indicating their potential roles in recognizing DNA damage and initiat‑
ing repair processes [80]. Transcriptional factor Homeobox D8 (HOXD8) is significantly
overexpressed in patients with recurrent ovarian cancer when compared to patients with
primarymalignant tumors and is associated with cisplatin resistance andmetastasis in the
advanced disease [81]. Additionally, epigenetic activation of FOXF1 confers cancer stem
cell properties promotes cisplatin resistance in NSCLC [82]. A recent study showed that a
histone deacetylase inhibitor, trichostatin A, which induces SNAI1 and SNAI2 expression,
inhibits SLC2A5/GLUT5 expression and thereby sensitizes colon cancer cells to cisplatin
and oxaliplatin [83]. Here, we found a novel function of coclaurine in regulating the stabil‑
ity of transcription factor FOXG1, thereby inhibiting EFHD2 expression (Figure 6). FOXG1,
amember of thewinged‑helix forkhead family, is mainly expressed in brain tissue and acts
as a transcriptional repressor in the development of the telencephalon [84]. A recent re‑
port indicated that FOXG1 drives transcriptomic networks, including suppressing Zbtb20,
Prox1, and Epha4 and activatingNr4a2 during the development of the medial pallium [85],
suggesting that FOXG1 can serve as a transcriptional promoter or repressor depending
on the gene promoter sequence and structure. Emerging evidence revealed that FOXG1
is overexpressed in numerous types of cancers, such as glioblastoma, breast cancer, liver
cancer, nasopharyngeal cancer, and lung cancer [86–90]. It is involved in the negative reg‑
ulation of cell apoptosis and promotes tumor proliferation, likely through the PI3K‑AKT
pathway [90,91]. However, the role of FOXG1 in chemoresistance remains uncharacterized.
In this study, we uncovered the novel function of FOXG1 in activating EFHD2 suppression,
thereby increasing NSCLC cell resistance to cisplatin treatment.

4. Materials and Methods
4.1. Cell Culture

Human lung epithelial carcinoma cell lines A549 and H1299, as well as the human
non‑tumorigenic bronchial epithelial cell line BEAS‑2B, were purchased from the Ameri‑
can Type Culture Collection (ATCC, Manassas, VA, USA). A549 cells were maintained in
RPMI 1640 medium (#11875127; Gibco, Waltham, MA, USA), while H1299 cells were cul‑
tured in DMEM/F‑12 medium (#11320082; Gibco, Waltham, MA, USA). Both media were
supplemented with 10% fetal bovine serum (FBS; #26140079; Gibco, Waltham, MA, USA)
and 1% penicillin‑streptomycin (#15140122; Gibco, Waltham, MA, USA). BEAS‑2B cells
were cultured in DMEM/F‑12 medium, supplemented with 1 µMhydrocortisone, 5 µg/mL
insulin, 10 µM HEPES, 10% fetal bovine serum, and 1% penicillin‑streptomycin. All cell
lines were grown in a humidified atmosphere of 5% CO2 and 95% air at 37 ◦C.

4.2. Aqueous Extraction for the Herbal Materials
Twelve types of herbal materials were purchased from local Chinese medicine shops

(Table 1). Prior to aqueous extraction, the herbal raw materials were cut into small pieces
(length < 1 cm) to enhance extraction efficiency. Fragmented herbal materials (2 g) were
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incubated in 25 mL of double distilled water with stirring at 170 ◦C for 30 min. High‑
speed centrifugation (10,000× g) was used to remove precipitates and residues, and the
suspensions were filtered through a 0.22 µm pore size membrane (#6534; Sartorius, Göt‑
tingen, Germany). After speed‑vacuum drying, the contents of the aqueous extracts were
determined by weighting. The filtered products were stored in aliquots at −20 ◦C.

4.3. Cell Viability Assay
Cell viability was determined using themethylthiazol tetrazolium (MTT)method. Af‑

ter treatment with natural compounds or pharmaceutical drugs, 3‑(4,5‑dimethylthiazol‑2‑
yl)‑2,5‑diphenyltetrazolium bromide (#M6494; Invitrogen, Carlsbad, CA, USA) was added
to the cultured cells, and the reduced formazan compounds were measured at a wave‑
length 570 nm with an enzyme‑linked immunosorbent assay reader (Dynex, Chantilly,
VA, USA). Cell viability (%) was calculated as (T/U) × 100%, where T is the absorbance
of treated cells and U is the absorbance of untreated cells.

4.4. Western Blot Assay
Total proteins from culture cells were extracted using the RIPA lysis and Extraction

buffer (#89901; Thermo Scientific, Waltham, MA, USA) supplemented with a proteinase
inhibitor cocktail (Sigma‑Aldrich, St. Louis, MO, USA). Protein concentration was deter‑
mined using the Protein Assay kit (#5000006EDU; Bio‑Rad, Hercules, CA, USA) at 595 nm
absorbance. A total of 20 µg of protein was separated by 9.5% SDS‑PAGE and then trans‑
ferred onto PVDF membranes (#88518; Thermo Scientific, Waltham, MA, USA) at 400 mA
for 3 h. After blocking with a 5% skin milk solution, the membranes were incubated with
primary antibodies at 4 ◦C for 16–24 h. The primary antibodies used in this study are sum‑
marized as follows: EFHD2 (ab106667), NOX4 (ab133303), and CD44 (ab51037) purchased
from Abcam (Cambridge, UK); ABCC1 (#72202), ALDH1A1 (#12035), EpCAM (#93790),
FOXG1 (#29642), and β‑actin (#4970) purchased from Cell Signaling (Danvers, MA, USA).
The membranes were washed with TBST buffer and agitated gently three times for 15 min
each. The reaction with horseradish peroxidase‑conjugated secondary antibodies was per‑
formed at room temperature for 1 h. Immunoreactive signals were revealed using an en‑
hanced ECL substrate Western Lighting Plus‑ECL (PerkinElmer, Shelton, CT, USA) and
recorded by developing photographic film under optimal exposure or with the lumines‑
cence image analyzer ImageQuant LAS 4000 (GE Healthcare Life Sciences, Washington,
DC, USA). The original images of the Western blot assays are shown in Supplementary
Figure S1.

4.5. Transwell Migration and Invasion Assays
For in vitro migration assays, tumor cells (3 × 104 cells in 200 µL) were suspended

in the upper half of a PET membrane transwell insert chamber (#353097; Corning, Corn‑
ing, NY, USA) on a 24‑well plate. For in vitro invasion assays, tumor cells (3 × 104 cells
in 200 µL) were suspended in transwell insert chambers coated with matrigel (1 mg/mL;
#356234; BD Biosciences, Franklin Lakes, NJ, USA). Media without FBS supplementation
were added to the upper chamber, whilemediawith 10%FBS supplementationwere added
to the lower chamber. After incubation at 37 ◦C for 16 h or 24 h for migration and inva‑
sion assays, respectively, tumor cells that had passed through the insert were fixed with
3.7% formalin (#15512; Sigma‑Aldrich, St. Louis, MO, USA) and stained with 0.1% crys‑
tal violet (#C0775; Sigma‑Aldrich, St. Louis, MO, USA). For quantification, crystal violet
was extracted using 50% ethanol (#459836; Sigma‑Aldrich, St. Louis, MO, USA) and 0.1%
acetic acid (#A6283; Sigma‑Aldrich, St. Louis, MO, USA) and subjected to colorimetric
measurement at 570 nm.

4.6. Colony Formation Assay
For the colony formation assay, tumor cells (1000 cells per well) were seeded into

6‑well plates and then left treated or untreated (control) with the indicated doses of coclau‑
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rine. After 10 days of culture, the cells were fixed with 3.7% formalin and stained with
0.1% crystal violet. For quantification, the stained dye was extracted using 50% ethanol
and 0.1% acetic acid and measured by colorimetry at 570 nm.

4.7. Spheroid Formation Assay
Tumor cells (2000 cells per dish), either treated or untreated (control) with the indi‑

cated doses of coclaurine, were cultured in 6 cm culture dishes coated with 1% agarose for
7 d. The number of spheroid formations was counted manually under a bright‑
field microscope.

4.8. MS Identification of Small Molecules
An Ultimate 3000 UHPLC system (Thermo Scientific, San Jose, CA, USA) coupled

with a Q‑Exactive Plus high‑resolution mass spectrometer (Thermo Scientific, San Jose,
CA, USA), equipped with a standard heated electrospray ionization source (HESI), was
used for molecule identification. The chromatographic conditions for the separation of
herbal materials (10 µL) were set as follows: flow rate at 300 µL/min, with 0.1% formic acid
(Fluka 56302; Honeywell, Charlotte, NC, USA) in water as mobile phase A and acetonitrile
(UN1648; J.T.Baker, Radnor, PA, USA) as mobile phase B, using an ACQUITY UPLC C18
column (particle size 1.7 µm, 2.1 mm × 100 mm; Waters, Milford, MA, USA). The HESI
voltage was maintained at 4.0 kV for positive ionization mode and 3.5 kV for negative ion‑
ization mode. A full scan‑top N data‑dependent acquisition (full MS/ddMS2) scan mode
was used to detect the components in the herbal materials. The mass scan range was m/z
150–1500 with a mass resolution of 70,000, and tandem mass (MS2) resolution was 17,500.
Full scan spectra and product ion spectra were utilized to identify herbal phytochemicals
using Compound Discoverer v3.3 software (Thermo Scientific, San Jose, CA, USA), which
integrates with the databases ChemSpider, PlantCyc, mzVault, and mzCloud.

4.9. Protein Thermal Shift Assay
The effect of coclaurine on the thermal stabilization of the target transcriptional factor

was determined by a cellular thermal shift assay [40]. Briefly, tumor cells (5 × 106 cells
in 1 mL) were treated or left untreated with coclaurine (200 µM) at 37 ◦C for 2 h. After
washing, the tumor cells were suspended in 400 µL of PBS supplemented with protease
inhibitors. The tumor cells were then aliquoted into PCR tubes (50 µL per vial) and heated
at different temperatures (30 ◦C, 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C) in a PCRmachine for 3 min.
After cooling at room temperature for 3min, the tumor cells were immediately frozenwith
liquid nitrogen. Once all reactions were completed, the tumor cells were mixed with SDS‑
PAGE sample buffer and heated at 100 ◦C for 10 min. The samples were centrifuged at
12,000 rpm at 4 ◦C for 10 min, and the supernatant (10 µL) of each sample was performed
using electrophoresis under reducing condition and Western blot validation.

4.10. Cloning of the EFHD2 Gene Promoter
For the EFHD2 gene promoter assay, primers were designed to target the correspond‑

ing sequences, with a KpnI restriction enzyme site added to the forward primer and a
HindIII restriction enzyme site added to the reverse primer, along with a three‑nucleotide
overhang at the 5′ end of each primer. The information of primer sequences was listed in
Table 2. Target sequences were amplified by the paired primers and constructed into the
pGL4 firefly luciferase vector using the dual‑luciferase reporter assay system (Promega).
Luciferase activities were determined by a luminometer using a dual‑luciferase reporter
assay according to the instructions of the manufacturer.
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Table 2. The information of primer sequences.

Primer Sequence %GC Tm (◦C)
#1‑F GCGCGGTACCAAAATCTGTATTATTAACCTAGGCCCCAGT 37 67
#1‑R GCGCAAGCTTGGTGGCCCGCGCGGCACTCGCCTTGGCCGG 83 88
#2‑F GCGCGGTACCTTTAAAACAAAAAAACCATTTTAGCTGAGC 27 64
#2‑R GCGCAAGCTTCAGGCTCCAATTTGGACAGACGAA 50 68
#3‑F GCGCGGTACCACAAAGCCAAATAGGTAACTGACCAGAGAG 43 69
#3‑R GCGCAAGCTTTCTCAGAATTAAGTTTCTCTTAGTTTTGGG 33 65

4.11. Molecular Docking
Molecular docking was performed to estimate the binding affinity of coclaurine to

the target transcriptional factors using BIOVIA Discovery Studio software (DS2022; RRID:
SCR_015651). The three‑dimensional structure of coclaurine was obtained from PubChem
(accessed on 3 January 2024; https://pubchem.ncbi.nlm.nih.gov), and the molecular for‑
mula of coclaurine was transformed into canonical SMILES as follows:
COC1=C(C=C2C(NCCC2=C1)CC3=CC=C(C=C3)O)O [92]. The protein structures of tran‑
scriptional factors FOXG1 (7CBY), FOXP1 (2KIU), HOXA13 (2L7Z), and SP1 (1SP1) were
acquired from the Protein Data Bank (accessed on 4 January 2024; https://www.rcsb.org/)
and used for molecular docking calculations by the CDOCK method. The resultant struc‑
tures from molecular docking were output and presented using DS2022 and the PyMOL
Molecular Graphics System (RRID: SCR_000305).

4.12. Statistics
The quantitative characteristics of the data were displayed as mean and standard de‑

viation (SD). The statistical significance of the difference between the responses of two
groups was analyzed using a two‑tailed Student’s t‑test, which was applied for the MTT
assay and qPCR assay. One‑way ANOVA followed by Tukey’s post hoc test was used for
the comparison of multiple groups, such as cell survival, cell migration, invasion, spheroid
formation and colony formation assays. Statistical analyses were performed using IBM
SPSS Statistics 22. A p‑value of <0.05 was considered statistically significant.

5. Conclusions
We demonstrate that the aqueous extracts of Stephania tetrandra effectively inhibit

EFHD2 expression in NSCLC cells, highlighting its potential as a therapeutic agent. Co‑
claurine, one of the key active compounds identified in S. tetrandra, plays a crucial role in
this inhibition. Furthermore, coclaurine disrupts EFHD2‑related NOX4‑ABCC1 signaling,
enhancing the sensitivity of NSCLC cells to cisplatin treatment. Mechanistically, coclau‑
rine interferes with the binding of FOXG1 to the EFHD2 promoter, leading to a significant
reduction in EFHD2 mRNA transcription. The representative working model is shown
in Figure 7. These findings strongly suggest that S. tetrandra and coclaurine may serve as
promising adjuvant therapies to enhance the efficacy of cisplatin in NSCLC treatment.
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