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Abstract: Of the three types of waste generated in beer processing, brewer’s spent grain (BSG) is
the most abundant and has a high potential for valorization. In this work, defatted BSG (DB) was
subjected to an extraction process with subcritical water at different temperatures to obtain extracts
rich in phenols and the cellulosic fractions, which were also purified by using hydrogen peroxide
(H2O2). The results showed that the dry extracts obtained at 170 ◦C were richer in phenolics (24 mg
Gallic Acid Equivalent (GAE) g−1 DB), but with lower antioxidant capacity (71 mg DB·mg−1 2,2-
diphenyl-1-pikryl-hydrazyl). This extract also showed the highest antibacterial potential against L.
innocua (80 mg·mL−1) and E. coli (140 mg·mL−1) than those obtained at lower temperatures. The
purification of cellulose from the treated residues, using hydrogen peroxide, revealed that DB is a
limited source of cellulose material since the bleached fractions showed low yields (20–25%) and low
cellulose purity (42–71%), even after four bleaching cycles (1 h) at pH 12 and 8% H2O2. Despite this,
the subcritical water extraction method highlights the potential of a simple process as a technological
option to convert underutilized side streams like beer bagasse into added-value, potential ingredients
for innovative food and pharmaceutical applications.

Keywords: phenolic compounds; cellulose fibres; antioxidant; antimicrobial; hydrogen peroxide bleaching

1. Introduction

Global beer consumption has experienced a notable increase over the last 50 years,
reaching 150 billion liters per year, surpassing wine consumption by seven [1]. It is
estimated that by 2025, it will be worth $502.9 billion and have an annual growth rate of
19.9% in response to growing demand and the wide variety of new styles and flavors [2].
During the beer brewing process, three types of waste are generated: brewer´s spent grain
(BSG or beer bagasse), spent hops, and spent brewer’s yeast. It is estimated that between
14 and 20 kg of bagasse, 0.2 and 0.4 kg of hops, and 1.5 and 3 kg of residual yeast are
generated for every 100 L of beer produced [1]. Consequently, the beer bagasse constitutes
approximately 85% of the total byproducts generated [3]. This residue presents outstanding
nutritional properties that make it a valuable source of high-value compounds and includes
hulls of barley malt grains, parts of the pericarp, and layers of the barley seed coat. It
contains fibers (soluble and insoluble), proteins, lipids, and phenolic compounds, which
can be free or bound to dietary fiber [4]. Among phenolic acids, ferulic, p-coumaric, and
caffeic predominate in a bound state [5]. The chemical composition of BSG depends on
the type of barley, the time of harvest, and the malting and mashing conditions, being rich
in cellulose (12–25% in dry basis (db)), hemicellulose (20–25%), lignin (10–28%), starch
(2–7%), proteins (20%), lipids (6–10%), and minerals (2–5%) together with polyphenols
(0.7–2%) [5,6]. Therefore, the extraction of different fractions from beer bagasse could be of
great interest to obtain different valued biomolecules to be used for the pharmaceutical,
packaging, or food industry.
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The extraction of different compounds from BSG has been studied by a few researchers
for different purposes, which were mainly focused on the recovery of proteins and polyphe-
nols. Thus, some authors [7] reviewed the effect of extraction techniques and conditions
on the composition, physicochemical, and techno-functional properties of the obtained
BSG protein extracts. Other authors [8] focused on the current extraction methods used to
obtain phenolic compounds from BSG, ranging from more traditional (the conventional
solid-liquid extractions employing organic solvents, alkaline, and enzymatic reactions)
to advanced techniques such as pressurized fluid, supercritical, microwave-assisted, and
ultrasound-assisted extractions. On the other hand, a great yield of phenols (28.9 g gallic
acid/100 g BSG) and a high percentage of the lignin (54.4%) and protein (79%) present in
the BSG were reported by [9], using different deep eutectic solvents and temperatures.

Among the various new green extraction and separation technologies, ultrasound-
assisted, microwave-assisted, enzyme-assisted, and subcritical and supercritical fluid ex-
traction have been recently used, surpassing conventional methods such as maceration,
infusion, and Soxhlet extraction [10,11]. In subcritical water extraction (SWE), where water
is liquid at the temperature and pressure below its critical point (374.15 and 22.1 MPa) [12],
the physicochemical properties of water, such as the relative dielectric constant and polarity,
decrease significantly with increasing temperature so that, under subcritical conditions, water
can dissolve polar and non-polar compounds [13]. Furthermore, viscosity and surface ten-
sion decrease with increasing temperature, resulting in higher extraction efficiency [14,15].
Additionally, water is an economical, non-toxic, non-hazardous, and safe solvent that works
as a solvent and catalyst to take advantage of and transform biomass into bioactive prod-
ucts [16,17]. Compared with organic solvents, subcritical water not only has advantages in
ecology, economy, and safety, but also its density, viscosity, ion product, and dielectric constant
can be adjusted by temperature, thus promoting the extraction of compounds with different
polarity with no residue or effluents and high environmental friendliness. In the last few
years, this technology has shown an increasing interest in the scientific community (from 300
articles published in 1995–2000 to 5000 articles in the 2021–2023 period), thus showing SWE is
a promising technology for extracting target compounds such as proteins, polyphenols, or
phenolic acids from different sources.

SWE has been applied in a variety of agro-industrial wastes such as winery, tea, shellfish,
and tobacco wastes, carrot leaves, cotton flowers, peels (chestnut, almond, potato, citrus,
mandarin, mango, kiwifruit), seeds (papaya), pomace (apple, pomegranate, kiwifruit), among
others, to recover different bioactive active compounds such as querquecin, flavonoids, dif-
ferent phenolic acids, and anthocyanins, but also polysaccharides such as pectins, proteins,
and peptides [18]. Some authors [19] used SWE as a hydrolytic medium to recover proteins
and specific polyphenols from craft BSG for pharmaceutical and cosmetic applications. They
found 185 ◦C to be the best temperature to maximize the extraction of protein and aldehyde
phenolic compounds (vanillin, syringic, and protocatechuic aldehydes), while lower temper-
atures (160 ◦C) promoted the extraction of hydroxycinnamic acids, such as ferulic acid and
p-coumaric.

In addition, the extraction of bioactive compounds and the cellulose recovery from
beer bagasse have also been studied. Thus, [20] addressed the extraction of cellulose from
BSG by means of alkaline hydrolysis and bleaching reactions and its further conversion
into cellulose acetate for packaging applications. The purification of cellulose from a
beer industrial residue from 40% to 92% by using different steps of pulping and chlorine
bleaching has been studied by [21], which considered bagasse as an interesting source of
cellulose. Nevertheless, in the cellulose purification process from lignocellulosic residues,
great amounts of chemicals are involved, which are necessary to reduce in order to minimize
its environmental impact. Combination of SWE and milder bleaching treatments with
oxygen derivatives, such as hydrogen peroxide, could be an interesting alternative to purify
cellulose. No previous studies have been found by applying SWE combined with mild
bleaching treatments to obtain in cascade phenolic-rich extracts from the SWE step and
cellulose fibers from the subsequent bleaching step of the SWE extraction residue.
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The objective of the present work is to fractionate the beer bagasse residue into phenolic
and cellulosic-rich fractions by applying subcritical water extraction (SWE) at different
temperatures (110–170 ◦C) and subsequent hydrogen peroxide bleaching treatments of the
extraction residues. The SWE extracts were analyzed as to their compositional, antioxidant,
and antibacterial properties, while the cellulose purification degree was quantified in the
insoluble residues submitted to different bleaching steps. Thus, an integral fractionation of
added value products from BSG waste was proposed, which will contribute to valorizing
the BSG waste in the context of a circular economy.

2. Results and Discussion
2.1. Yields and Composition of the Different SWE Fractions

Figure 1 shows the flow chart of the brewer spent grain (BSG) or beer bagasse frac-
tionation throughout the SWE, giving rise to soluble extracts (E) and insoluble residues
(R) at each temperature. The latter were submitted to a bleaching step to purify cellulose,
while the extracts were freeze-dried to obtain extract powders. Images of the different
obtained products, together with the obtained mass yield of each process step, are also
shown in Figure 1. Previously to the SWE, a defatting step of the BSG yielded around
8% oil from the dried bagasse, being this value in agreement with that reported in the
literature [22,23]. The main beer bagasse lipid compounds have been reported, these being
triglycerides (55–67%), free fatty acids (18–30%), such as palmitic, oleic, and linoleic acids,
and free steroids (5%), such as sitosterol and campesterol. These lipid compounds have a
wide range of nutraceutical, pharmaceutical, and cosmetic applications [23].
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The values of mass yields of solid extracts (E-110, E-130, E-150, and E-170) and
dried residues (R-110, R-130, R-150, and R-170) of the SWE process performed at
different temperatures, shown in Figure 1, indicate that the extraction yield increased
(from 7% to 41%) when the extraction temperature rose from 110 ◦C to 170 ◦C. This is
mainly explained by the changes in the water solvent properties when the temperature
increased, which reduces the strength of hydrogen bonds and leads to an important
reduction in dielectric constant, this becoming closer to the dielectric constant value of
some organic solvents, such as methanol (ε = 33) or ethanol (ε = 25) [24,25]. The sum of
both yields (extract and residue) at a given temperature closed the mass balance, thus
indicating a low mineralization degree of the organic matter present at the processing
conditions used.

The thermogravimetric analysis (TGA) curves of the defatted bagasse (DB), ex-
tracts, and residues obtained after SWE at different temperatures are shown in Figure 2a,
together with the derivate curves (DTGA) (Figure 2b). The DB presented three main
degradation steps: the first mainly corresponding to the loss of bound water; a second
step associated with the degradation of polysaccharides with different thermostabil-
ity such as hemicelluloses (150–350 ◦C), celluloses (275–350 ◦C), and a part of lignin
(160–900 ◦C); and the third one, related to the degradation of residual lignin and sec-
ondary metabolites from the previously thermo-degraded compounds, as previously
described by other authors for lignocellulosic biomass [26,27]. The major weight losses
took place between 225 and 625 ◦C (80%), in line with the lignocellulosic nature of
this residue, in agreement with the results obtained by other authors [27,28]. Very
similar TGA patterns were obtained for every lignocellulosic residue. Nevertheless,
it is remarkable that the highest extraction temperatures (150 and 170 ◦C) gave rise
to the samples with the highest peak temperatures (temperature of the maximum
degradation rate), which indicates that these were the most enriched in cellulose that
shows peak temperature between 330–350 ◦C [29]. In contrast, the TGA and DTGA
curves of the extracts revealed a more complex compositional profile, exhibiting several
thermodegradation steps. The extract obtained at the highest temperature showed
a higher proportion of compounds that degrade at higher temperatures according
to a greater extraction of polymeric components, such as hemicellulose or lignin. A
higher final mass residue was also observed in comparison with the untreated sample
(defatted bagasse), which can be due to the extract enrichment in minerals or formation
of degraded organic matter from the soluble compounds.

Some compositional differences in the extracts and residues obtained at each tempera-
ture can be observed in Tables 1 and 2.

Table 1. Chemical composition of defatted beer bagasse (DB) and insoluble fractions after SWE at
different temperatures.

Sample Extractive
(%)

Protein
(%)

Ash
(%)

Lignin *
(%)

Cellulose
(%)

Hemicellulose
(%)

DB 13.1 ± 0.5 a 22 ± 2 a 3.71 ± 0.01 c 9.5 ± 1.6 ab 17 ± 2 a 17.9 ± 0.6 d

R-110 20.9 ± 1.5 b 28 ± 2 b 3.12 ± 0.11 b 9.1 ± 0.4 a 16 ± 2 a 15 ± 2 c

R-130 21.79 ± 0.05 b 26.2 ± 0.2 ab 2.79 ± 0.04 b 11.56 ± 0.08 b 20 ± 2 a 14.9± 1.2 c

R-150 34.5 ± 0.9 d 26 ± 2 b 2.27 ± 0.11 a 14.6 ± 0.5 c 21 ± 2 a 7.8 ± 1.2 b

R-170 28 ± 3 c 35.7 ± 0.2 ab 3.1 ± 0.2 b 19.6 ± 0.3 d 30 ± 3 b 2.01 ± 0.08 a

a–d different superscript letters in the same column indicate significant differences (p < 0.05); * acid insoluble lignin.
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Figure 2. TGA (a,c) and DTGA (b,d) of the defatted beer bagasse (DB), the active extracts (E), and the
insoluble fractions (R) obtained from SWE at different temperatures.

Table 2. Total phenolic content (TPC), efficient concentration (EC50), protein content, and ashes of
the aqueous extracts (E) (dry basis) obtained from the SWE process at different temperatures. (Mean
values ± standard deviation).

E-110 E-130 E-150 E-170

Protein (g/100 g
extract) 15.1 ± 0.1 a 16.6 ± 0.2 a 22.4 ± 1.2 b 28.7 ± 0.6 c

Ashes (g/100 g extract) 1.54 ± 0.06 c 1.5 ± 0.1 c 1.20 ± 0.04 b 0.46 ± 0.01 a

TPC1
(mg GAE/g extract) 16.8 ± 0.1 a 22 ± 2 a 17.91 ± 0.07 b 59.1 ± 0.2 c

TPC2
(mg GAE/g DB) 1.27 ± 0.08 a 3.2 ± 0.3 ab 6.34 ± 0.02 ab 24.18 ± 0.08 b

EC50
(mg extract/mg DPPH) 13 ± 3 a 18 ± 2 a 39 ± 4 b 59 ± 0.5 c

MIC (mg/mL)
against L. innocua 264 198 168 80

MIC (mg/mL)
against E. coli 234 204 162 140

a–c different superscripts in the same row indicate significant differences among extracts (p < 0.05).
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In Table 1, the total (water and ethanol) extractive content, protein, ashes, cellulose,
hemicellulose, and acid-insoluble lignin contents of the DB can be observed, together
with the values obtained for the different SWE solid residues. The obtained values for
raw brewer´s spent grain were within the range previously reported (around 16–22% for
cellulose, 24–28% hemicellulose, and 9–27% total lignin) [30,31]. The cellulose content of
the DB would be overestimated due to the hemicellulosic glucose contribution, whereas
the hemicellulose would be underestimated by the used quantification method. Thus,
the greater the hemicellulose content, the higher the quantification error. Likewise, the
presence of β-glucan and starch could also contribute to the glucose analyzed. Nevertheless,
the content of these components would be negligible after wort production due to their
solubilization promoted by enzymatic action from the grains [5].

In the extraction residues, the hemicellulose content was very low at temperatures
greater than 150 ◦C, in accordance with the selective dissolution of hemicellulose under the
subcritical water conditions [32,33]. Thus, the hemicellulose started to be removed from
the beer bagasse matrix when using temperatures greater than 130 ◦C, reaching very low
values at 170 ◦C (2%). At these temperatures, the lignin content significantly increased,
which confirmed that this fraction of the biomass was not released under SWE, as it has
been previously observed by other authors [32]. On the other hand, the increment in the
cellulose significantly increased (p < 0.05) in the residues treated at the highest temperature
(R-170) in comparison with the untreated DB. The insoluble-acid lignin in the solid residues
accounted for 87, 101, 99, and 160% of the total lignin in the raw material for 110, 130, 150,
and 170 ◦C, respectively. Thus, the obtained lignin values are surely overestimated, as the
outcome of such gravimetric analysis is highly disturbed by the presence of non-lignin
acid-insoluble material, e.g., proteins [34]. The corrected lignin (calculated by subtracting
the protein content) was not given because, in most cases, negative values were obtained.
According to [32], changes in the lignin structure took place during the SWE, such as
condensation reactions and structural alterations.

In both extract and residue fractions, the greater mass loss in TGA curves was observed
for the temperature range of 200–700 ◦C, where the lignin is mainly degraded, in line with
the formation of secondary metabolites from the previously thermo-degraded compounds.
This thermal degradation behavior agreed with that found in the literature for other
lignocellulosic residues [26].

Therefore, the application of SWE led to a selective fractionation of DB, giving rise to
aqueous extracts richer in different compounds of lower molecular weight (sugars, phenolic
compounds, and minerals) and polysaccharide and lignin-rich insoluble residues.

The ash content of the DB, extracts, and residues (shown in Tables 1 and 2) showed
that minerals were mainly present in the insoluble residues, whereas small amounts were
released to the extracts. The value obtained per DB was in the range of the ash content
reported by other authors for beer spent grain (2–5 g/100 g dry DB), being the most
abundant constituents phosphorous, magnesium, calcium, and potassium [30].

In Table 1, the protein content of DB is also shown (around 22%), being this value in
the range of previously reported values for beer bagasse, considering a fat-free basis [1,19].
The partition of the protein content during the SWE gave rise to greater content in the
insoluble residues, thus suggesting a low solubility of the bagasse proteins under the used
water subcritical conditions, especially at the lowest SWE temperatures. At 110 ◦C, 95%
of the total protein remained in the insoluble residue, with this percentage decreasing to
around 53% at 170 ◦C. These proteins are extracted and/or hydrolyzed during the thermal
treatment, leading to peptide chains of different sizes or free amino acids or even amino
acid decomposition, especially at high temperatures, producing different carboxylic acids
and other nitrogen-containing compounds such as ethanolamine [35,36]. Therefore, SWE
treatment of beer bagasse can be considered an efficient extraction method to recover the
protein fraction of the BSG generated in the beer industry, with the maximum recovery of
solubilized protein in the SWE extracts being 47% at 170 ◦C. This yield was similar to that
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obtained by the traditional alkaline extraction process (41%), and lower than the obtained
using deep eutectic solvents (79%) [9,37].

2.2. Functional Properties of the SWE Extracts: Antioxidant and Antibacterial Properties

Total phenolic content (TPC) and antioxidant activity of the aqueous extracts obtained
from the SWE process at different temperatures are displayed in Table 2. The antioxidant
activity of the different extracts was determined through the total phenolic content by
the Folin–Ciocalteu method and the Efficient Concentration parameter (EC50) with DPPH
radical, which quantifies the amount of extract needed to reduce the initial concentration
of the radical up to 50%. The TPC determined in the solid extracts (TPC1) was also
expressed per mass unit of defatted bagasse (TPC2). The TPC values increased from
16 to 59 mg GAE/g dried extract as the extraction temperature rose. Similarly, other
authors [38] observed that BSG aqueous extract obtained at 160 ◦C showed the highest TPC
values than that obtained at 100 and 140 ◦C. The found TPC values in defatted bagasse
(7.7 mg GAE/g DB) are in the range of those reported by other authors (0.89–15 mg GAE/g
sample), which is highly affected by the solvent and extraction method used [39]. As
reported by several authors [5,19,40,41], the main phenolic compounds identified in the BSG
extracts were hydroxycinnamic acids (specifically, ferulic acid and p-coumaric acid), sinapic,
caffeic, and syringic acids to a lesser degree. The TPC values of the extracts expressed per
mass unit of DB (TPC2 in Table 2) increased with the extraction temperatures from 1.2 to
24 mg GAE/g DB, the extracts obtained at 170 ◦C exceeding the values determined in the
raw material. These TPC values were greater than those reported by other authors [9,39],
using different organic solvents and deep eutectic solvents (0.04–1.1 and 2.89 mg GAE/g
BSG, respectively), which indicates the high efficiency of SWE to extract phenols, mainly at
temperatures between 150–170 ◦C. This high efficiency can be attributed to the promotion
of hydrolysis of lignin/phenolics-carbohydrate complexes, fostering the decomposition of
these structures and releasing free phenolics. Likewise, the neoformation of antioxidant
compounds under severe SWE conditions has also been described [42,43]. This neo-formed
antioxidant compound could also be quantified as phenols by the unspecific Folin-Ciocalteu
reagent. These compounds are formed through Maillard and/or caramelization reactions,
producing 5-hydroxymethylfurfural (HMF) and sugar condensation compounds, and
exhibit different bioactivities, including antioxidant activity [31]. On the other hand, the
thermal degradation of the phenolic compounds at high temperatures could also occur.
Specifically, flavonoids in the beer bagasse are highly thermosensitive. Therefore, the extent
of the different phenomena that occurred during SWE, depending on the composition of
each natural matrix, will determine the final content and nature of phenolics in the extracts.
Thus, the marked increment in the TPC observed at 170 ◦C could be attributed to the large
progression of the hydrolytic phenolic release, compared to the potential degradation ratio,
as well as to the neo-formation of higher amounts of antioxidant species.

The antioxidant capacity, measured throughout the EC50 values, is also shown in
Table 2. This value increased when the temperature rose, thus indicating a decrease in the
radical scavenging capacity of the extracts. This decrease in the antioxidant capacity when
the temperature rose, despite the promotion of higher phenolic content, can be attributed
to the different phenolic profile in each extract with different redox potential. The different
redox potentials of the antioxidants in the extracts may explain this apparent discrepancy,
since some compounds can be reduced by the Folin reactant but not by the DPPH radical.
On the other hand, for the colorimetric methods used to determine antioxidant capacity,
the chemical prediction is difficult in many cases due to the complex kinetics and stoi-
chiometries. In fact, different studies [39,44] no significant correlation between the TPC
determined by a redox method, such as Folin Ciocalteu, and the antioxidant capacity of the
extracts against different radicals, such as DPPH.

The antimicrobial potential of the DB extracts was also studied against the Gram-
negative E. coli bacteria and the Gram-positive L. innocua, which are well-known pathogenic
microorganisms responsible for food poisoning. The minimal inhibitory concentrations
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(MIC values) of the extracts with both bacteria were determined and shown in Table 2.
The antibacterial effectiveness increased when the extraction temperature rose, making
the gram-positive bacteria (Listeria) more sensitive to the extracts. The E-170 MIC value
for E. coli was similar to that found for SWE extract of almond peel (90 mg/mL) obtained
at 160 ◦C [26]. The antimicrobial efficiency of the polyphenols from the brewery waste
stream against S. aureus, L. monocytogenes, Salmonella spp., and E. coli bacteria has also been
reported by [45], being ferulic and caffeic acids and flavonoids the main responsible for the
observed antimicrobial activities.

The obtained results indicate that the SWE extracts from beer bagasse are excellent
candidates to be used as antioxidants in the development of a broad spectrum of enriched
food stuff such as fortified snacks, yoghurts, juices, or beverages, among others, with the
aim of increasing their antioxidant potential or in the pharmaceutical sector. Furthermore,
they can be employed as antilisteria compounds in food preservation, especially in the
production of meat products, such as sausages, pate sausages, hot dogs, and ready-to-eat
foods. The incorporation of these extracts into food packaging materials could also be
interesting to protect the food products against oxidation and/or listeria growth.

2.3. Bleaching of the Extraction Residues

The extraction residues (R-110, R-130, R-150, and R-170) were bleached to recover the
cellulose fraction (BR-110, BR-130, BR-150, and BR-170), as they can be used for different
applications in the material development and pharmaceutical sectors. The bleaching
treatment was carried out using a greener bleaching agent than the usual chlorine bleaches
to minimize the environmental impact of the process. Thus, the insoluble fractions were
submitted to four successive 1 h cycles with a 4% H2O2 solution at pH 12. To evaluate the
efficiency of the process, the white index (WI) and the yield of the process were determined
in cycle for the different samples (Figure 3). As expected, the application of four successive
bleaching cycles significantly decreased yield and increased the white index (WI) values, in
accordance with the progressive purification of cellulose in each cycle.
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The cellulose purification progress was monitored through the analysis of lignin and
sugars by means of the NREL method [46,47]. After removal of the water (which includes
soluble sugars) and ethanol extractives in the samples (between 13–34%), the acid-insoluble
lining and hydrolyzed sugars were quantified in the different samples. Glucose was the
major component, followed by xylose and arabinose. As established in the NREL method,
hemicellulose content was considered as total xylose and arabinose, and total glucose was
attributed to the cellulose content. The obtained values are given in Table 3.
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Table 3. Chemical composition (wt%) of the insoluble fractions subjected to the four bleaching cycles
with 4% hydrogen peroxide.

Sample Ashes
(%)

Lignin
(%)

Protein
(%)

Cellulose
(%)

Hemicellulose
(%)

BR-110-1C 6.96 ± 0.09 a,1 14.69 ± 0.03 a,1 11.3 ± 0.5 a,3 52 ± 2 a,1 41 ± 5 a,1

BR-110-2C 5.9 ± 0.3 b,1 15.9 ± 0.8 a,2 8.2 ± 0.3 b,2 44 ± 2 a,1 33 ± 4 b,1

BR-110-3C 6.20 ± 0.08 b,1 13.88 ± 1.09 a,2 5,1 ± 0.2 c,2 57 ± 5 a,1 30 ± 3 c,1

BR-110-4C 6.2 ± 0.3 b,1 11.5 ± 0.9 b,1 1.9 ± 0.3 d,2 53 ± 4 a,1 26 ± 3 d,1

BR-130-1C 6.5 ± 0.3 b,1 16.2 ± 0.5 ab,2 21 ± 0.6 a,1 62 ± 3 a,1 28 ± 3 a,2

BR-130-2C 7.07 ± 0.07 b,2 17.3 ± 0.4 bc,1 11.3 ± 0.4 b,1 65 ± 4 a,2 31 ± 6 a,1

BR-130-3C 6.5 ± 0.3 b,1 17.97 ± 0.04 c,3 7.7 ± 0.2 c,1 67± 3 a,1 22 ± 3 ab,2

BR-130-4C 5.8 ± 0.2 a,1 15.6 ± 0.8 a,2 2.5 ± 0.1 d,1 62 ± 5 a,12 15 ± 2 b,2

BR-150-1C 5.07 ± 0.41 a,2 20.88 ± 0.06 a,3 16.2 ± 0.9 a,2 58 ± 6 a,1 15 ± 2 a,3

BR-150-2C 7.4 ± 0.5 a,2 15.35 ± 0.11 b,23 11.6 ± 0.4 b,1 64 ± 5 a,2 14 ± 2 a,2

BR-150-3C 5.5 ± 1.4 a,1 15 ± 2 b,2 7.3 ± 0.2 c,1 62 ± 5 a,1 -
BR-150-4C 4.9 ± 0.7 a,1 14.77 ± 1.02 b,2 2.9 ± 0.7 d,1 71 ± 6 a,2 -

BR-170-1C 5.5 ± 0.4 a,2 21.9 ± 0.3 a,4 6.7 ± 0.2 a,4 60 ± 3 a,1 -
BR-170-2C 5.7 ± 0.3 a,1 14.4 ± 0.2 b,3 4.8 ± 0.3 b,3 42 ± 2 c,1 -
BR-170-3C 5.7 ± 0.4 a,1 11.5 ± 0.2 c,1 2.9 ± 0.3 c,3 44 ± 2 c,2 -
BR-170-4C 6.2 ± 0.2 a,1 10.2 ± 0.2 d,1 1.2 ± 0.2 d,3 53 ± 4 b,1 -

a–d different letters indicate significant differences (p < 0.05) between samples at the same extraction temperature;
1–4: different numbers indicate significant differences (p < 0.05) between samples at the same bleaching cycle.

The hemicellulose content was selectively removed when successive bleaching cycles
were applied (p < 0.05) in every sample. This hemicellulosic fraction significantly decreased
when using 3–4 cycles in BR-110 and BR-130 samples and completely disappeared in BR-
150 and BR-170 samples after two and one bleaching cycles, respectively. Nevertheless, no
significant increase in the cellulose content of the samples occurred during the successive
cycles, except for R-170, in which the cellulose content significantly decreased with successive
cycles. This suggests that cellulose is progressively degraded through the bleaching cycles
with hydrogen peroxide. In fact, when referring to the cellulose content per mass unit of
initial DB (Table S2, Supplementary Materials), a progressive decrease was observed, ranging
from 14–17 cellulose/100 g DB in the non-bleached residues to 7–13 g cellulose/g DB in the
fourth bleaching cycle of the different samples. Degradation of cellulose by the oxidative
action of hydrogen peroxide has been reported by other authors [48], through free radical
mechanisms forming alpha-hydroxyalkyl radicals and subsequent chain scission. This process
is largely affected by the substrate composition and the presence of catalyzers or inhibitors of
the reaction. Therefore, the use of hydrogen peroxide as a bleaching agent of BD cellulosic
fractions did not yield proper results since an important part of cellulose is degraded during
the delignification process.

The maximum cellulose content (about 64%) was obtained in the samples treated at
150 ◦C after two successive cycles of bleaching. Other authors [20,49] reported 60–95% of
cellulose content in bleached BSG, depending on the extraction technique, pretreatment
applied, and process condition used, but using more toxic and corrosive agents to carry out
alkaline and acid hydrolysis.

In general, the acid-insoluble lignin content decreased when successive cycles were applied,
especially after the fourth bleaching cycle. Nevertheless, as commented on above, it has to be
taken into account that these values were affected by the protein content of the samples. As can
be observed, the protein is progressively removed by successive bleaching cycles, especially in
sample BR-170, where higher protein solubilization occurred in the SWE step.

The TGA and DTGA curves of the insoluble and bleached residues are shown in
Figure 4. All samples exhibited a first weight loss step at 25 and 125 ◦C corresponding
to the loss of bonded water and the typical degradation steps of lignocellulosic residues,
previously commented. The TGA curves of the bleached fractions showed the expected
differences in the thermal behavior with respect to the non-bleached samples, related
to the compositional changes that occurred in the bleaching step. The partial removal
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of hemicellulose during the bleaching cycles is reflected on the TGA curves, where the
double peak in DTGA curves of polysaccharides became a single peak, mainly attributed
to cellulose degradation, and the temperature of the maximum degradation rate increased
from 280 to 300 ◦C in BR-110 and BR-130 samples. Nevertheless, no relevant changes in
the cellulose purification degree can be deduced from the scarce increase in the weight
loss step attributed to this polymer, remaining other compounds whose degradation
overlapped with the cellulose degradation, as also observed in the analyzed composition.
In sample BR-170, very few changes in the TGA curve were observed after the first bleaching
cycle, coherently with the small composition changes reflected in Table 3. Therefore, the
successive cycles reduced the bleaching mass yield but did not significantly promote
cellulose purification but its degradation. In the other cases, the bleaching cycles promoted
the removal of hemicellulose but also did not result in higher cellulose purity due to
its partial degradation. The cellulose degradation products probably contributed to the
increase in the final residual mass obtained for most of the bleached samples. Therefore,
the oxidative process applied with hydrogen peroxide in an alkaline medium seems to
partially degrade cellulose, generating other compounds and reducing the process yield.
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Figure 4. TGA (a) and DTGA (b) curves of the insoluble residues (R) and the bleached residues (BR)
obtained from SWE at 110 ◦C, 130 ◦C, 150 ◦C, and 170 ◦C submitted to different bleaching cycles.
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Subcritical water extraction of BSG represents an innovative technique to valorize this
waste. On one hand, phenolic-rich fractions are obtained with antioxidant and antimicrobial
activities and high protein content. On the other hand, cellulose-rich solid residues are
generated, which can be further purified by means of chlorin-free solvents using a most
sustainable and environmentally friendly process. The selection of the temperature allows
for modulating the protein and phenolic richness of the extracts. At 170 ◦C, the highest
protein and phenolic contents were obtained. However, the cellulose purification reached
its highest yield in the samples obtained at 150 ◦C. Therefore, the use of SWE allows the
efficient fractionation of the BGS depending on the applied temperature.

3. Materials and Methods
3.1. Materials

Petroleum ether (40–60 ◦C bp), phosphorous pentoxide (P2O5, 98.2%), sodium hy-
droxide (NaOH), glucose, and arabinose were purchased from Sigma-Aldrich (St. Louis,
MO, USA). D (+)-Xylose was supplied by Merck KGaA (Darmstadt, Germany). Ethanol
(98%), hydrogen peroxide (H2O2, 30%), sulphuric acid (H2SO4, 98%), and sodium car-
bonate (Na2CO3, 99.5%) were obtained from Panreac Quimica S.L.U. (Castellar del Vallés,
Barcelona, Spain).

3.2. Residue Preparation

Beer bagasse, supplied by a brewery factory located in Valencia, was dried at 60 ◦C ±
2 ◦C in a forced-air oven (J.P. Selecta, Barcelona, Spain) until constant weight. After that, it
was milled using a Thermomix (Model TM6 Vorwerk, Wuppertal, Germany) and sieved to
obtain particles under 0.71 mm and cold stored.

The defatting process was performed under reflux with petroleum ether for 8 h at
60 ◦C, with stirring using a 1:4 ratio of dry sample to solvent. Then, it was allowed to
settle, decanted, and filtered with a 125-mm paper filter, washing with pure solvent, to
separate the defatted residue that was left to solvent evaporation at room temperature in
an extractor hood for 16 h, when constant weight was reached. The liquid phase was dried
by adding anhydrous sodium sulfate and then left for 48 h and filtered under vacuum. The
oil was recovered by evaporating petroleum ether in the vacuum rotary evaporator (Rotary
Evaporators, Heidolph Instruments GmbH & Co. KG, Walpersdorfer, Germany).

3.3. Subcritical Water Extraction

Subcritical extraction (SWE) of defatted bagasse was carried out with a ratio solids-
water of 1:8 using a pressure reactor (Model 1-TAP-CE, 5 L capacity, Amar Equipment
PVT. LTD, Mumbai, India). The temperature-pression conditions used were 110 ◦C-1 bar,
130 ◦C-2 bar, 150 ◦C-4.5 bar, and 170 ◦C-8 bar, applying 50 rpm in all cases, for 30 min.
After each extraction step, the defatted sample dispersions were filtered through a filter
with a pore size less than 0.5 mm (Filterlab, Barcelona, Spain). Thus, two fractions were
obtained from each SWE process: one insoluble residue (R) and the soluble extracts (E). The
extracts, named E-110, E-130, E-150, and E-170, were lyophilized at −60 ◦C and 0.8 mbar
and stored in desiccators (P2O5, 0% relative humidity) at 4 ◦C. The respective mass yields
of extracted solids and solid residues were determined with respect to the initial defatted
bagasse. To determine the extract yield, three aliquot samples of the liquid extracts were
dried at 105 ◦C until a constant weight was determined to determine the water:solid ratio,
and the total solids extracted was calculated by multiplying by the total water mass in the
reactor. To determine the yield in the extraction residues (R-110, R-130, R-150, and R-170),
these were washed with distilled water, filtered, and dried at 40 ◦C for 48 h to determine
their weight yield; then these were stored at 4 ◦C until further use.

3.4. Bleaching Process

The insoluble fractions obtained from SWEs were bleached following the method
described by [26], using hydrogen peroxide as a bleaching agent. 4% (wt) H2O2 solution
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was prepared while pH was fitted to 12 (using NaOH). The lignocellulosic residues were
treated with this bleaching solution using a solvent-solid ratio of 30:1 at 40 ◦C for 1 h in four
consecutive cycles, filtering and washing the sample with distilled water after each cycle.

After the four cycles, the cellulose fractions were filtered and washed with abundant
deionized water to remove residues of the bleaching solution and then dried at 50 ◦C
overnight. The bleached samples were labeled BR-110-1C to BR-110-4C, BR-130-1C to
BR-130-4C, BR-150-1C to BR-150-4C, and BR-170-1C to BR-170-4C. The mass yield (%) and
whiteness index (WI) were determined in all samples using Equations (1) and (2) at each
bleaching cycle to control the sample development. The color coordinates L* (lightness),
a* (red green), and b* (yellowish-blue) of each bleached fraction were obtained with a
CM-3600d spectro-colorimeter (Minolta Co., Tokyo, Japan), using a D65 illuminant and
100 observed.

Yield =
Weight o f bleached cellulose

Weight o f material be f ore bleaching
(1)

WI = 100 −
√
(100 − L∗)2 + a∗2 + b∗2 (2)

3.5. Physico-Chemical Analysis of Beer Bagasse, Soluble, and Insoluble Fractions

The amount of protein in raw beer bagasse BB, extracts (E-110, E-130, E-150, and
E-170), and extraction residues (R-110, R-130, R-150, and R-170) was measured using the
Dumas combustion method (Leco, St. Joseph, MI, USA) by duplicate. A conversion factor
of 4.74 was applied to calculate protein content from total nitrogen [50].

In the same way, all samples were subjected to thermogravimetric analysis (TGA). A
TGA/SDTA 851e analyzer (Mettler Toledo, Schwarzenbach, Switzerland) working under
nitrogen flow (20 mL/min) was used to obtain the weight loss vs. temperature curves
(TGA) and the first derivatives (DTGA). Samples (3–5 mg) of a previously conditioned
sample in P2O5 were placed in a 70-µL alumina crucible and heated from 25 to 900 ◦C at
10 K/min. Three replicates per sample were obtained.

3.5.1. Analysis of Structural Components in the Insoluble Fraction

Cellulose, hemicellulose, acid-insoluble lignin content of defatted beer bagasse (DB),
insoluble fractions (R), and bleached samples (BR) were analyzed according to the method
of the National Renewable Energy Laboratory (NREL/TP-510-42618—2008) [46]. The test
consisted of a two-stage hydrolysis with 72% sulfuric acid, of which one results in a soluble
fraction in which the sugar content (glucose, xylose, and arabinose) was measured by high-
resolution liquid chromatography. (HPLC, Agilent Technologies, model 1120 Compact LC,
Waldbronn, Germany) and a RezexTM RCM-Monosaccharide Ca2+ column (300 × 7.8 mm).
On the other hand, the insoluble fraction was used to quantify the acid-insoluble lignin
content by the thermogravimetric method. The cellulose content was obtained from the
quantified glucose and hemicellulose from the sum of quantified xylose and arabinose.

Before hydrolysis, the raw material (DB) and the insoluble fractions (R) were subjected
to the extractive determination using the standard NREL method (NREL/TP-510-42619—
2008) [47]. This procedure was performed using a Soxhlet set-up, which consists of two
stages: a first extraction with water for 6 h, followed by a second extraction with ethanol at
60 ◦C for 6 h.

The thermal stability analysis was carried out on all samples by triplicate using
the TGA 1 Stare System analyzer (Mettler Toledo, Greifensee, Switzerland), previously
conditioned in phosphorous pentoxide (P2O5) for two weeks. The analysis was conducted
from 25 to 900 ◦C at 10 K/min with a nitrogen flow of 10 mL per minute. In addition, the
ash content was analyzed using the UNE-EN 14775 standard.

3.5.2. Total Phenolic Content, Antioxidant and Antibacterial Properties of Soluble Fraction

The total phenol content was determined using the Folin Ciocalteu method. Briefly,
0.5 mL of each extract was mixed with 6 mL of distilled water, and 0.5 mL of Folin reagent
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(2N) was added. After one minute, 1.5 mL of a 20% Na2CO3 solution and distilled water
were added to a volume of 10 mL. After stirring, they were kept in the dark for 2 h. The
absorbance at 725 nm was then measured in triplicate using a UV-Vis spectrophotometer
(Evolution 201, Thermo Scientific, Waltham, MA, USA). Gallic acid was used as a standard,
and the results were expressed as mg L−1 gallic acid equivalents (GAE) using a standard
curve (r2 = 0.9991) of gallic acid (2–20 mg·L−1). The TPC value of milled raw material was
also determined by previously extracting phenols with methanol at a solid to liquid ratio
of 1:50 at room temperature and dark for 24 h under constant stirring.

The antiradical capacity of the extracts was determined using the 2,2-diphenyl-1-pikryl-
hydrazyl (DPPH) free radical method [51]. For each extract, a solution of DPPH in methanol
at a concentration of 6.22 × 10−2 mM was mixed with different extract concentrations until
reaching a final volume of 4 mL. The resulting solutions were kept in the dark at room
temperature for 12 h, after which the absorbance at 515 nm was measured. The initial and
final concentrations of DPPH in the reaction medium were calculated from a calibration
curve fitted by linear regression (R2 = 0.9992). The antiradical activity was evaluated by
the EC50 parameter, which represents the amount of antioxidants necessary to reduce the
initial concentration of DPPH by 50% when the stability of the reaction is reached. This
value was expressed as mg of dried extract per mg of DPPH and also in mg defatted beer
bagasse per mg of DPPH for comparison purposes. EC50 values were determined from
graphs showing the percentage of [DPPH] remaining as a function of the amount of solid
extract relative to the amount of DPPH, using Equation (3):

%[DPPH]remaining =
[DPPH]t
[DPPH]t=0

× 100 (3)

Regarding the antimicrobial capacity of the extracts, the minimum inhibitory concen-
tration (MIC) of the different extracts was determined for two bacteria: the Gram-positive
bacterium Listeria innocua and the Gram-negative Escherichia coli. This analysis followed
the method outlined by [26], using standard 96-well microtiter plates with a total volume
of 200 µL. For both bacterial strains stored at −20 ◦C, a stock solution was prepared by
transferring bacterial amounts using an inoculation loop to a volume of 10 mL of TSB
and incubated at 37 ◦C for 24 h. Subsequently, 10 µL of the stock solution was taken and
transferred to a tube containing 10 mL of TSB to prepare the corresponding work solution
with a concentration of 105 CFU·mL−1. This concentration was confirmed through serial
dilution and counting. For each bacterium, 100 µL of the bacterial solution with an initial
concentration of 105 CFU.mL−1 was added to each well. Thereafter, different volumes of
each extract solution, with 200 mg.mL−1, were added in each well, while the final volume
was adjusted to 200 µL with TSB to obtain different extract dilutions. The plates were then
incubated at 37 ◦C for 24 h. Afterward, 100 µL from each well was transferred to TSA
plates and incubated at 37 ◦C for 24 h for final counting. The MIC for each extract was
determined as the lowest extract concentration at which no bacterial growth was observed
on the TSA plate. This analysis was performed in duplicate.

3.6. Statistical Analysis

The Statgraphics Centurion XVII-64 program version 19 (Manugistics Corp., Rockville,
MD, USA) was used to perform statistical analyses using an analysis of variance (ANOVA)
with a confidence level of 95%. The Fisher test was applied to detect possible differences in
treatment responses, using a critical value of 5% to determine significance.

4. Conclusions

Despite being rich in polysaccharides, proteins, and phenolic compounds, BSG is
still underutilized in the food, materials, or pharmaceutical sectors. New sustainable
approaches, such as the use of subcritical water extraction, could be a possible technology
to fractionate this waste, obtaining bioactive agents, proteins, and cellulose fractions from
the beer bagasse while contributing to the circular economy.
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The use of subcritical water treatment of defatted beer bagasse allowed to obtain
bioactive aqueous extracts (7–41% mass yield of the defatted BSG) with radical scavenging
capacity and antimicrobial activities. The highest extraction temperature (170 ◦C) gave rise
to the highest extract yield while providing the extracts with greater polyphenol content
and antibacterial effect but with lower DPPH radical scavenging capacity. In contrast, the
extraction at 150 ◦C was optimal for producing extracts (35% mass yield) with the greatest
radical scavenging capacity. Likewise, the extract obtained at 170 ◦C was the richest in
protein, which could be separated by precipitation from the liquid extract.

Beer bagasse can be considered a relatively poor source of cellulose in comparison with
other agro-industrial residues. Considering the yield (g cellulose fraction/100 g DB) of the
different process steps to purify cellulose (19, 17, 14, and 13% for samples treated at 110, 130,
150, and 170 ◦C) and the similar degree of cellulose purity obtained after the 4 bleaching
cycles (50, 60, 70, and 50%, respectively, for samples treated at 110, 130, 150, and 170 ◦C),
the best treatment to obtain cellulose would be the extraction at 150 ◦C, followed by two
bleaching cycles with hydrogen peroxide. These conditions allowed for the removal of most
of the hemicellulose and led to a cellulose purity degree without significant differences
with respect to that obtained in the successive cycles.

Thus, the subcritical water extraction method highlights the potential of simple pro-
cesses as a technological option to convert underutilized side streams like beer bagasse into
added-value, potential ingredients for innovative food and pharmaceutical applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29204897/s1, Table S1: Chemical composition of defatted
beer bagasse (DB) and insoluble fractions after SWE at different temperatures (g/100 g initial defatted
bagasse); Table S2: Chemical composition (g/100 g initial defatted bagasse) of the insoluble fractions
subjected to the four bleaching cycles with 4% hydrogen peroxide.
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