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Abstract: In this work, we designed a novel polyvinylidene fluoride (PVDF)@DNA solid polymer
electrolyte, wherein DNA, as a plasticizer-like additive, reduced the crystallinity of the solid polymer
electrolyte and improved its ionic conductivity. At the same time, due to its Lewis acid effect, DNA
promotes the dissociation of lithium salts when interacting with lithium salt anions and can also fix
the anions, creating more free lithium ions in the electrolyte and thus improving its ionic conductivity.
However, owing to hydrogen bonding between DNA and PVDF, excess DNA occupies the lone
pairs of electrons of the fluorine atoms on the PVDF molecular chains, affecting the conduction of
lithium ions and the conductivity of the solid electrolyte. Hence, in this study, we investigated the
effects of adding different DNA amounts to solid polymer electrolytes. The results show that 1%
DNA addition resulted in the best improvement in the electrochemical performance of the electrolyte,
demonstrating a high ionic conductivity of 3.74 × 10−5 S/cm (25 ◦C). The initial capacity reached
120 mAh/g; moreover, after 500 cycles, the all-solid-state batteries exhibited a capacity retention of
approximately 71%, showing an outstanding cycling performance.

Keywords: DNA; polyvinylidene fluoride (PVDF); solid polymer electrolytes

1. Introduction

Lithium-ion batteries have been extensively utilized in modern applications owing
to their remarkable energy density and extended service life [1–3]. However, preva-
lent safety concerns, such as electrolyte leakage [4] and separator punctures leading to
short circuits [5], have led to the development of solid electrolytes for next-generation
lithium batteries [6,7]. All-solid-state lithium batteries are primarily categorized into
three types: inorganic solid electrolytes (ISEs) [8], solid polymer electrolytes (SPEs) [9],
and composite polymer electrolytes (CPEs) [10]. Solid polymer electrolytes have gar-
nered attention from numerous research institutions owing to their affordability, su-
perior stability, and flexibility [11,12]. Solid polymer electrolytes offer a promising av-
enue for addressing safety issues while advancing the capabilities of lithium batteries for
diverse applications.

Polymers like polyethylene oxide (PEO) [13], polyvinylidene fluoride (PVDF) [14], and
polyacrylonitrile (PAN) [15] are commonly utilized in the preparation of solid electrolytes.
In particular, PVDF exhibits a remarkable ability to interact weakly with lithium ions [16],
attributed to the abundance of highly polar fluorine atoms along its molecular chain,
which facilitates the dissociation of lithium salts, thereby augmenting the conductivity
of solid electrolytes [17]. The conductivities of PVDF-based solid electrolytes depend
predominantly on their amorphous component [18]. Nonetheless, the high symmetry
of the PVDF molecular chain makes it prone to crystallization, thereby impeding ion
transmission efficiency. Present research endeavors have primarily focused on mitigating
the crystallinity of PVDF [19]. Strategies include using PVDF-HFP block copolymers [20]
or incorporating specific inorganic conductive fillers such as lithium lanthanum zirconate
(LLZO) [21] and lithium lanthanum tungstate (LLZWO) [22], as well as others [23,24].
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These approaches aim to disrupt the crystallization process, enhancing the amorphous
fraction and, consequently, the ionic conductivity of PVDF-based solid electrolytes [25]. By
addressing crystallinity issues, researchers have aimed to exploit the full potential of PVDF-
based solid electrolytes, thereby advancing the development of high-performance lithium
battery technologies.

DNA, a renewable and environmentally friendly material [26], has emerged as a
promising alternative. Its exceptional molecular structure allows precise manipulation
at the nanoscale, allowing for the design of customized structures for targeted energy
storage applications [27,28]. Incorporating biological macromolecules such as DNA into
electrochemical devices offers a significant strategy for advancing sustainable develop-
ment [29]. Several studies have reported on applying DNA in electrochemical storage
devices. For example, Kim et al. [30] presented an innovative binder made from DNA
and alginate for silicon and silicon–graphite composite electrodes, thus highlighting the
potential of using DNA in lithium-ion battery electrodes. Leones et al. [31] examined
DNA-based membranes infused with erbium triflate and showcased high ion conduc-
tivity and redox stability suitable for applications in lithium batteries. In a previous
study, we successfully integrated DNA with carbon nanotubes to produce nickel–cobalt
oxide DNA composite materials, demonstrating their potential in supercapacitors [32].
Additionally, we utilized DNA composite materials in lithium battery separators, which
enhanced lithium–sulfur efficiency and battery stability [33]. These findings underscore
the versatility and potential of DNA-based materials for addressing key challenges in
energy storage and advancing sustainable technologies. In general, increasing the con-
centration of polar groups in polymers or decreasing the lattice energy of the added
salts leads to a higher concentration of charge carriers [34]. The abundance of polar
groups in DNA makes it a promising candidate for enhancing the ionic conductivity of
solid electrolytes.

In this study, we introduced DNA into a PVDF polymer electrolyte for the first time,
fabricating a novel PVDF@DNA composite solid-state electrolyte. Acting as a plasticizer-
like additive, DNA effectively reduces the crystallinity of the solid polymer electrolyte,
thereby enhancing its ionic conductivity. Additionally, due to its Lewis acid properties,
DNA promotes the dissociation of lithium salts by interacting with lithium salt anions and
immobilizing them, which increases the concentration of free lithium ions in the electrolyte,
further improving ionic conductivity. The PVDF@1%DNA solid electrolyte demonstrated
the highest electrochemical performance, with a capacity of 120 mAh/g at 0.5 C and an
impressive service life, retaining ~71% of its capacity after 500 cycles.

2. Experimental Methods
2.1. Materials

Polyvinylidene fluoride (PVDF), lithium bis (trifluoromethanesulphonyl), imide (LiTFSI),
dimethylacetamide (DMAc), lithium iron phosphate (LiFePO4, LFP), and salmon deoxyri-
bonucleic acid (DNA) were obtained from Sigma-Aldrich (Darmstadt, Germany). The
super-P carbon black was supplied by TIMCAL (Bodio, Switzerland). All chemicals em-
ployed in this study were of analytical grade, and used directly without further purification.
The detailed information of the materials used in this article is shown in Table S1.

2.2. Sample Preparation

PVDF@DNA solid-state electrolytes were successfully prepared by solution blending.
In a typical preparation process, 500 mg of PVDF, 500 mg of LiTFSI, and 5 mg of salmon
DNA (200 base pairs; Sigma Aldrich) were dissolved in 5 mL of DMAc and stirred at
room temperature (25 ◦C) for 12 h until all bubbles were removed from the solution. Then,
the solution was poured into a mold and fully dried at 120 ◦C to obtain a polymer solid
electrolyte with a thickness of approximately 100 µm. Other PVDF@DNA composite solid
electrolytes with different DNA weight ratios were prepared using the same method, as
shown in Figure 1.
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Figure 1. Schematic illustration of preparation of PVDF@DNA solid electrolytes. 

LiFePO4 (active material), super-P carbon black (conductive additive), and PVDF 
(binder) were mixed in N-Methyl-2-Pyrrolidone (NMP) at a mass ratio of 8:1:1 to create a 
slurry, which was then used to coat aluminum current-collector foil. The coated foil was 
subsequently dried under vacuum at 80 °C for 12 h and punched into 12 mm disks to serve 
as the cathodes for coin cells. The anode consisted of lithium metal. The coin cell was as-
sembled by placing the prepared solid electrolyte between the lithium metal anode and 
the cathode. All assembly processes were conducted in a glove box filled with argon gas. 

2.3. Characterization 
The crystallization kinetics and weight crystallinity were tested using differential 

scanning calorimetry (DSC, TA Q100, New Castle, DE, USA). Scanning electron micros-
copy (SEM, Hitachi SU-8600, Tokyo, Japan) with an accelerating voltage of 5.0 kV was 
used to observe the morphology of the solid electrolytes. The bonding structure of 
PVDF@DNA solid electrolytes was confirmed by Fourier-transform infrared spectroscopy 
(FTIR, Thermo Fisher Scientific iS50, Waltham, MA, USA) over a range from 4000 to 500 
cm−1. Electrochemical impedance spectroscopy (EIS) was performed on a Versastat 4 po-
tentiostat (AMETEK, Inc., Berwyn, PA, USA) at a frequency range of 1 MHz to 0.01 Hz 
with an amplitude of 5 mV. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) 
were conducted on an advanced electrochemical system (CHI604E, Chenhua, Shanghai, 
China) within a voltage window of 2.5–4.5 V at a scan rate of 0.1 mV s−1 and 2.0~6.0 V and 
at a scan rate of 10 mV s−1, respectively. The charge/discharge performance tests were con-
ducted on the electrochemical workstation (WonATech WBCS3000, Seoul, Republic of Ko-
rea) in a voltage range from 2.0 to 4.3 V. 

3. Results and Discussion 
As a low-molecular-weight polymer (Mw ≈ 66,000 g/mol) compared to PVDF (Mw = 

534,000 g/mol), DNA is expected to reduce the crystallinity of the PVDF molecular chain 
during the miscibility process with PVDF, thus increasing its ionic conductivity. DSC 
measurements were conducted to investigate the compatibility of PVDF and DNA, with 
the results depicted in Figure 2. As seen from the DSC cooling curve (Figure 2A), adding 
DNA effectively reduces the crystallization ability of PVDF molecular chain segments, as 
evidenced by the decreased melt crystallization temperatures of PVDF@DNA during cool-
ing, consistent with the well-known “Tm depression effect” [35]. The sample with 1% DNA 
shows the weakest crystallization ability, with a peak located at 126 °C (green curve). The 
weak crystallization ability clearly decreases the endothermic peaks (melting point) of the 
solid electrolytes, as observed at 154 °C, consistent with the melting behaviors of PVDF 
crystals within its blend containing 1 wt.% of DNA; this value notably falls below that of 
neat PVDF (160 °C, indicated by the black curve). The increase in the melting point and 
crystallization ability of PVDF@5%DNA and PVDF@10%DNA may be attributed to the 
entanglement between the molecular chains of DNA and PVDF—equivalent to increasing 
the molecular chain of PVDF, thus providing more intersections and spaces to form or-
dered crystalline structures and enhancing its crystallization ability—eventually resulting 
in an increased melting point and overall crystallinity [36,37]. Calculating the areas of the 
endothermic peaks indicated that the crystallinity of PVDF decreased from 20% (pure 

Figure 1. Schematic illustration of preparation of PVDF@DNA solid electrolytes.

LiFePO4 (active material), super-P carbon black (conductive additive), and PVDF
(binder) were mixed in N-Methyl-2-Pyrrolidone (NMP) at a mass ratio of 8:1:1 to create
a slurry, which was then used to coat aluminum current-collector foil. The coated foil
was subsequently dried under vacuum at 80 ◦C for 12 h and punched into 12 mm disks
to serve as the cathodes for coin cells. The anode consisted of lithium metal. The coin
cell was assembled by placing the prepared solid electrolyte between the lithium metal
anode and the cathode. All assembly processes were conducted in a glove box filled with
argon gas.

2.3. Characterization

The crystallization kinetics and weight crystallinity were tested using differential
scanning calorimetry (DSC, TA Q100, New Castle, DE, USA). Scanning electron microscopy
(SEM, Hitachi SU-8600, Tokyo, Japan) with an accelerating voltage of 5.0 kV was used to
observe the morphology of the solid electrolytes. The bonding structure of PVDF@DNA
solid electrolytes was confirmed by Fourier-transform infrared spectroscopy (FTIR, Thermo
Fisher Scientific iS50, Waltham, MA, USA) over a range from 4000 to 500 cm−1. Elec-
trochemical impedance spectroscopy (EIS) was performed on a Versastat 4 potentiostat
(AMETEK, Inc., Berwyn, PA, USA) at a frequency range of 1 MHz to 0.01 Hz with an
amplitude of 5 mV. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were
conducted on an advanced electrochemical system (CHI604E, Chenhua, Shanghai, China)
within a voltage window of 2.5–4.5 V at a scan rate of 0.1 mV s−1 and 2.0~6.0 V and at a scan
rate of 10 mV s−1, respectively. The charge/discharge performance tests were conducted
on the electrochemical workstation (WonATech WBCS3000, Seoul, Republic of Korea) in a
voltage range from 2.0 to 4.3 V.

3. Results and Discussion

As a low-molecular-weight polymer (Mw ≈ 66,000 g/mol) compared to PVDF
(Mw = 534,000 g/mol), DNA is expected to reduce the crystallinity of the PVDF molecular
chain during the miscibility process with PVDF, thus increasing its ionic conductivity. DSC
measurements were conducted to investigate the compatibility of PVDF and DNA, with
the results depicted in Figure 2. As seen from the DSC cooling curve (Figure 2A), adding
DNA effectively reduces the crystallization ability of PVDF molecular chain segments,
as evidenced by the decreased melt crystallization temperatures of PVDF@DNA during
cooling, consistent with the well-known “Tm depression effect” [35]. The sample with 1%
DNA shows the weakest crystallization ability, with a peak located at 126 ◦C (green curve).
The weak crystallization ability clearly decreases the endothermic peaks (melting point)
of the solid electrolytes, as observed at 154 ◦C, consistent with the melting behaviors of
PVDF crystals within its blend containing 1 wt.% of DNA; this value notably falls below
that of neat PVDF (160 ◦C, indicated by the black curve). The increase in the melting
point and crystallization ability of PVDF@5%DNA and PVDF@10%DNA may be attributed
to the entanglement between the molecular chains of DNA and PVDF—equivalent to in-
creasing the molecular chain of PVDF, thus providing more intersections and spaces to
form ordered crystalline structures and enhancing its crystallization ability—eventually
resulting in an increased melting point and overall crystallinity [36,37]. Calculating the
areas of the endothermic peaks indicated that the crystallinity of PVDF decreased from
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20% (pure PVDF) to 15% (PVDF@1%DNA); more crystallinity data are provided in the
Supporting Information (Table S2). The conduction rate of lithium ions in the amorphous
polymer electrolyte surpassed that in the crystalline electrolyte. In other words, the ionic
conductivity of the electrolyte increases as the crystallinity of the polymer decreases.
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Figure 2. DSC curves of PVDF and PVDF with different ratios of DNA solid polymer electrolytes
((A): first cooling process, (B): second heating process).

The SEM images (Figure 3B,C) of the PVDF@DNA blends’ cross-sections reveal no
distinct phase domains, instead displaying a bicontinuous structure across various weight
ratios, indicating the absence of phase separation between PVDF and DNA. This ho-
mogeneous morphology can be attributed to the thermodynamic compatibility of the
PVDF@DNA blend system. DNA, as an amorphous polymer, reduces the crystallinity
of PVDF, aligning with typical crystalline/amorphous polymer blend behavior. This
compatibility is further confirmed by the absence of two separate glass transition tem-
peratures in the DSC curves (Figure 2), as well as the reduction in melting temperature.
The EDS mapping results also support this conclusion. In the pure PVDF electrolyte,
the elements are uniformly distributed. However, in the PVDF@1%DNA sample, the
appearance of a small amount of phosphorus (from the phosphate groups in DNA) in-
dicates the homogeneous presence of DNA. For the PVDF@10%DNA sample, signifi-
cant aggregation of the phosphorus element suggests a notable accumulation of DNA
at higher concentrations. The SEM and EDS results of other samples are shown in Fig-
ure S3. PVDF@5%DNA also showed a certain degree of agglomeration. The presence
of a large amount of DNA is entangled with the PVDF molecular chains, which in turn
leads to an increase in the overall crystallinity and affects the ionic conductivity of the
solid electrolyte. Together, these findings underscore the good compatibility between
PVDF and DNA, contributing to the observed uniform structures in both SEM images and
DSC results.

Electrochemical impedance spectroscopy (EIS) was performed to test the internal
impedances of the polymer electrolytes in SS cells, as displayed in Figure 4A, with most
samples containing DNA showing lower impedance than pure PVDF, suggesting that DNA
can disrupt the crystallization of PVDF, resulting in increased amorphous area, which
facilitates the transport of lithium ions. Additionally, the phosphate groups on the DNA
molecular chain are expected to release hydrogen ions, thereby promoting the dissocia-
tion of LiTFSI for more free ions and consequently increasing the ionic conductivity of the
PVDF@DNA solid electrolyte. EIS spectra revealed that PVDF@1%DNA exhibited a smaller
charge-transfer resistance and Warburg impedance than PVDF and PVDF with different
ratios of DNA. The corresponding ionic conductivity is measured at 3.74 × 10−5 S/cm
at room temperature, relatively higher than that of PEO@LiTFSI [38], thus confirming
the more efficient charge transfer and faster Li+ diffusion kinetics in the solid-state bat-
teries; other ionic conductivity results for the SS cells are presented in the Supporting
Information (Table S3). Ionic conduction is primarily influenced by three factors: the
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inter-chain movement of ions along a chain (τ1), the relaxation of polymer segments (τ2),
and intra-chain hopping between different chains (τ3) [39]. The segmental motion of the
polymer backbone plays a crucial role in the mobility of both cations and anions. Con-
sidering that the PVDF@1%DNA sample showed the lowest crystallinity, it exhibited the
lowest impedance.
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(B,C) half-cells. (D) Summary of ionic conductivity of all the samples.

Furthermore, EIS was employed to elucidate the interfacial reaction resistance, as illus-
trated in Figure 4B,C. The Nyquist plots for all samples displayed compressed semicircles
in the high and mid-frequency regions, representing the charge-transfer resistance (Rct),
and sloped lines in the low-frequency region, associated with Warburg impedance (Ws)
for lithium-ion diffusion. DNA, a short-chain polar oligomer with a flexible backbone,
can form complexes with alkali metal salts, thereby accelerating the local thermal motion
and relaxation of polymer segments [40]. The EIS results closely paralleled those of the
ionic conductivity tests in the SS cells; compared with pure PVDF, the PVDF@DNA sam-
ples showed higher ionic conductivity. Among all the samples, PVDF@1%DNA showed
the lowest impedance. Notably, at room temperature, the ionic conductivity measured
2.0 × 10−5 S/cm for the 1% DNA sample, while pure PVDF exhibited a higher impedance,
correlating to a lower ionic conductivity of 0.87 × 10−5 S/cm. After cycling performance
tests, the ionic conductivity of PVDF@1%DNA increased to 2.5 × 10−5 S/cm, while that of
pure PVDF increased to 1.5 × 10−5 S/cm; other ionic conductivity results for the half cells
are available in the Supporting Information (Tables S4 and S5).

A statistical graph of ionic conductivity is shown in Figure 4D. Notably, the SS ex-
hibited the highest conductivity among the highest cells. Initially, when the battery was
assembled, the voltage tended to be unstable and the resistance was relatively high. How-
ever, the active material was activated after cyclic testing. Additionally, the chemical
compositions of both the positive and negative electrodes gradually transitioned into
substances more conducive to electrochemical reactions. This improvement enhances the
reaction efficiency of the battery and reduces its internal impedance over time.

The above analysis concerns the Fourier-transform infrared (FT-IR) spectra of different
solid electrolytes. Notably, the characteristic peak of the C-F bond was located at 1176 cm−1,
as demonstrated in Figure 5A. As the DNA content increased, the peaks broadened and
shifted towards lower wavenumbers (Figure 5B), indicating that with higher DNA content,
the hydrogen bonds formed between the DNA and PVDF strengthened gradually, leading
to a red shift (Figure 5B). Hence, adding DNA disrupts the ordered structure of the PVDF
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molecular chains and reduces their crystallization ability (Figure 2A), resulting in increased
ionic conductivity (Figure 4A). However, owing to the addition of excess DNA, more DNA
molecular segments were entangled with PVDF, and hydrogen bonding and entanglement
between molecular chains led to an increase in overall crystallinity (Figure 2B, purple curve
and yellow curve), which in turn led to a decrease in its ionic conductivity (Figure 4A,
purple curve and yellow curve). Therefore, adding 1% DNA ensured both the low crys-
tallinity of PVDF and the mobility of its molecular chains, contributing to the highest ionic
conductivity of the PVDF@1%DNA solid polymer electrolyte.
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The linear sweep voltammetry (LSV) results for the solid-state electrolyte at room
temperature are shown in Figure 6. These results show a consistent pattern across all
samples and remain stable in the range of 2–4.3 V, indicating that they can maintain good
efficiency during the cycle test. Some samples show an unstable increase in current over
4.6 V, attributed to the decomposition of PVDF when exposed to high-voltage conditions.
Upon closer examination, the electrochemical stability windows of different solid-state
electrolytes were determined, with the pure PVDF electrolyte exhibiting an electrochemical
window of approximately 4.60 V. When DNA was introduced into the PVDF matrix at a
concentration of 0.5%, the electrochemical window increased to approximately 4.85 V. Re-
markably, the PVDF@1%DNA electrolyte exhibited an even higher electrochemical window,
reaching up to approximately 5.0 V. This sequence, in which the electrochemical stability
increased from PVDF to PVDF@0.5%DNA and then to PVDF@1%DNA, suggests a clear
trend: incorporating DNA into the PVDF matrix significantly enhances the electrochemical
stability of the electrolyte. Notably, the electrochemical window of the PVDF@1%DNA
electrolyte exceeded 5 V, indicating its superior electrochemical stability within the opera-
tional voltage range. This exceptional stability highlights the potential of PVDF@1%DNA
as a robust solid-state electrolyte for applications requiring high-voltage performance.

CV tests were conducted within the 2.5–4.5 V voltage range at a scan rate of 0.1 mV/s−1.
Visually, the CV profiles exhibit similar shapes, with reduction peaks observed at approxi-
mately 3.1 V and oxidation peaks at approximately 3.8 V. Consequently, the gaps between
the oxidation and reduction peaks were calculated. As seen in Figure 7, the gap for pure
PVDF (Figure 7A) and PVDF@1%DNA (Figure 7B) was 0.74 V and 0.61 V, respectively;
other CV curves are shown in the Supporting Information (Figure S1). PVDF@1%DNA
exhibited the narrowest gap between the oxidation and reduction peaks, indicating the least
polarization phenomena in the solid-state electrolytes, corresponding to the best stability.
Moreover, the peak positions and peak currents of the CV curves for PVDF@1%DNA re-
mained consistent across three cycles, indicating good chemical reversibility of the batteries.
Consistent with the redox peaks observed in the CV curves, the charge–discharge curves of
LFP display two distinct potential plateaus between 3.1 V and 3.8 V, corresponding to the
oxidation of lithium intercalation and deintercalation (as shown in Figure 8B,C).
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In the symmetric cells, the symmetrical battery with a pure PVDF solid electrolyte
shows a higher start voltage of 650 mV when subjected to an areal capacity of 0.6 mAh·cm−2

at room temperature (Figure 7C, black curve). As the system stabilized during the cycle,
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the voltage gradually decreased to approximately 300 mV. After 23 h of cycling, the voltage
gradually increased owing to the continuous growth of lithium dendrites. At approximately
80 h, one side of the puncture by the lithium dendrites caused a short circuit, resulting in
a sharp increase in voltage. In contrast, the PVDF@1%DNA solid polymer electrolyte ex-
hibited exceptional performance. Throughout the Li electrodeposition process (Figure 7C),
a stable overpotential of approximately 150 mV was maintained with excellent cyclabil-
ity over an extended cycle time of 100 h without encountering short circuits (Figure 7C,
red curve). This stability suggests the effective suppression of Li dendrite growth. At
approximately 150 h, the overpotential marginally increased to approximately 200 mV and
remained almost constant during subsequent Li electrodeposition for up to 230 h. Other
symmetrical battery performance test results are presented in the Supporting Information
(Figure S3). The exceptional cyclability observed at room temperature can be attributed to
the significantly improved contact with the Li metal anode and the effective suppression of
Li dendrite growth during consecutive Li electrodeposition cycles.

To further examine the cycling performance of the coin cells assembled using PVDF
and PVDF@DNA solid polymer electrolytes, the relative coin cells were used to evaluate
electrochemical performance at various rates (Figure 8A) and to assess cycling performance
at a current density of 0.5 C at 25 ◦C (Figure 8D). The all-solid battery with 1% PVDF DNA
showed the highest capacity at a different C-rate (120 mAh/g at 0.5 C) compared with the
pure PVDF electrolyte (93 mAh/g at 0.5 C). The corresponding charge–discharge curves
are shown in Figure 8B,C, where PVDF@1%DNA always shows a higher capacity than
the PVDF electrolyte at every C-rate. Other charge–discharge curves at different C-rates
are shown in the Supporting Information (Figure S4). The cell using PVDF@1%DNA
as the electrolyte exhibited outstanding cycle stability (Figure 8D); after 500 cycles, a
higher value of ~85 mAh/g was retained, indicating ~71% retention. The pure PVDF
cells exhibited a capacity of ~60 mAh/g after 500 cycles, with relatively lower stability,
indicating that the improved cycling performance of the batteries was due to the combined
effects of mechanical properties and ionic conductivity: DNA maintained the stability of
the electrolyte by forming hydrogen bonds with the electrolyte while improving the battery
capacity by generating more free ions and reducing the crystallinity. With DNA forming
hydrogen bonds and preventing the electrolyte from shrinking and deforming, excess DNA
resulted in lower capacity due to increased crystallinity. The capacity–voltage profiles of
the PVDF and PVDF@DNA cells at different cycles are shown in Figure 8E,F. The cells with
PVDF@DNA showed a higher specific capacity and better cycling performance at 0.5 C
(1C = 170 mA/g), whereas the capacity of PVDF decreased quickly. Other capacity–voltage
profiles are shown in the Supporting Information (Figure S5). In addition, the Coulombic
efficiencies of PVDF@DNA were close to 100%, whereas those of PVDF were poor, some
even lower than 90% (Figure 8D). Moreover, owing to the presence of DNA, the cell with
the PVDF@1%DNA electrolyte delivered a capacity of >115 mAh/g after 100 cycles at the
current density of 0.5 C, much higher than that of pure PVDF (~93 mAh/g).

The enhancement of the electrochemical mechanism of the PVDF@DNA is illustrated
in Figure 9. Adding DNA at room temperature had a noticeable effect on the crystallization
area of the PVDF-based solid polymer electrolyte. In the PVDF@DNA hybrid electrolyte,
the amorphous area expanded, facilitating the rapid migration of lithium ions, ultimately
leading to enhanced ionic conductivity. In contrast, the structure of the PVDF@DNA
electrolyte membranes remained stable during long-term cycling owing to the entanglement
between the DNA and PVDF molecular chains. In comparison, pure PVDF electrolyte
membranes are prone to shrinkage, deformation, and potential collapse during cycling,
resulting in various electrochemical performance issues. This susceptibility to degradation
can cause the premature failure of PVDF-based cells, potentially due to capacity decay
from short circuits. Notably, the additional DNA in PVDF@DNA can form more hydrogen
bonds with PVDF, as depicted in Figure 5; a certain extent of entanglement between DNA
and PVDF could promote the transportation of lithium ions because the crystallization
ability of PVDF molecular chains is reduced. Thus, by taking advantage of the enhanced
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Li+ ion migration facilitated by DNA, batteries with the PVDF@1%DNA solid polymer
electrolyte exhibited excellent electrochemical performance. However, excess DNA affected
the transportation of Li+ ions owing to the large number of hydrogen bonds and higher
crystallinity. The transfer of Li+ ions in polymers relies primarily on the coordination
and dissociation of polar atoms in amorphous molecular chains. [41] As a result, the
migration channels for Li+ ions were relatively fewer and longer in PVDF@10%DNA
than in PVDF@1%DNA, owing to the occupation of F atoms and entanglements between
molecular chains. This delicate balance between enhancing ionic conductivity and reducing
migration channels contributes to batteries using the PVDF@1%DNA electrolyte, which
exhibits excellent electrochemical performance.
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solid polymer electrolytes.

4. Conclusions

We fabricated a PVDF@DNA solid polymer electrolyte and found that the incorpora-
tion of DNA reduced the crystallinity of PVDF, facilitating the release of more Li+ ions and
enhancing the ionic conductivity of the electrolyte. Batteries utilizing these DNA-based
electrolytes exhibited superior electrochemical performance compared to those with pure
PVDF electrolytes. An optimal DNA addition lowered the crystallinity of PVDF and in-
creased ionic conductivity, thus improving the electrochemical performance. However,
excessive DNA content raised the crystallinity and blocked more ion transport channels,
leading to diminished electrochemical performance. The PVDF@1% DNA sample demon-
strated the best performance, with a high capacity of 120 mAh/g at 0.5 C and excellent
cycle stability, retaining ~71% of its capacity after 500 cycles.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14201670/s1, Table S1. Specification of materials adopted
in this work; Table S2. Calculated percentages of crystallinity of the solid polymer electrolytes;
Table S3. Calculated conductivity for solid polymer electrolytes in SS-cells; Table S4. Calculated
conductivity for solid electrolytes in half cells before cycling; Table S5. Calculated conductivity
for solid electrolytes in half cells after cycling; Figure S1. SEM images and EDS mapping of the
cross-section of the samples A: PVDF@ 0.1%; B: PVDF@0.5%DNA; C: PVDF@5%DNA; Figure S2. CV
curves of solid polymer electrolytes; Figure S3. Galvanostatic cycling (C) of Li plating/stripping of
Li/SPE/Li symmetrical batteries at room temperature (25 ◦C), with 0.6 mA·cm−2 current density of
solid polymer electrolytes; Figure S4. The charge-discharge curves for LiFePO4/SPE/Li all-solid-
state batteries under different C-rate; Figure S5. The capacity-voltage profiles for LiFePO4/SPE/Li
all-solid-state batteries under 0.5 C.
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