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Abstract: Objectives: Pharmacokinetic issues were the leading cause of drug attrition, accounting for
approximately 40% of all cases before the turn of the century. To this end, several high-throughput
in vitro assays like microsomal stability have been developed to evaluate the pharmacokinetic profiles
of compounds in the early stages of drug discovery. At NCATS, a single-point rat liver microsomal
(RLM) stability assay is used as a Tier I assay, while human liver microsomal (HLM) stability is
employed as a Tier II assay. We experimentally screened and collected data on over 30,000 compounds
for RLM stability and over 7000 compounds for HLM stability. Although HLM stability screening
provides valuable insights, the increasing number of hits generated, along with the time- and
resource-intensive nature of the assay, highlights the need for alternative strategies. One promising
approach is leveraging in silico models trained on these experimental datasets. Methods: We describe
the development of an HLM stability prediction model using our in-house HLM stability dataset.
Results: Employing both classical machine learning methods and advanced techniques, such as
neural networks, we achieved model accuracies exceeding 80%. Moreover, we validated our model
using external test sets and found that our models are comparable to some of the best models in
literature. Additionally, the strong correlation observed between our RLM and HLM data was
further reinforced by the fact that our HLM model performance improved when using RLM stability
predictions as an input descriptor. Conclusions: The best model along with a subset of our dataset
(PubChem AID: 1963597) has been made publicly accessible on the ADME@NCATS website for the
benefit of the greater drug discovery community. To the best of our knowledge, it is the largest
open-source model of its kind and the first to leverage cross-species data.

Keywords: metabolic stability; human liver microsomes; rat liver microsomes; quantitative structure
activity relationships; in silico ADME

1. Introduction

Before the turn of the century, pharmacokinetic problems were one of the primary
reasons for drug attrition, responsible for around 40% of all failures [1]. To address this,
various high-throughput in vitro assays, such as metabolic stability, have been developed to
assess pharmacokinetic properties of compounds during early stages of drug discovery [2,3].
Hepatic metabolic stability is crucial in drug discovery, affecting both oral bioavailability
and compound elimination. The cytochrome P450 (CYP450) enzyme family plays a major
role in xenobiotic metabolism. Among these, CYP3A4 is the most significant, metabolizing
around 50% of known xenobiotics in humans [4,5]. Typically, an in vitro stability assay
using HLM is the standard method for estimating clearance in humans. The results from
this assay are utilized to rank and prioritize compounds for further development in the
drug discovery pipeline.
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We, at the National Center for Advancing Translational Sciences (NCATS), employ a
single-point RLM stability assay as a Tier I screening tool, with RLM stability data being
generated for every compound synthesized at NCATS. For Tier II, a high-throughput
multi-point HLM stability assay is utilized. Over the last few years, we have screened
>30,000 compounds from more than 300 projects for RLM stability and >7000 compounds
from more than 100 discovery and development projects have been screened for HLM
stability. One of the goals of this study is to compare how well our Tier I RLM data correlate
with Tier II HLM data. This correlation will help us understand whether our screening
paradigm needs to be altered.

Drug discovery is a long, expensive venture, and costs continue to escalate with
time [6,7]. Thus, any innovations that cut time or reduce costs are highly valuable. In silico
machine learning approaches have gained popularity as well as success and predictive
models are routinely employed in major pharmaceutical companies. Results from these
predictive models are used as a rank-ordering mechanism for prioritizing compound
synthesis. While open-access HLM stability models exist, they are usually developed using
small datasets or with data sourced from the literature, which can induce error due to
variability in experimental protocols, microsomal vendor differences, and drug/enzyme
concentration differences. Commercially available HLM models are expensive and not
exempt from the above-mentioned disadvantages. In this study, we employed traditional
and advanced machine learning techniques to develop quantitative structure activity
relationship (QSAR) models for predicting HLM stability. Additionally, we identified a
strong correlation between our RLM and HLM data. This correlation was further reinforced
by the observation that the accuracies and predictive performance of our HLM model
improved when RLM stability predictions were included as an input descriptor. This
improvement underscores the robustness and reliability of the relationship between these
two datasets. We also compared our models with other equivalent models in literature and
found that our models achieved comparable balanced accuracies. Moreover, the best model
from our study, which boasts an accuracy of 80%, has been made publicly accessible on the
NCATS ADME portal (https://opendata.ncats.nih.gov/adme/, accessed on 31 July 2024).
The in silico model derived from this dataset will be a valuable resource for accelerating
translational research across diverse drug discovery institutions.

2. Materials and Methods
2.1. Microsomal Stability Assay

The substrate depletion method was used to determine half-life (t1/2) of compounds
by measuring the disappearance of the parent compound over time. Incubations were
performed on a Tecan EVO 200 robotic system (Morrisville, NC, USA), equipped with a
96-channel head, Inheco heating block, and controlled by EVOware software (Version 3.5).
Mixed-gender human liver microsomes were purchased from Xenotech (Kansas City,
KS, USA) (Catalog: H0610). Gentest NADPH Regenerating Solution A and B (Catalog:
451220/451200), Axygen reservoirs (Catalog: RES-SW384-LP/RES-SW384-HP) were pur-
chased from Corning Inc. (Corning, NY, USA). Incubation plates (384-well, 250 µL; Catalog#
186002632) and LC/MS analysis plates (384-well, 100 µL; Catalog# 186002631) were pur-
chased from Waters Inc. (Milford, MA, USA). The compounds used for assay controls,
internal standards, and buffers including albendazole, buspirone, propranolol, loperamide,
antipyrine, potassium phosphate monobasic, and potassium phosphate dibasic were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). An albendazole solution in acetonitrile
(ACN/IS) was prepared for use as an internal standard. Each 110 µL reaction mixture
included the test compound (1 µM), HLM (0.5 mg/mL), and NADPH regenerating system
in phosphate buffer (pH 7.4). The samples were incubated in 384-well plates at 37 ◦C for 0, 5,
10, 15, 30, and 60 min. At each designated time point, 10 µL of the mixture was transferred
to another 384-well plate containing cold ACN/IS. The plates were then centrifuged at
3000 rpm for 20 min at 4 ◦C, and supernatants were collected into a 384-well injection
plate. Sample quantification was performed using Thermo UPLC/HRMS and data were
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analyzed using TraceFinder software (Version 4.1). The data were then extracted, and
half-life analysis was performed using our in-house Validator software (Version 1.0) as
described previously [8,9].

2.2. HLM Stability Dataset

The raw dataset was preprocessed to generate training and test data for the purpose
of building and validating prediction models. Compounds were classified as unstable
(t1/2 < 30 min) or stable (t1/2 > 30 min). Compound structures were normalized [10] and Ly-
ChI identifiers (https://github.com/ncats/lychi, accessed on 31 July 2024) were generated
for all standardized structures to identify unique compounds. After omitting duplicates and
compounds with contrasting experimental results, the final processed dataset comprised a
total of 6648 (unstable: 2197; stable: 4451) compounds.

2.3. Modeling Methods
2.3.1. Random Forest

Random forest is an ensemble learning method primarily used for classification and
regression tasks. It operates by constructing a multitude of decision trees during training
and outputting the mode of the classes (classification) or mean prediction (regression) of the
individual trees. Each tree in a random forest is built from a random subset of the training
data through a technique known as bootstrap aggregation, or bagging. Additionally, during
the construction of each tree, a random subset of features is selected at each split point,
which helps in reducing the variance and avoiding overfitting. The overall performance
of random forest is robust due to its ability to generalize well to unseen data, making it
particularly useful in high-dimensional spaces often encountered in drug discovery. The
method was introduced by Breiman in 2001 and has since become a cornerstone in machine
learning applications due to its simplicity and effectiveness [11].

2.3.2. XGBoost

XGBoost, short for eXtreme gradient boosting, is a scalable and efficient implemen-
tation of gradient boosting machines, which are ensemble learning methods that create a
model in a stage-wise fashion from weak learners, typically decision trees. It was developed
by Chen and Guestrin in 2016 to address the need for a more powerful and computation-
ally efficient gradient boosting framework [12]. XGBoost utilizes second-order gradient
information, advanced regularization (L1 and L2), and a distributed computing paradigm
to build robust predictive models that can handle sparse data and large-scale datasets,
common in drug discovery research. Its implementation includes various optimizations
such as tree pruning, parallel processing, and cache awareness, which collectively enhance
its speed and performance. The algorithm’s predictive power and flexibility have made it a
favorite in many data science competitions and practical applications.

2.3.3. Graph Convolutional Neural Network (GCNN)

Graph Convolutional Neural Networks (GCNNs) are a class of neural networks de-
signed to operate directly on graph-structured data, making them particularly well suited
for tasks involving small molecules, which can be naturally represented as graphs where
atoms are nodes and bonds are edges. The key idea behind GCNNs is to perform convolu-
tion operations on graphs by aggregating information from a node’s neighbors, enabling
the network to learn hierarchical feature representations. This is especially advantageous in
drug discovery, as the network can effectively capture the spatial and chemical properties
of molecules, leading to accurate predictions of molecular properties such as solubility,
toxicity, and binding affinity.

GCNNs leverage message passing, where each node iteratively updates its represen-
tation by aggregating and transforming information from its neighbors. These updates
are typically parameterized by learnable weight matrices, allowing the network to learn
relevant patterns and relationships within the molecular graph. Kipf and Welling laid
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the foundation for modern GCNN architectures, demonstrating their potential in various
applications involving graph data [13]. The Chemprop Python library is a widely used
tool in the computational chemistry and drug discovery communities for implementing
GCNNs. It provides a user-friendly interface for training GCNN models on molecular data,
facilitating the prediction of chemical properties and bioactivities. Chemprop builds on the
foundational principles of GCNNs and offers optimized implementations that cater to the
specific needs of small-molecule analysis [14].

2.4. Model Building and Validation

Cross-validation using a random split is a common technique for assessing the gen-
eralizability of a machine learning model. In this method, the training data are randomly
divided into internal training and internal validation subsets multiple times. For each
split, the model is trained on the internal training subset and evaluated on the internal
validation subset. This process helps ensure that the model’s performance is not overly
dependent on a particular partition of the data. The random split method is particularly
useful in drug discovery applications where datasets can be limited in size and diverse
in nature. By averaging the performance metrics across multiple splits, one can obtain a
more reliable estimate of the model’s ability to generalize to unseen data. This technique
helps in mitigating overfitting and provides a robust measure of the model’s predictive
power. In this study, we performed a 5-fold cross-validation (5-CV). This step is followed
by external validation.

External validation involves testing the trained model on an entirely independent
dataset that was not used during the training or internal validation phases. This step is
crucial in drug discovery to ensure that the model’s predictions are genuinely generalizable
and not just a result of overfitting to the training data. External validation provides a
stringent test of the model’s performance, as it simulates real-world application scenarios
where new, unseen molecules are encountered. The best models from internal validation
were validated on the NCATS’s external validation set and the three external datasets.
The following metrics were used in order to measure and compare the performance of
the models and are based on the four elements of a confusion matrix: true positives (TN),
i.e., those positive class compounds correctly predicted as positive; false positives (FP),
i.e., those negative class compounds incorrectly predicted as positive; true negatives (TN),
i.e., those negative class compounds correctly predicted as negative; false negatives (FN),
i.e., those positive class compounds incorrectly predicted as negative.

Accuracy: Accuracy is the ratio of correctly predicted instances to the total instances in
the dataset [15]. It provides a straightforward measure of the model’s overall performance,
but it can be misleading in imbalanced datasets where one class dominates.

Accuracy = (TP + TN)/(TP + FP + TN + FN)

Sensitivity (or Recall): Sensitivity, also known as recall or true positive rate, measures
the proportion of actual positives that are correctly identified by the model. It is critical in
contexts where missing positive cases is particularly costly.

Sensitivity = TP/(TP + FN)

Specificity: Specificity, or true negative rate, measures the proportion of actual neg-
atives that are correctly identified by the model. It is important in contexts where false
positives are costly.

Specificity = TN/(TN + FP)

Positive Predictive Value (PPV): PPV, or precision, measures the proportion of positive
predictions that are actually correct. It indicates the reliability of positive predictions made
by the model.

PPV = TP/(TP + FP)
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Negative Predictive Value (NPV): NPV measures the proportion of negative predic-
tions that are actually correct. It indicates the reliability of negative predictions made by
the model.

NPV = TN/(TN + FN)

Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The AUC-ROC
measures the model’s ability to distinguish between positive and negative classes across
various threshold settings [16]. It plots the true positive rate (sensitivity) against the false
positive rate (1-specificity) and calculates the area under this curve. A higher AUC indicates
better model performance.

Cohen’s Kappa: Cohen’s Kappa [17] is a statistical measure that compares an observed
accuracy with an expected accuracy (random chance). It accounts for the possibility of
agreement occurring by chance, providing a more robust metric for evaluating classification
models, especially with imbalanced datasets.

TP, TN, FP, and FN are the numbers of true positive predictions, true negative predic-
tions, false positive predictions, and false negative predictions, respectively.

3. Results and Discussion
3.1. Assay Performance

Four control compounds were run with each plate. The assay reproducibility data for
these control compounds over 6 years spanning > 40 plates are shown in Table 1. Since
the t1/2 data were capped at 120 min, standard deviation for the high stability control,
i.e., antipyrine was not calculated.

Table 1. Assay reproducibility for control compounds—mean half-life and S.D values are reported.
Since data are not extrapolated beyond 120 min, S.D was not calculated for antipyrine.

Compound Half-Life (t1/2) in Minutes

Buspirone 14.4 ± 4.1
Loperamide 18.9 ± 5.2
Propranolol 55.2 ± 10.1
Antipyrine >120

3.2. Distribution of HLM Data

The final 6648 compound HLM dataset was heavily skewed towards the stable class
(67%) compared to the unstable class (33%) (Figure 1B). The largest number of compounds
(33%) fell into the >120 min bin. To understand the diversity of our dataset, distributions
based on t1/2 and molecular properties including log P, total polar surface area (TPSA),
molecular weight, hydrogen bond acceptor (HBA), and donors (HBD) were scrutinized
(Figure 1A). The majority of the compounds in our dataset belong in the 350–500 molecular
weight range; have log P values between 2 and 6; TPSA between 50 and 125; and have
between 3 and 8 HBAs and 0 and 2 HBDs. These molecular property distributions indicate
wide diversity in our dataset. Interestingly, we see that unstable compounds tended to
have slightly lower HBA and TPSA values whereas unstable compounds tended to have
slightly higher log P values and molecular weights. No differences in HBD distributions
were found between the two classes. A statistical analysis revealed significant differences
in these properties between the stable and unstable compounds (Table S1).
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Figure 1. (A) Molecular property distribution plots for stable (half-life > 30) and unstable
(half-life < 30 min) compounds in the HLM dataset. (B) Half-life distribution of compounds in
the HLM dataset.

3.3. Microsomal Stability Screening Paradigm at NCATS

Every compound synthesized at the NCATS undergoes a Tier I single time point
(15 min) RLM stability assessment [18]. Typically, after optimizing Tier I RLM stability,
compounds move into Tier II stability testing where they are screened in a multi-time point
(0–60 min) assay in rat, human, and other species. This pattern is clearly demonstrated by
the half-life distribution data in Figure 2A. A total of 55% of compounds were unstable in
the Tier I RLM assay (total dataset > 35,000), whereas the corresponding number for the
Tier II HLM assay (total dataset 6648) was 33%.

Since our Tier I RLM and Tier II HLM assays have different extrapolated maximum
half-lives, 30 min and 120 min, respectively, Tier II HLM half-lives were capped at 30 for
correlation analysis. Despite variations in the assay and species, our analysis reveals that
81% of the compounds exhibited less than 2-fold differences, and approximately 90% of the
compounds showed less than 3-fold differences (Figure 2B,C) in half-life values between
the RLM and HLM fractions. This validates our rationale for selecting RLM as the matrix
for Tier I screening.
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3.4. Five-Fold Cross-Validation

In this study, we employed 5-fold cross-validation (5-CV) to rigorously evaluate the
performance of RF, XGBoost, and GCNN methods. RDKit descriptors were used as the
default features for the RF and XGBoost methods, providing a baseline for comparison. In
contrast, the GCNN method utilized a combination of RDKit descriptors and graph featur-
ization, integrating additional features to capture more intricate molecular relationships.
While all three methods showed comparable performance with the RDKit descriptors,
XGBoost tended to provide a better balance between sensitivity and specificity (Table 2).
GCNN, in comparison to the two baseline methods, demonstrated on average higher speci-
ficity and poor sensitivity. The sensitivity improved slightly when RDKit features were
used as additional features. Overall, the baseline XGBoost method provided the best cross-
validation performance (across different metrics) when using RDKit descriptors as features.
For each method, we also employed a grid search method to assess a number of hyperpa-
rameter combinations. In the case of the GCNN method, the inbuilt Bayesian optimization
was employed instead of the grid search method. The parameters of the XGBoost model
that offered the best performance are listed in Table S2 of the Supplementary Information.

Table 2. Five-Fold cross-validation performance of the three methods based on different descriptors.

Method Descriptor(s) AUC Accuracy Sensitivity Specificity

RF RDKit 0.87 ± 0.02 0.81 ± 0.02 0.55 ± 0.04 0.93 ± 0.02
RF RDKit + RLM 0.89 ± 0.01 0.83 ± 0.01 0.62 ± 0.04 0.93 ± 0.01

XGBoost RDKit 0.87 ± 0.02 0.81 ± 0.02 0.65 ± 0.02 0.89 ± 0.02
XGBoost RDKit + RLM 0.89 ± 0.02 0.83 ± 0.01 0.70 ± 0.03 0.89 ± 0.02
GCNN Graph 0.84 ± 0.02 0.80 ± 0.02 0.57 ± 0.07 0.91 ± 0.03
GCNN Graph + RDKit 0.86 ± 0.02 0.80 ± 0.02 0.62 ± 0.07 0.89 ± 0.03
GCNN Graph + RDKit + RLM 0.87 ± 0.03 0.82 ± 0.02 0.67 ± 0.05 0.89 ± 0.02

In addition to employing RDKit descriptors, we incorporated predictions from our
previously published in silico RLM stability prediction model as an additional descriptor.
This approach is grounded in the rationale that RLM stability correlated strongly with
HLM stability as described above. While the use of biological outcomes as descriptors
in QSAR models is well established [19,20], this is the first study that reports leveraging
RLM stability model predictions as descriptors for the development of an HLM model.
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This novel integration was expected to add a unique layer of biological relevance and
potentially enhance the accuracy of HLM stability predictions by identifying more true
positives (i.e., unstable compounds). As anticipated, adding RLM stability predictions
boosted the sensitivity of the models from all three methods, without impacting their
specificity, leading to an improvement in overall accuracy. Again, XGBoost remains the
best-performing method with an average sensitivity of 70% and specificity of 89%.

3.5. External Datasets

While there are several HLM QSAR publications, most of them have been developed
either using data from literature or using proprietary data where neither the external test set
nor the models are publicly available. However, we were able to find three studies/datasets
that are similar to the scope of our study and could be used for comparison (Table 3). The
first study came out of Genentech where they used a 20,000-compound proprietary dataset
to develop an HLM QSAR model and used 972 compounds from ChEMBL as an external
test set (E1) to validate their model performance. The external test set was compiled from
25 individual ChEMBL datasets where the compound concentration varied from 0.5–1 µM
and the microsomal protein concentration varied from 0.25–1 mg/mL [21]. The second
study was conducted by AstraZeneca, where they employed their in-house experimental
method to test 1102 known compounds (E2). The data from this study was then made
available for developing predictive models or for benchmarking purposes. The data are
publicly available on the ChEMBL website (CHEMBL3301370) and assay details were
obtained from Sternbeck et al., 2010 [22]. The third study was by Ryu et al., 2022 where they
developed a model using ~2000 proprietary compounds and used a 61-compound external
test set (E3) for model validation [23]. We used the E1 and E3 external test sets to compare
model performance metrics whereas the E2 dataset was simply used as an external test set
to validate our model.

Table 3. Details of external test sets along with their sources.

External Test Set Total Molecules Unstable Stable

E1 (Genentech) 972 544 428
E2 (AstraZeneca) 1102 260 842

E3 (PredMS) 61 12 49

To compare the chemical space coverage between the three external test sets and our
dataset, the compounds were projected into a low-dimensional space using the t-distributed
Stochastic Neighbor Embedding (t-SNE) method (Figure 3) as described previously [18].
Since the compounds in these external test sets were obtained from literature, there is
significant overlap in the chemical space; however, distinct clusters of compounds are
seen in the Genentech and the AZ datasets. Although the external test sets appear diverse,
the NCATS dataset seems to have reasonable diversity and a good chance of accurately
predicting stability of these compounds.

3.6. External Validation

Based on our cross-validation results, we selected the top-performing method, i.e.,
XGBoost, to assess its performance across three external test sets: E1, E2, and E3. GCNN was
also chosen for this analysis due to its consistent performance in our previously published
ADME models [6,18,24]. Since both RF and XGBoost are tree-based methods, we decided
not to continue evaluating the RF method. For test sets E1 and E3, predictions from the
best model were provided in the original studies. Consequently, we compared the results
of our models with the performance of the best model from those respective studies.
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Figure 3. Chemical space visualization of external test sets in comparison to the internal training set.
The x and y axes indicate the first two dimensions (tSNE_1 and tSNE_2) of the t-SNE embedding.

Before this, given the strong correlation between our Tier I RLM and Tier II HLM
data, we assessed the performance of our previously published RLM stability prediction
model in forecasting the HLM stability of compounds in the external datasets. (Table 4).
The RLM model was able to identify 77% and 86% of unstable compounds in datasets
E1 and E2, respectively. While the RLM model was able to correctly identify all unstable
compounds in the E3 dataset, the majority of compounds from this dataset were classified
as unstable, meaning the RLM predictions resulted in a poor specificity. A high number
of RLM predictions classifying the external dataset compounds as unstable could be at-
tributed to the dominance of unstable compounds in our Tier I RLM dataset. The RLM
stability training dataset predominantly comprised early-stage compounds and a lot of
them become deprioritized due to poor metabolic stability. Therefore, we believe that using
RLM predictions as an additional descriptor could have a positive impact on the sensitivity
of the models without impacting the specificity.

Table 4. Performance of RLM stability prediction model on the three external datasets. N/A:
not applicable.

Dataset AUC Accuracy Sensitivity Specificity

E1 (NCATS Results) 0.69 0.66 0.77 0.52
E1 (Genentech Results) N/A 0.67 0.67 0.68

E2 (NCATS Results) 0.62 0.78 0.86 0.54
E3 (NCATS Results) 0.54 0.80 1.00 0.43
E3 (PredMS Results) N/A 0.74 0.70 0.86
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The HLM XGBoost model based on RDKit descriptors combined with RLM predic-
tions consistently stood out as the best-performing model on all three external datasets.
The Supplementary Information Figure S1 lists the top 20 RDKit descriptors selected by
the XGBoost model. As anticipated, adding RLM predictions contributed to improved
sensitivity of the HLM models (Table 5). Particularly, the XGBoost model benefited from
the RLM predictions more than the GCNN model. The difference in performance between
XGBoost and GCNN, particularly in how they leverage the biological descriptor (RLM
stability prediction), can be attributed to the nature of the models and how they handle
features. XGBoost can directly utilize the biological descriptor as an individual feature, and
since decision trees can handle various types of numerical data well, this descriptor can
significantly enhance model performance if it is highly correlated with the target. Also,
XGBoost offers a natural way to measure feature importance, allowing it to effectively
weigh the biological descriptor more if it is found to be highly predictive. On the other
hand, GCNNs primarily excel at learning from the structure and connections within the
graph data. The neural network’s architecture is inherently more focused on extracting
patterns from graph-structured information rather than individual numerical descriptors.
While GCNNs can incorporate additional numerical descriptors, these features may not
be utilized as effectively as in tree-based models. The integration of such features into
the graph-based learning process might dilute the influence of the biological descriptor
compared to how XGBoost can directly prioritize it. Moreover, training GCNNs involves
complex interactions between the graph structure and the additional numerical features.
Since the biological descriptor is not seamlessly integrated into the graph’s representation,
its predictive power might be underutilized. While adding RLM stability predictions as
a descriptor impacted the specificity of the GCNN model across all external datasets, the
XGBoost model demonstrated an improvement in both sensitivity and specificity on the E2
and E3 datasets. The ROC curves for the best-performing XGBoost and GCNN models are
provided in the Supplementary Information (Figure S2).

Table 5. Performance of NCATS XGBoost-HLM and GCNN-HLM models with and without using
RLM predictions as a descriptor on the three external test sets. N/A: not applicable.

Test Set Model (Descriptors) Accuracy AUC Sensitivity Specificity

E1 NCATS XGBoost (RDKit) 0.64 0.69 0.58 0.72
E1 NCATS XGBoost (RDKit + RLM) 0.66 0.73 0.66 0.66
E1 NCATS GCNN (RDKit) 00.67 0.70 0.62 0.73
E1 NCATS GCNN (RDKit + RLM) 0.67 0.77 0.65 0.70
E1 Genentech Model 0.67 N/A 0.67 0.68
E2 NCATS XGBoost (RDKit) 0.67 0.72 0.66 0.68
E2 NCATS XGBoost (RDKit + RLM) 0.73 0.80 0.75 0.73
E2 NCATS GCNN (RDKit) 0.74 0.77 0.62 0.78
E2 NCATS GCNN (RDKit + RLM) 0.76 0.68 0.62 0.70
E3 NCATS XGBoost (RDKit) 0.74 0.84 0.50 0.80
E3 NCATS XGBoost (RDKit + RLM) 0.84 0.87 0.75 0.86
E3 NCATS GCNN (RDKit) 0.82 0.87 0.50 0.90
E3 NCATS GCNN (RDKit + RLM) 0.85 0.79 0.58 0.84
E3 PredMS Model N/A 0.74 0.70 0.86

The best NCATS model, i.e., XGBOOST model with RDKit descriptors and RLM
predictions, performed as well as the Genentech model on the E1 external test set despite
being a third in size. It also performed better than the PredMS model on the E3 external
test set. Thus, we deployed this model on the ADME@NCATS website. While a lot of
commercial HLM stability models exist, there is a dearth of open-source HLM stability
prediction models (Table 6). Several other websites and models exist, but they all utilize
data from ChEMBL. We have used FP-ADMET to represent these platforms. To the best
of our knowledge, our model is the largest open-source model developed using data
generated in the same lab, following the same method, eliminating protocol and lab-to-lab
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variabilities. There have been a handful of studies that have developed multi-species
microsome stability models; however, they have either attempted to develop species-
specific models [25,26] or developed consensus models based on the individual species
models to improve performance [27]. As far as we are aware, this is the first study of its
kind to leverage cross-species data as a descriptor to improve the performance metrics of a
microsome stability model.

Table 6. Open-source HLM stability models in the literature.

Website
Number of

Compounds Used
to Train Model

Source of Data Model Availability Data Availability Accuracy of
Training Sets

PredMS 1917 Own Yes/Website External
Set/61 compounds ACC: 0.68

FP-ADMET 3654 ChEMBL
Yes/Downloadable

Offline version
on Github

Yes/ChEMBL BACC: 0.77

ADME@NCATS 6648 Own
Yes/Website and

Downloadable Offline
version on Github

Yes/Partial dataset
on PubChem

(AID: 1963597)
BACC: 0.80

Although our model avoids the common drawbacks associated with HLM models built
from compiled literature data, there are still important factors to consider when interpreting
its predictions. QSAR models typically rely on simplified descriptors and do not consider
key factors that impact metabolic stability like the interaction of the test compound with
the enzyme, allosteric effects, or chirality. Additionally, even though our dataset is diverse,
predictions for compounds that are structurally different from our training dataset could
be less reliable. As NCATS regularly undertakes new projects, our chemical space will
continually grow and expand. We are currently working on a backend framework for our in
silico website that would allow us to continuously update our models with newly generated
data. Since majority of compounds from our training set are part of currently ongoing
projects, we are unable to make the entire dataset public; however, a 900-compound subset
of the data has been deposited on PubChem (AID: 1963597). As projects wind down
and patents are cleared, we plan to deposit additional data on PubChem, expanding the
public dataset.

4. Conclusions

In this study, we describe the development, validation, and dissemination of an in
silico HLM stability model. This model is useful for early-stage drug discovery, allowing
researchers to identify compounds with favorable metabolic profiles and avoid those that
may be rapidly degraded in the liver. Furthermore, we observed a significant correlation
between our RLM data and our HLM data. By incorporating the stability predictions from
our RLM data, the accuracy and predictive capabilities of our HLM model were notably
improved, underscoring the robustness of the relationship between these two datasets.
To the best of our knowledge, it is the largest open-source model developed using data
generated from a single laboratory using a single protocol as well as the first model of
its kind that leverages cross-species data. The best-performing model, i.e., XGBoost with
RDKit descriptors and RLM predictions, along with a subset of our dataset, has been hosted
on the NCATS in silico ADME website (https://opendata.ncats.nih.gov/adme/, accessed
on 31 July 2024) to benefit the drug discovery community.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics16101257/s1, Figure S1: Top 20 important features learned
by the best XGBoost model; Figure S2: ROC curves for the best performing XGBoost and GCNN
models on the three external datasets, E1, E2 and E3; Table S1: Statistical analysis of differences in

https://opendata.ncats.nih.gov/adme/
https://www.mdpi.com/article/10.3390/pharmaceutics16101257/s1
https://www.mdpi.com/article/10.3390/pharmaceutics16101257/s1
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physicochemical properties between stable and unstable compounds; Table S2: Hyperparameter
search space and the best performing parameters of the XGBoost model.
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