Table 5.
Performance of NCATS XGBoost-HLM and GCNN-HLM models with and without using RLM predictions as a descriptor on the three external test sets. N/A: not applicable.
Test Set | Model (Descriptors) | Accuracy | AUC | Sensitivity | Specificity |
---|---|---|---|---|---|
E1 | NCATS XGBoost (RDKit) | 0.64 | 0.69 | 0.58 | 0.72 |
E1 | NCATS XGBoost (RDKit + RLM) | 0.66 | 0.73 | 0.66 | 0.66 |
E1 | NCATS GCNN (RDKit) | 00.67 | 0.70 | 0.62 | 0.73 |
E1 | NCATS GCNN (RDKit + RLM) | 0.67 | 0.77 | 0.65 | 0.70 |
E1 | Genentech Model | 0.67 | N/A | 0.67 | 0.68 |
E2 | NCATS XGBoost (RDKit) | 0.67 | 0.72 | 0.66 | 0.68 |
E2 | NCATS XGBoost (RDKit + RLM) | 0.73 | 0.80 | 0.75 | 0.73 |
E2 | NCATS GCNN (RDKit) | 0.74 | 0.77 | 0.62 | 0.78 |
E2 | NCATS GCNN (RDKit + RLM) | 0.76 | 0.68 | 0.62 | 0.70 |
E3 | NCATS XGBoost (RDKit) | 0.74 | 0.84 | 0.50 | 0.80 |
E3 | NCATS XGBoost (RDKit + RLM) | 0.84 | 0.87 | 0.75 | 0.86 |
E3 | NCATS GCNN (RDKit) | 0.82 | 0.87 | 0.50 | 0.90 |
E3 | NCATS GCNN (RDKit + RLM) | 0.85 | 0.79 | 0.58 | 0.84 |
E3 | PredMS Model | N/A | 0.74 | 0.70 | 0.86 |