Skip to main content
. 2024 Sep 27;16(10):1257. doi: 10.3390/pharmaceutics16101257

Table 5.

Performance of NCATS XGBoost-HLM and GCNN-HLM models with and without using RLM predictions as a descriptor on the three external test sets. N/A: not applicable.

Test Set Model (Descriptors) Accuracy AUC Sensitivity Specificity
E1 NCATS XGBoost (RDKit) 0.64 0.69 0.58 0.72
E1 NCATS XGBoost (RDKit + RLM) 0.66 0.73 0.66 0.66
E1 NCATS GCNN (RDKit) 00.67 0.70 0.62 0.73
E1 NCATS GCNN (RDKit + RLM) 0.67 0.77 0.65 0.70
E1 Genentech Model 0.67 N/A 0.67 0.68
E2 NCATS XGBoost (RDKit) 0.67 0.72 0.66 0.68
E2 NCATS XGBoost (RDKit + RLM) 0.73 0.80 0.75 0.73
E2 NCATS GCNN (RDKit) 0.74 0.77 0.62 0.78
E2 NCATS GCNN (RDKit + RLM) 0.76 0.68 0.62 0.70
E3 NCATS XGBoost (RDKit) 0.74 0.84 0.50 0.80
E3 NCATS XGBoost (RDKit + RLM) 0.84 0.87 0.75 0.86
E3 NCATS GCNN (RDKit) 0.82 0.87 0.50 0.90
E3 NCATS GCNN (RDKit + RLM) 0.85 0.79 0.58 0.84
E3 PredMS Model N/A 0.74 0.70 0.86