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Abstract: Background: Manganese is an essential micronutrient that plays a pivotal role in environ-
mental systems, plant physiology, and human health. This review comprehensively examines the
manganese cycle in the environment, its absorption and transport mechanisms in plants, and the
implications of manganese exposure to human health. Objectives: The objectives of this review are
to (i) analyze the environmental cycling of manganese and its bioavailability, (ii) evaluate the role
of manganese in plant metabolism and disease resistance, and (iii) assess the impact of manganese
toxicity and deficiency on human health. Conclusion: This review highlights that while manganese
is crucial for photosynthesis, enzyme activation, and resistance to plant diseases, both its deficiency
and toxicity can have severe consequences. In plants, manganese deficiency can lead to impaired
growth and reduced crop yields, while toxicity, particularly in acidic soils, can inhibit photosynthesis
and stunt development. In humans, manganese is necessary for various physiological processes,
but overexposure, especially in occupational settings, can result in neurodegenerative conditions
such as manganism. The conclusion emphasizes the importance of managing manganese levels in
agriculture and industry to optimize its benefits while minimizing health risks. A multidisciplinary
approach is advocated to enhance agricultural productivity and ensure public health safety.

Keywords: manganese; Mn cycling in environment; food chain; water quality; Mn metabolism;
human nutrition

1. Introduction

Earth’s 12th most abundant element and fifth most abundant metal is manganese. This
silver-grey metal oxidizes easily. Thus, Mn is present in oxides, carbonates, and silicates.
Mn occurs in positive oxidation states (+2, +3, +4, +6, and +7) despite its negative oxidation
state (−3). Mn2+ and Mn3+ are mainly oxidized in living organisms. Mn2+ is the most
stable form, whereas Mn3+ is a potent oxidant that generally disproportionates to Mn2+

and Mn4+ or combines with proteins such as transferrin (Tf) [1]. Every year, natural earth
erosion releases tonnes of Mn into the air, soil, and rivers for microbes, plants, and animals
to absorb [2].

Manganese is a micronutrient necessary for most living organisms. It is crucial in
biological clusters as an enzyme cofactor and catalytic metal. Manganese is one of the most
studied micronutrients for plant disease effects and is essential for root and foliar disease
resistance [3–6]. Its availability in soil depends on environmental and biotic factors [7].
Plants require manganese more than fungus and bacteria, therefore the pathogen may
benefit [8].

As a component of photosynthesis, manganese is an important element in plant
metabolism. It is a structural component of the photosystem II water-splitting protein and
also stores and delivers electrons to chlorophyll reaction centers. Furthermore, Mn is an
important metallic component of many enzymes, including arginase, glutamine synthetase,
pyruvate carboxylase, and manganese superoxide dismutase (MnSOD). Plant and human
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manganese deficiency has been widely studied. Manganese is needed for several metabolic
activities in human nutrition, including optimal growth [9,10].

Mn is an essential mineral in human nutrition, playing a crucial role in several physio-
logical processes. As mentioned below in more detail, it is necessary for the functioning of
enzymes involved in metabolism, bone formation, and regulation of blood sugar levels. It
also supports the antioxidant defense system by contributing to the activity of superoxide
dismutase. While it is important for overall health, the body requires only small amounts,
with the recommended intake for adults being around 3.5 to 7.0 mg per day [11].

On the other hand, Mn intoxication, or poisoning, poses a risk when exposure exceeds
the ability to regulate it. Chronic overexposure can appear mostly via inhalation and can
lead to the disease called manganism, a neurological disorder with symptoms similar to
those of Parkinson’s disease [12–14].

The purpose of this review is to provide a comprehensive overview of manganese’s
biological and environmental importance. It deals with the manganese cycle in the en-
vironment, focusing on its mobility, participation in plant metabolism, and influence on
human health and behavior. It emphasizes the necessity for balanced Mn management in
the environment and thus mitigating health risks.

2. The Manganese Cycle

Figure 1 shows the manganese cycle, which indicates that microorganisms are key
mediators in Mn oxidation in a variety of environments. Microbial Mn oxide minerals are
typically dark brown to black and poorly crystalline with birnessite (layered) or todorokite
(tunnel) crystal structures. Both bacteria and fungi produce Mn oxide minerals, although
the exact mechanism for Mn oxidation remains elusive [15].
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Chemolithoautotrophic Mn oxidation is highly unlikely to be carried out with the
enzymes currently known, although indirect oxidation of Mn during heterotrophic growth
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or reproduction has been observed in both bacteria and fungi [15]. Differences in Mn avail-
ability influence not only the microbial community structure associated with ferromagnetic
deposits but also Mn cycling and microbial functions [17,18].

2.1. Manganese in Environment
2.1.1. Manganese Levels in Soil

Manganese (Mn) is the 10th most common element in the Earth’s crust, where
manganese-containing compounds are second in quantity to iron (Fe). The total quantity of
manganese in soil ranges between 20 and 3000 mg kg−1, with an average of 600 mg kg−1.
Divalent manganese (Mn2+) is absorbed by clay minerals and organic material, and this
form is the most significant in plant nutrition [19]. Manganese occurs in soil as exchangeable
manganese, manganese oxide, organic manganese, and as a component of ferro-manganese
silicate minerals. The manganese ion (Mn2+) is similar in size to magnesium (Mg2+) and
ferrous iron (Fe2+) and can replace these elements in silicate minerals and iron oxides.
Soil manganese reactions are highly complicated. Soil pH, organic matter, moisture, and
aeration are usually the key factors influencing manganese bioavailability [20].

2.1.2. Manganese in Water

The oxidation of manganese (Mn2+) compounds in aqueous solutions leads to the
precipitation of manganese, which subsequently causes encrustation issues. According to
Bean et al. [21], manganese can create deposits on water pipes, even at concentrations as
low as 0.02 mg L−1. These deposits have the potential to detach from the pipes and manifest
as a black precipitate. Several countries have established a threshold of 0.05 mg L−1 as the
standard for manganese concentration, beyond which issues related to discoloration may
arise [22].

Manganese is naturally present in numerous surface water and groundwater sources,
as well as in soils that have the potential to erode and contribute to the aforementioned
water bodies. Nevertheless, it is important to acknowledge that anthropogenic activities
(mining, steel production, manufacturing) play a significant role in the introduction of
manganese contamination into water sources within certain regions. The literature indicates
that ambient levels of manganese in seawater have been documented to vary between 0.4
and 10 µg L−1 [23], with an average concentration of approximately 2 µg L−1 [19]. The
concentration of levels in fresh water generally spans from 1 to 200 µg L−1, as reported by
Barceloux and Barceloux [24]. According to a report by the Agency of Toxic Substances
and Disease Registry [23], a survey conducted on river water in the United States revealed
the presence of dissolved manganese at a concentration of 51 µg L−1. Since 1991, the
National Water Quality Assessment Program of the US Geological Survey has collected
a restricted amount of data pertaining to representative study basins across the United
States. The data presented in the study by Leahy and Thompson [25] and the report by the
US Geological Survey [26] demonstrate that surface waters exhibit a median manganese
level of 16 µg L−1 with 99th-percentile concentrations ranging from 400 to 800 µg L−1.
Industrial pollution is commonly linked to elevated levels of aerobic waters. The presence
of reducing conditions in groundwater and certain bodies of water promotes elevated
levels of manganese. Studies have reported concentrations of up to 1300 µg L−1 in neutral
groundwater and 9600 µg L−1 in acidic groundwater [23]. Using data from the National
Water Quality Assessment Program, it has been observed that the 99th percentile level of
manganese in groundwater is generally higher (5600 µg L−1) compared with surface water.
However, the median level of manganese in groundwater (5 µg L−1) is lower than that in
surface water, as reported by the US Geological Survey [26].

3. Manganese in Plants
3.1. Plant Manganese Transport and Accumulation

As previously stated, the only accessible metal form for plants is reduced Mn (Mn2+).
It is taken up by an active transport pathway in epidermal root cells and transferred into
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plants as the divalent cation Mn2+ [8,27,28]. The absorption of manganese by roots is a
biphasic process. Mn2+ and Ca2+ and other cations readily interchange in the rhizosphere
during the first and fast absorption phase, which is reversible and non-metabolic. Mn2+

seems to be absorbed by the negatively charged cell wall elements of root cell apoplastic
gaps during this phase [29,30]. The second phase is slower, with Mn2+ being more difficult
to exchange. Plant metabolism is required for its absorption into the symplast [31], although
the particular pathways are unknown [29]. Kinetic tests have shown that Mn transport rates
are 100 to 1000 times greater than the predicted plant demand for this element [30,32]. The
large capacity of ion carriers and channels in Mn ion transport via the plasma membrane at
a rate of several hundred to several million ions per second per protein molecule explains
these transport rates [29].

Transpiration (xylem) stream transport moves from the roots to the above-ground
sections of plants, while phloem transport is more selective, occurring from sources to
sinks [8]. Nonetheless, little phloem mobility has been documented for Mn, and its redistri-
bution may be dependent on plant species and developmental phases [33]. Indeed, it has
been found that at the mature stage of wheat, Mn transfer from roots to grains is usually
inadequate. Mn mobility in the phloem is rather low, emphasizing the relevance of xylem
in the transfer of this element, especially in wheat grain discharge [34].

3.2. Manganese’s Biochemical Role in Plants

Because divalent manganese ions (Mn2+) are readily transformed to Mn3+ or Mn4+

and vice versa, manganese plays an essential role in oxidation and reduction processes, as
well as electron transport in photosynthesis. Furthermore, manganese works as an activator
of several enzymes (approximately 35 distinct enzymes). Manganese is essential for the
activation of numerous enzymes involved in oxidation processes, carboxylation, carbohy-
drate metabolism, phosphorus reactions, and the citric acid cycle. Protein manganese in
photosystem II and MnSOD might be mentioned as two of the most significant enzymes.
More than 90% of superoxide dismutase is found in chloroplasts, with the remaining 4–5%
found in mitochondria [10,35–37]. Mn2+ also activates dehydrogenase and decarboxylase in
the Krebs cycle (TCA) [8,38]. It is needed for the formation of chlorophyll and is required by
photosystem II, which is also involved in cell division and plant development. Manganese
activates RNA polymerase. It plays an important role in lipid metabolism, and since it is
involved in nitrate reduction enzymes, nitrates build up in manganese-deficient leaves.
Furthermore, the amount of lignin in the plant will decrease due to manganese deficiency,
with this reduction being more severe in the roots; this matter is critical, particularly in
reducing resistance to fungi infecting the plant roots [8,35,39,40].

3.3. Manganese Deficiency in Plants

Manganese deficiency (Figure 2a,b) is broad in terms of geographical distribution,
although it is more common in calcareous soils, soils with high pH (arid and semi-arid
parts of the globe), and notably soils with inadequate aeration. There is also a manganese
deficit caused by soil’s surface erosion [41].

In general, soil organic matter influences the quantity of dissolved manganese in
the soil. Manganese levels in certain podzolic soils are naturally low, owing to extensive
leaching [41]. Manganese solubility decreases with rising pH; it decreases 100-fold with
an increase of one unit of pH. Chloroplasts are the cell components most sensitive to
manganese deficiency; in fact, manganese deficiency dramatically damages chloroplast
structure. Manganese shortages reduce net photosynthesis and chlorophyll levels [42–47].

A manganese shortage has severe consequences for non-structural carbohydrates,
particularly root carbohydrates [48]. Crop quality and quantity are reduced owing to
manganese insufficiency, which is caused by poor pollen productivity and a lack of carbo-
hydrates during grain loading. Manganese shortage is similar to magnesium deficiency in
that the intercostal areas of the leaves turn yellow.
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Manganese insufficiency symptoms develop initially on younger leaves due to the
restricted dynamics of these elements in various plant tissues (manganese is not a mobile
element). In contrast to manganese, magnesium shortage symptoms are noticed largely in
older leaves [8,47,51,52]. Manganese deficiency symptoms in dicotyledonous plants are
generally little yellow spots on the leaves; similarly, manganese deficiency symptoms in
monocotyledonous plants are taupe and gray-green patches on the base of the leaves. The
main sign of insufficiency is a decrease in photosynthetic efficiency, which leads to a general
decrease in dry matter production and yield. Manganese deficiency occurs and intensifies
according to seasonal circumstances, being more severe in the cold and rainy seasons owing
to lower root metabolic activity in manganese absorption. Manganese concentrations in
plant tissues have been shown to range between 50 and 150 mg kg−1. Manganese essential
levels in plant tissues vary according to cultivar, species, and environmental circumstances
and have been reported to range from 10 to 50 mg kg−1 of dry matter [8,53,54].

3.4. Manganese Toxicity

Manganese toxicity in plants (Figure 3) varies according to plant species and environ-
mental factors. Manganese toxicity is a primary factor restricting development in acidic
soils. In these soils, excessive amounts of manganese in the leaves inhibit photosynthesis,
limiting growth [10,55]. Manganese poisoning causes brown patches on adult leaves and
chlorotic dots at the ends of immature leaves. These symptoms show less at higher light
intensities than at lower light intensities. Manganese toxicity begins as chlorosis in old
leaves and progresses to young leaves [10,55–60]. Manganese poisoning symptoms begin
at the leaf’s border and progress to regions between leaves, and leaf necrosis spreads
with higher toxicity. Manganese poisoning has a greater impact on cell size than on cell
number. It causes an uneven distribution of chlorophyll and the build-up of granular
starch in chloroplasts. Manganese toxicity may be reduced by using a higher magnesium
dose [57,58,61,62].
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3.5. Manganese’s Impact on Agricultural Production

Manganese shortages in agricultural productivity are most common in alkaline to
acidic soils, limiting crop output and yield. Manganese use in the soil, foliar spray, or
seed treatment is critical for increased crop production and quality [64]. It promotes
carbohydrate synthesis and is necessary for optimal macronutrient usage in plants. Man-
ganese increases the activity of many enzymes that aid in photosynthetic light responses,
respiration, and protein synthesis, resulting in greater NPK usage to convert into func-
tional seed carbohydrates [41]. Its foliar application boosts crop production by enhancing
photosynthetic efficiency and carbohydrate synthesis, such as starch [64].

Furthermore, manganese plays a crucial metabolic function in nitrate-reducing enzyme
activity and the activation of enzymes involved in carbohydrate metabolism; hence, deficits
reduce photosynthetic efficiency, resulting in lower crop production and quality [9,19]. In
their research, Mousavi et al. [65] found that using manganese and zinc boosted potato
yield and improved dry matter storage. In independent studies, Hiller [66] and Brown
and Walworth [67] found that foliar sprays of micronutrients such as manganese boosted
potato yield and quality. Bansal and Nayyar [68] evaluated the impact of manganese foliar
treatments on 10 soybean cultivars and found a considerable improvement in economic
and biological yield. Mahler et al. [69] investigated the effects of manganese sulfate on
irrigated wheat production and quality and determined that its application boosted wheat
yield considerably.

3.6. Interactions of Manganese with Other Elements

Manganese absorption varies greatly among plant species, and it is often lower than
that of other bivalent cations such as Ca2+ and Mg2+. Manganese uptake is reduced by
magnesium application and liming, with the main reasons being the negative effects of
increasing Ca2+ and pH. Manganese shares chemical properties with soil alkaline cations
such as Ca2+ and Mg2+, as well as heavy metals such as Zn2+ and Fe2+/3+; thus, these ions
influence manganese uptake and transport in plants [8,70–72].

High soil manganese levels have an impact on a plant’s ability to absorb iron, and the
same issue (Mn-imposed Fe deficit) may exacerbate the problems caused by manganese
toxicity in plants. Furthermore, if the quantity of iron in the soil is too high, plant manganese
absorption is inhibited [19,53].

3.7. Manganese Availability as a Function of Organic Manure and Manganese
Fertilizer Applications

Soil organic matter content, pH value, CaCO3 content, and redox conditions all influ-
ence manganese (Mn) availability in soils [73]. Submergence causes physical, biological,
and chemical changes in soils, all of which are beneficial to rice growth and nutrition. Flood-
ing reduces higher-valent forms of Mn, such as MnO2, Mn2O3, and Mn3O4, to Mn2+, which
is available to plants [74]. Green manure is another method for increasing Mn availability
in soils. Organic matter releases a variety of organic acids during decomposition, lowering
soil pH and increasing the degree of reduction in soils. When green manure is paired with
submergence, the reduction of Mn oxides is greater [75].

A similar pattern of distinct types of Mn following a wheat harvest was found due to
the lingering influence of green manure as well as farmyard manure (FYM). As a result, an
increase in the concentrations of DTPA-extractable, WS+EX, and inorganic Mn suggested
that both, green manure and FYM treatment increased Mn availability. The application of
manganese sulfate to soil had no discernible impact on distinct Mn factions [76].

4. Manganese in Human Nutrition
4.1. Manganese in the Human Diet

Mn is an essential nutrient required for many metabolic functions, including normal
human development, activation of certain metalloenzymes, energy metabolism, immuno-
logical and nervous system function, reproductive hormone function, and antioxidant
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enzymes that protect cells from free radical damage [77,78]. Mn is also important in reg-
ulating cellular energy, bone and connective tissue development, and blood coagulation.
Mn serves as a cofactor for several enzymes, including those involved in neurotransmitter
production and metabolism [79,80].

Indeed, modest levels of Mn are necessary in human brain development, cellular
homeostasis, and the action of various enzymes [81–83]. Mn is also thought to be involved
in the development of stellate processes in astrocytes as well as the conversion of glutamate
in the brain to glutamine, a process carried out by glutamine synthetase [81,82]. Considering
the variety of enzymatic processes that require Mn, an inadequate daily supply of the
metal is associated with a range of health consequences, including generalized growth
impairment, birth defects, reduced fertility, and impaired bone formation, as well as altered
lipid, protein, and carbohydrate metabolisms [84,85].

Furthermore, dermatitis, slowed hair and nail growth, decreased serum cholesterol
levels, decreased levels of clotting proteins, increased serum calcium and phosphorus
concentrations, and increased alkaline phosphatase activity have been reported in hu-
mans [77,86,87]. Moreover, various human disorders, including epilepsy, Mseleni joint
disease, Down’s syndrome, osteoporosis, and Perthes disease, have been linked to low
blood Mn concentrations [88]; nevertheless, the significance of Mn deficiency in these
diseases remains unknown. In general, clinical signs require quite severe deficits in dietary
Mn supply [89,90]. Furthermore, Mn essentiality in humans is known to vary depending
on life stage and sex [91].

4.2. Manganese in Food
Sources of Manganese

Manganese is found naturally in a variety of foods, including green vegetables, nuts,
cereals, and animal products [92]. The most common source of manganese exposure in the
general population is food [23,93]. The following are typical manganese content ranges in
popular foods (Table 1).

Table 1. Average manganese concentrations in different types of food [23].

Type of Food Range of Mean Concentrations (mg kg−1)

Nuts and nut products 18.2–46.8
Grains and grain products 0.42–40.7
Legumes 2.24–6.73
Vegetables and vegetable products 0.42–6.64
Fruits 0.20–10.4
Infant foods 0.17–4.83
Fruit juices and drinks 0.05–11.5
Desserts 0.04–7.98
Meat, poultry, fish and eggs 0.10–3.99
Mixed dishes 0.69–2.98
Condiments, fats and sweeteners 0.04–1.45
Beverages (including tea) 0.00–2.09
Soups 0.19–0.65
Milk and milk products 0.02–0.49

Heavy tea users may consume more manganese than the normal population. Man-
ganese levels in tea may range from 0.4 to 1.3 mg per cup [23]. In 1986, roughly 12% of the
adult population in the United States received manganese supplements in addition to food
sources [94,95]. The median manganese consumption in these dietary supplements was
estimated to be 2.4 mg day−1, which is comparable to the amount of the element ingested
in the diet (based on data from the Third National Health and Nutrition Estimation Survey,
which was conducted in 2001). The risk of manganese overexposure must be balanced
against the need for some manganese in the diet, since manganese is an essential mineral
that functions as a component of various enzymes and as a participant in a variety of critical
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physiological processes. Based on a review of human trials, Freeland-Graves et al. [11]
proposed a dose range of 3.5–7 mg day−1 for adults. Greger [96] offered a range for typical
manganese intakes from adult Western and vegetarian diets of 0.7–10.9 mg day−1 after
evaluating dietary surveys.

The Institute of Medicine’s Food and Nutrition Board established sufficient manganese
consumption levels of 2.3 mg day−1 for males and 1.8 mg day−1 for women. Manganese
intake levels of 0.003 mg day−1 for infants from birth to 6 months, 0.6 mg day−1 for infants
from 7 months to 1 year, 1.2 mg day−1 for children aged 1–3 years, 1.5–1.9 mg day−1

for children aged 4–13 years, and 1.6–2.3 mg day−1 for adolescents and adults were also
established [92].

4.3. Human Manganese Uptake and Distribution

Manganese is absorbed by food, inhalation, and cutaneous permeation, as well as
intravenous injection [97]. It is swiftly absorbed in the gastro-intestinal (GI) tract and the
lungs before being transported to various organs through blood circulation. The organs
with the highest Mn levels in the human body include the liver, pancreas, bones, kidneys,
and brain. Although Mn levels in the brain are not the highest among these organs, the
brain is the primary target of Mn-induced toxicity since the majority of individuals with
Mn poisoning exhibit signs of neurological impairment. Thus, the mechanism through
which Mn passes the blood–brain barrier and accumulates in the brain is of particular
interest [97].

4.4. Manganese Exposure and Absorption Pathways

Figure 4 summarizes the routes of human exposure to manganese, which come from
both natural and manmade sources, such as the environment, the workplace, and medical
care. Human manganese metabolism and control come from both natural and manmade
sources, such as the environment, the workplace, and medical care. There is a proven
relationship between Mn pollution of soil and Mn poisoning of the human body. For
instance, approximately 80% of Mn emissions originate in the industrial areas of the USA.
Additionally, Mn is used in the production of batteries, fertilizers, and animal feed. Over
6.1 thousand metric tons of Mn and almost 73.7 thousand metric tons of Mn-containing
compounds were released into the environment from the abovementioned activities (total
values up to 2009). However, certain facilities are not required to report Mn release. Thus,
this number is probably greater. Approximately 87% of Mn released was deposited into
the soil. This supports the fact that the Mn pollutants in soil and water primarily originate
from industrial activities and waste materials [23].

Mn enters the bloodstream after absorption and is dispersed via blood circulation. This
process is controlled by organs such as the blood, liver, pancreas, kidney, bone, and brain.
Mn homeostasis is maintained at the cellular level by both membrane transporters and
subcellular transporters. Importers and exporters are two types of membrane transporters.
Mn is also distributed and controlled in the endosome, lysosome, Golgi, mitochondria, and
nucleus. The loss of Mn homeostasis has been linked to catastrophic brain damage. This
“manganism” condition has a comparable neuropathology to Parkinson’s disease (PD) [97].
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4.5. Ingestion

Mn is most often absorbed via the mouth. The main Mn dietary sources include
drinking water, Mn-rich foods, vitamins, supplements, and infant formula. In adults,
approximately 3–5% of ingested Mn is absorbed through the GI tract, with females having
a higher absorption rate (2.3 mg day−1) than males (1.8 mg day−1), which may be affected
by iron status [92,98,99]. Literature sources mentioning Mn intake differ slightly. As
mentioned in the introduction, according to Moss [11], the recommended dose for adults
is 3.5 to 7.0 mg per day, whereas O’Neal, S. L., and Zheng, W. [100] mention a range from
2.3 to 8.8 mg per day for Western/USA diets. Currently, there is no official recommended
dietary requirement for Mn; however, the estimated safe and acceptable daily food intake
of Mn for humans is 2–5 mg day−1, and the lowest Mn level in water with a noticeable
deleterious impact is 4.2 mg day−1 for a 70 kg person [101]. The upper intake level for Mn,
which represents the maximum amount unlikely to cause harmful effects, is 11 mg per day
for adults [102].

The World Health Organization (WHO) recommends a Mn content of <0.4 mg L−1 in
drinking water [103]. The human health threshold in the United States is 0.3 mg L−1 [104].
In contrast, in Bangladesh, the amount of Mn in the water supply may reach 0.002 m L−1,
which has been linked to changed classroom behavior in school-aged (8- to 11-year-old)
children [105]. Another Mn dietary source that may result in Mn buildup in children is
baby formula, particularly soy-based formula [106,107]. However, it may be as much as
ten times higher than the permissible amount owing to a lack of maximum Mn levels in
formula manufacture [100]. Mn is readily absorbed in the gut and enters cells by passive
diffusion or active transport. Mn is transported in human intestinal cells in a biphasic
pattern by a saturable mechanism comparable to iron and calcium. It takes around one hour
to activate the cellular components (mostly transporters), followed by a gradual increase in
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Mn absorption after reaching a steady-state condition [108]. Mn absorption in rat intestinal
cells is regulated by a high-affinity, low-capacity active transport mechanism [109].

Although it transports other divalent cations, the divalent metal transporter 1 (DMT1)
is thought to be primarily responsible for active Mn inflow. Several variables influence
Mn absorption. Mn importers are not always Mn-specific transporters since they also
control the entrance of other metals, including iron (Fe), copper (Cu), zinc (Zn), calcium
(Ca), and so on. As a result, other metals present in biological media (blood, extracellular
fluid, etc.) will compete with Mn absorption. Individuals with Fe deficiency are more
likely to be poisoned by Mn because Mn absorption in the GI tract increases under low Fe
circumstances [110]. Similarly, in iron-deficient rats [111] and pigs [77], the expression of
Fe/Mn transporters is changed, and Mn levels in the brain are increased.

Approximately 75% of the Mn in human milk is bound to lactoferrin [78], and excess
ferric lactoferrin in brush-border membrane vesicles in the newborn monkey’s small in-
testine might block absorption of this complexed Mn [79,112]. Furthermore, adding Ca
to human milk significantly reduces Mn absorption in both male and female adults. It
can be attributed to the calcium’s strong competitive effect, which arises from its role in
mineral transport. The effects of other compounds are more variable and may depend
on specific conditions or combinations in the diet [113–115]. Because of that, adding phy-
tate, phosphate, and ascorbic acid to infant formula, as well as iron and magnesium to
wheat bread, probably has no significant effect on Mn absorption [81]. In rats, Mn tends
to discharge from the intestine when complexed with albumin or albumin-like proteins,
but transferrin-complexed or carrier-free Mn does not. Another aspect that influences Mn
absorption is age. Infants and youngsters absorb more Mn from their diets than adults
because their bodies need more Mn throughout their development. Mn absorption from
milk diets decreased dramatically with age in neonatal rats given human milk, bovine milk,
or infant formula [83]. Furthermore, Mn retention was substantially greater in rat pups
below 15 days of age (80%) than in older pups (40%) or adults [84]. Despite the fact that the
majority of Mn absorption occurs by ingestion, it is regarded as reasonably safe owing to
rapid liver clearance.

4.6. Prenatal Exposure

In utero, Mn exposure is often overlooked since the actual relationship between Mn
exposure and health consequences is unclear. However, there has been an increase in the
number of studies examining the relationship between in utero Mn exposure and newborn
health. The average Mn concentration (78.8 mg L−1) in umbilical cord blood is higher
than in the mother’s whole blood (55.0 µg L−1), and an inverted U-shaped curve has been
observed between Mn levels in mother’s whole blood and birth weights, as well as between
Mn levels in umbilical cord blood and birth weights [85]. Other research has shown that
both low and high maternal blood Mn levels are related to poor newborn health [86,88].

4.7. Inhalation

Most clinically recorded instances of Mn poisoning are the result of occupational
exposure. The main route of exposure in occupational Mn poisoning is inhalation of
airborne Mn. Industrial workers, particularly miners [89], smelters [90], and welders [116],
inhale a considerable quantity of Mn-containing fume and dust, making them the adult
group most at risk of Mn-induced toxicity. Mn is absorbed in the lungs and enters the
circulation after being inhaled. It may be swiftly transferred to the olfactory bulb and enter
the brain through two zinc transporters, ZIP8 and ZIP14, which skip the liver and blood–
brain barrier. Mn levels in the lung were higher in rats exposed to 0.0.92 mg MnSO4 m−3; at
0.9.2 mg MnSO4 m−3, Mn concentrations in the lung, striatum, and bile were considerably
increased [91].
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4.8. Intravenous and Cutaneous Exposure

Intravenous delivery of drugs containing high quantities of Mn is another Mn ex-
posure route that bypasses GI tract control, resulting in 100% metal absorption [98,117].
Premature newborns, for example, do not absorb adequate nutrition owing to an under-
developed GI tract or certain disorders. As a result, patients are often supplemented with
total parenteral nutrition (TPN) by intravenous injection, which includes several trace
elements necessary for life support. Infants on TPN are more vulnerable to Mn toxicity.
Furthermore, manganism has been described because of intravenous consumption of meth-
cathinone, which contains manganese dioxide as a by-product from production [118,119].
The absorbed quantity may range between 60 and 180 mg per day, greatly above the typical
dietary intake [119,120]. Mn exposure via the skin is also a concern for those who come into
contact with organic forms of Mn, such as the gasoline additive methylcyclopentadienyl
manganese tricarbonyl (MMT) [23].

5. Pharmacokinetics of Manganese

The intricate management of Mn absorption and tissue-specific accumulation is critical
for the appropriate regulation of Mn-dependent enzyme activity. Understanding Mn’s
importance and toxicity in the brain necessitates knowledge of its control in the periphery.
Three primary variables are thought to influence plasma Mn levels. First, since food is the
primary source of Mn, careful control of Mn’s gastrointestinal absorption is critical. Second,
after Mn absorption and a rise in plasma Mn levels, Mn must be transported to target
organs, particularly the liver, to avoid Mn-induced toxicity in the periphery. Finally, Mn
from plasma must be removed by shuttling to bile [121]. Thus, homeostatic mechanisms
strictly limit Mn absorption and regulate Mn excretion to maintain constant tissue levels
despite daily Mn food intake changes. However, high Mn concentrations, such as those
seen in industrial contexts, may overpower homeostatic mechanisms, resulting in elevated
tissue Mn concentrations. As a result, both pulmonary absorption and particle transport
through the olfactory bulb [119,121] may result in Mn deposition in the striatum and
cerebellum, as well as nasal epithelial inflammation [100].

Because both metals (Mn3+ and Fe3+) share binding and absorption through the
transferrin (Tf) transporter and the divalent metal transporter 1 (DMT1; also known as
the DCT, or divalent cation transporter), it is widely assumed that Fe has a substantial
impact on Mn homeostasis. Mn ions (Mn3+) bind at the same site as ferric ions (Fe3+) on
the large glycoprotein molecule mucin, which is known to stabilize the ions and prevent
precipitation in the gastrointestinal tract lumen [122]. Furthermore, both metals have been
shown to attach to the intercellular metal-binding molecule mobilferrin [123].

Metal ion absorption into enterocytes is known to occur through transmembrane
transporters. To enhance Fe absorption during Fe deficiency, the number of transporters
in enterocytic membranes is raised [124]. This will definitely enhance Mn absorption,
especially in the absence of Fe. Indeed, Fe shortage is linked to increased Mn absorption
in the gastrointestinal system as well as increased Mn deposition in the brain in mouse
models [125,126]. Furthermore, Mn absorption through the gastrointestinal tract is signifi-
cantly dependent on the amount of Mn consumed and the net accumulated levels in the
plasma. Mn is transported in the large intestine by simple diffusion, whereas it is absorbed
in the small intestine via active transport [121]. Mn excretion into bile, on the other hand, is
driven by concentration gradients that lead to its movement from liver to bile [127].

Approximately 3–5% of dietary Mn is absorbed as Mn2+ and Mn4+ in the gastroin-
testinal system [82]. Mn2+ is oxidized to Mn3+ in the liver and plasma ceruloplasmin
before being transported through the circulation [128,129]. Mn forms close compounds
with various ligands [98]. As a result, a number of plasma proteins or ligands, including
transglutaminase, beta globulin, albumin, and Tf, have been identified as particular Mn
carrier proteins [130,131]. As a consequence, its concentrations in free plasma and tissues
are exceedingly low [132].
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The Ca2+ uniporter sequesters intracellular Mn2+ in the mitochondria of the brain and
liver [133,134]. Thus, mitochondria are the predominant source of intracellular Mn; yet
nuclei have been suggested (but not proven] to preferentially collect this metal [108,135,136].
Furthermore, Mn2+ has been found to fragment the Golgi apparatus, suggesting a special
function for this compartment in regulating Mn homeostasis [137].

The Ca2+/Mn2+-ATPases of the secretory route (SPCA) [138] are harbors in the Golgi
apparatus and have a high affinity for Mn2+ transport [139]. In vivo studies show that
brain areas with high SPCA expression have increased Mn2+ accumulation after continuous
systemic MnCl2 infusion in mice [140], and a gain-of-function mutation in SPCA, which
specifically enhances Golgi Mn2+ transport, improves Mn2+-exposed cell survival [141].
Thus, a lack of effective Mn2+ detoxification through the Golgi may result in increased
Mn2+ buildup in the mitochondria, resulting in mitochondrial dysfunction [137].

Mn enters the brain from the blood through cerebral capillaries and/or cerebrospinal
fluid. Mn appears to enter the central nervous system primarily through the capillary
endothelium at normal plasma concentrations, whereas at high plasma concentrations,
transport across the choroid plexus appears to be predominate [142,143], consistent with
observations on the rapid appearance and persistent elevation of Mn in this organ [144].
Within one hour of being administered, radioactive Mn is concentrated in the choroid
plexus. It is found in the dentate gyrus and cornu ammonis 3 of the hippocampus three
days after injection [145].

Mn concentrations in the brain vary depending on the brain region. The globus
pallidus in humans and the hypothalamus in rats have the highest Mn levels [81,146,147].
In rats, spectroscopy has revealed that mitochondria in the basal ganglia collect the most
Mn [147,148]. Differential metal transporter expression patterns and Mn diffusion constants
in different brain areas must account for, at least in part, the asymmetry in Mn buildup
across brain regions [149]. The preferential buildup of Mn in the basal ganglia is often
linked with manganism, a clinical illness characterized by extrapyramidal symptoms
similar to idiopathic Parkinson’s disease. To further understand the foundation of variable
Mn accumulation across distinct brain areas, more characterization of absorption and
elimination rates, as well as Mn uptake and export mechanisms, is required.

5.1. Manganism, a Neurodegenerative Condition

Manganism (also known as locura manganica) is caused by the preferential accu-
mulation of Mn in brain areas rich in dopaminergic (DAergic) neurons (caudate nucleus,
putamen, globus pallidus, substantia nigra, and subthalamic nuclei) [12–14]. Mn may
easily oxidize catecholamines, including dopamine (DA), causing changes in homeostasis
in these tissues [150]. The biphasic condition seen in manganism patients is most likely
explained by changes in striatal DA levels. An early phase of elevated DA production
has been linked to psychotic episodes in psychiatric patients [151]. Catecholamine levels
fall as Mn poisoning proceeds, most likely owing to the death of nigrostriatal DAergic
neurons, and Parkinson-like symptoms follow [1,92,150]. As a result, in the early phases of
manganism, symptoms may be reversed by discontinuing Mn exposure, but manganism is
permanent in individuals with motoric abnormalities [136].

5.2. Manganese Toxicity Symptoms

Psychiatric symptoms such as emotional liability, mania, compulsive or aggressive
behavior, irritability, reduced response speed, hallucinations, feeding and sex disturbances,
intellectual deficits, humor changes, sex dysfunctions, and mild motor impairment char-
acterize the early stages of manganism. In situations of established manganism, the char-
acteristic extrapyramidal symptoms (motor symptoms), such as a mask-like face, become
evident [152].
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6. Conclusions

Manganese plays a critical role in both environmental systems and biological or-
ganisms, with its influence spanning from the soil to human health. As an essential
micronutrient, manganese is vital for plant metabolism, contributing to photosynthesis,
enzyme activation, and disease resistance. The environmental cycle of manganese, driven
by natural processes and microbial activity, determines its availability in soils and water,
directly impacting agricultural productivity.

However, the delicate balance of manganese levels is crucial, as both deficiency and
toxicity can have severe consequences. In plants, manganese deficiency can lead to impaired
growth and reduced crop yields, while toxicity, often prevalent in acidic soils, can inhibit
photosynthesis and stunt development. Similarly, in humans, manganese is essential for
numerous physiological processes, but overexposure, particularly in occupational settings,
can lead to neurodegenerative conditions such as manganism.

Understanding the complex interactions between manganese’s environmental cycling,
its role in plant physiology, and its impact on human health underscores the importance of
managing manganese levels in agriculture and industry. Future research should continue
to explore these connections, aiming to optimize manganese use in agriculture while
minimizing the risks of toxicity in both plants and humans. This holistic approach is
essential for sustainable agricultural practices and public health safety.
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