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Abstract: Background: Methicillin-resistant Staphylococcus aureus (MRSA) is considered the main
cause of nosocomial and community-associated infections. Because of antimicrobial resistance, MRSA
infections are difficult or impossible to treat, leading to high mortality rates and significant economic
and societal costs. In view of the MRSA challenge to public health all over the world, the identification
of new and effective anti-MRSA agents is a high medical priority. Objectives: A new series of tricyclic
flavonoids with a methyl substituent on ring A of the flavonoid skeleton was synthesized to assess
their antimicrobial properties. Methods: The structures of novel synthetic tricyclic flavonoids and
their 3-dithiocarbamic flavanones were proven by X-ray structural analyses. Minimum inhibitory
concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) were used to
evaluate antimicrobial activity. Growth kinetic and time–kill assays were employed to confirm the
antibacterial effectiveness. The mechanism of action was investigated using fluorescence microscopy.
Results: Our results show that the tricyclic flavonoids exhibited important antibacterial and anti-
fungal activities, with MIC and MBC values as low as 1.95 µg/mL and 3.90 µg/mL recorded for
compound 5e against a multidrug-resistant MRSA strain. Flavonoid 5e induced a more important
bacteriostatic effect compared with chloramphenicol, inhibiting the bacterial growth for up to 24 h at
concentrations equivalent to 2 × MIC. Also, 5e exhibited a significant bactericidal activity, with no
viable cells evidenced after 6 h of incubation in the presence of MBC and a total kill effect recorded
up to 24 h. The anti-MRSA activity may be explained by the cell membrane impairment induced by
5e. Conclusions: All the data support the idea that flavonoid 5e is a reliable candidate to develop
effective anti-MRSA agents, but further studies are necessary.

Keywords: synthetic flavonoids; benzopyran; new anti-MRSA agents; bacteriostatic; bactericidal;
antimicrobial resistance

1. Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) is a Gram-positive bacterium re-
sistant to different antibiotics, including methicillin and other beta-lactams. MRSA is
considered as the main cause of nosocomial infections. However, recent data have shown
that it is also an important source of community-associated infections [1]. MRSA is respon-
sible for many types of infections, including skin, lung, heart and bloodstream infections [2].
Because of antimicrobial resistance (AMR), MRSA infections are more difficult or impossi-
ble to treat, leading frequently to sepsis and death, especially in hospitalized patients. As a
result, high morbidity and mortality rates and significant economic and societal costs are
recorded [3]. According to Murray et al., in 2019, MRSA was responsible for more than
100,000 deaths attributable to AMR [4]. Furthermore, the alarming spread of MRSA on all
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continents during the last three decades is a major medical concern [5]. Therefore, MRSA is
considered a significant challenge to public health all over the world [6].

MRSA exhibits AMR through several mechanisms including production of penicillin-
binding protein 2a (PBP2a), alteration of other PBPs, beta-lactamase production, efflux
pumps, regulation of resistance genes, or acquisition of new resistance genes [7]. The
continuous emergence of new antibiotic-resistant MRSA strains poses serious clinical
challenges, threatening the effectiveness of treatment options. As a consequence, many
of the antibiotics currently used in therapy, including vancomycin, considered to be the
mainstay of severe MRSA infection treatment [8], are becoming less and less efficient.
Moreover, MRSA resistance extends to newer antibiotics such as linezolid and daptomycin,
which are no longer seen as effective solutions [9].

Considering the significant MRSA global burden, the World Health Organization
(WHO) has identified MRSA as a high-priority pathogen, emphasizing the urgent need
for the development of new antibacterial agents that can effectively target MRSA without
promoting further resistance [10]. An alternative approach to identify new anti-MRSA
agents could involve compounds with known antibacterial activity, such as flavonoids.
Flavonoids are naturally occurring compounds found in various plant products well known
for their health benefits [11]. The great diversity of chemical properties provides them with
the ability to combat a wide range of pathogens such as bacteria, fungi, and viruses [12]. On
the other hand, synthetic flavonoids have gained significant attention for their enhanced
antimicrobial potency, improved stability and bioavailability, and overcoming resistance,
making them ideal candidates for the development of new efficient antimicrobial agents
against multidrug-resistant microorganisms [13].

Our research group has focused in recent years on a new class of sulfur-containing tri-
cyclic flavonoids with halogen substituents at the benzopyran core. We previously showed
that those compounds displayed important antibacterial activity against Gram-positive
and negative strains, including ESKAPE pathogens [14,15]. Here we report the synthesis
and characterization of new synthetic tricyclic flavonoids with a lipophilic substituent (a
methyl group) on ring A. Theoretically, adding a new methyl group should enhance the
activity against Gram-negative bacteria [16]; we therefore intended to perform a structure
relationship study using different microbial strains. Also, we assessed the effectiveness
of these flavonoids against a multidrug-resistant clinical MRSA isolate with the aim of
identifying new antibacterial compounds that could mitigate the burden of the alarming
emergence of antibiotic-resistant MRSA strains.

2. Results and Discussion
2.1. Synthesis

Substituted 4-chromanones and flavanones have been reported to be obtained by
the reaction of dithiocarbamates of type 2 with aminals 3 [17]. Based on our previous
findings, we decided to extend our studies to a new class of tricyclic flavonoids with a
structure related to the compounds depicted in Scheme 1. Thus, 3-dithiocarbamic fla-
vanones 4 were synthesized by reacting 1-(2-hydroxy-5-methylphenyl)-1-oxaethan-2-yl
N,N-diethylaminocarbodithioate (2) with aminals 3 (Scheme 1). The latter compounds
were obtained by reacting the corresponding substituted benzaldehydes with morpholine.
The aminals are more stable and reactive compounds than free aldehydes. In principle, the
reaction mechanism involved the formation of a carbon–carbon bond by elimination of
morpholine from aminal and a hydrogen atom from the α position toward the carbonyl
group of phenacyl dithiocarbamates 2. The released morpholine acts as a base-generating
phenolate anion that undergoes a nucleophilic attack replacing the second morpholine unit
from the original aminal and closes the benzopyran ring.
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Scheme 1. The synthesis of tricyclic flavonoids 5a–e. 
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constants, the two diastereoisomers were easily identified. Moreover, it is 
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Scheme 1. The synthesis of tricyclic flavonoids 5a–e.

The original short communication on the synthesis of flavanones of type 4 [17] did not
mention the existence of diastereoisomers. However, we identified an inseparable mixture
of two diastereoisomers. In principle, these flavanones should have two diastereoisomers
depending on the relative orientation of the H-2 and H-3 hydrogen atoms of the flavanones
4. These two hydrogen atoms can point either to opposite sides or to the same side of the
C-2 and C-3 carbon atoms in the benzopyran ring. Based on the magnitude of their coupling
constants, the two diastereoisomers were easily identified. Moreover, it is reasonable to
assume that the most stable isomer is that with an anti orientation of the two hydrogen
atoms 4′ rather than the syn diastereomer 4′′ (Figure 1). Our assumption is based on the
well-known higher stability of less sterically hindered isomers. This means that, as in the
case of cis and trans isomers, the most thermodynamically stable one is the less hindered
anti diastereomer. The diastereoisomeric ratio and coupling constants of flavonones 4 are
presented in Table 1. For all flavanones, the major isomer is the anti one, as it is the most
thermodinamically stable.
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Table 1. Coupling constants and diastereoisomer ratio of flavonones 4.

Flavanones 4 a b c d e
3JH2–H3 syn (Hz) 3.4 3.2 3.9 3.7 3.7
3JH2–H3 anti (Hz) 7.8 8.1 8.7 8.3 8.3

syn: anti ratio 31:69 12:88 11:89 12:88 10:90

The structural information provided by NMR data was unambiguously confirmed by
X-ray analysis (see Supplementary Materials). The structure of the anti diastereomer of
flavanone 4a is presented in Figure 2a. The asymmetric unit consists of two molecules that
differ in the orientation of the diethylaminocarbodithioate groups (Figure 2b).

The most accessible approach for the synthesis of 1,3-dithiolium-2-yl cations involves
the heterocyclization of the corresponding phenacyl dithiocarmates under acid catalysis.
The cyclization of flavanones 4 should hence provide the new tricyclic flavonoids 5 using
the conditions described in Scheme 1. Thus, using a concentrated sulfuric acid–glacial acetic
acid (1:1 v/v) mixture, at 50 ◦C, the cyclization of dithiocarbamates 4 takes place under
mild reaction conditions. The acid cyclization of dithiocarbamic flavanones 4 involves in
a first step the activation of the carbonyl group toward nucleophiles by protonation of
the oxygen atom. The heterocyclization takes place by nucleophilic attack of the sulfur
atom to the protonated carbonyl group, followed by water elimination that leads to the
formation of a fused 1,3-dithiolium ring. The addition of an aqueous solution of sodium
tetrafluoroborate provides tricyclic flavonoids 5 as white crystalline compounds in good
yields (83–89%). The structures of flavonoids 5 were confirmed by analytical and spectral
data (see Supplementary Materials). Moreover, these data were confirmed by X-ray analysis
as shown in Figure 3 for the structure of flavonoid 5c.
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Figure 3. Molecular structure of flavanoid 5c; ellipsoids represent 50% probability levels. The dashed
line shows a short hydrogen bond H2· · · F2 of 2.36 Å between cation and anion; a further short
contact H5· · · F5 of 2.30 Å connects the ions to form inversion-symmetric dimers.

2.2. In Vitro Assessment of Antimicrobial Susceptibility

The tested flavonoids were significantly more active against Gram-positive bacteria
than against Gram-negative strains, as shown in Table 2. The MIC values recorded against
Gram-positive strains ranged from 1.95 to 62.50 µg/mL, with flavonoids 5e, 5d, and 5b as
the most active compounds. The highest antibacterial activity was recorded for compound
5e against S. aureus medbio1-2012 (MIC = 1.95 µg/mL). The Gram-negative strains were
not susceptible to compounds 5a–e, the recorded activity being comparable with the
negative control. One exception occurred regarding compound 5e, for which an MIC
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value of 62.50 µg/mL was registered against E. coli. Regarding the antifungal activity, only
flavonoids 5b, 5d, and 5e showed inhibitory effects on the growth of the two tested Candida
strains (MIC = 31.25 µg/mL).

Table 2. Minimum inhibitory concentrations of 5a–e flavonoids against tested microbial strains
(µg/mL).

Microbial Strains 5a 5b 5c 5d 5e Control DMSO (%)

Staphylococcus aureus ATCC 25923 7.81 7.81 7.81 3.90 3.90 1.95 a/7.81 chl 24.87

S. aureus prxbio2 7.81 15.62 15.62 15.62 15.62 7.81 chl 24.87

S. aureus medbio1-2012 15.62 3.90 15.62 3.90 1.95 7.81 chl 24.87

Enterococcus faecium medbio2-2012 62.50 31.25 62.50 31.25 15.62 15.62 chl 12.43

Escherichia coli ATCC 25922 125 125 125 125 62.50 62.50 a/7.81 k 12.43

Acinetobacter pittii Cl2 62.50 62.50 62.50 62.50 62.50 >250 a/0.37 cip 6.21

Pseudomonas aeruginosa PAO1 125 125 125 125 125 >250 a 12.43

Candida krusei Prx 62.50 31.25 62.50 31.25 31.25 62.50 f 6.21

C. albicans ATCC 10231 62.50 31.25 62.50 31.25 31.25 >500 f 6.21
a—ampicillin; chl—chloramphenicol; cip—ciprofloxacin; k—kanamycin; f—fluconazole. The values are means of
at least three replicates.

The synthetic flavonoids also showed important bactericidal activity against Gram-
positive bacteria, with one strain (S. aureus prxbio2) considered as less sensitive. The lowest
MBC values of 3.90 and 7.81 µg/mL were recorded for compounds 5e and 5b against
an MRSA strain (S. aureus medbio1-2012)—Table 3. No significant bactericidal activity
was registered against Gram-negative tested strains. Among the five synthetic flavonoids,
compounds 5b and 5e showed the highest fungicidal activity against a C. krusei strain
resistant to fluconazol (MFC = 31.25 µg/mL).

Table 3. Minimum bactericidal/fungicidal concentrations of 5a–e flavonoids against tested microbial
strains (µg/mL).

Microbial Strains 5a 5b 5c 5d 5e Control

Staphylococcus aureus ATCC 25923 31.25 15.62 31.25 31.25 31.25 7.81 a

S. aureus prxbio2 250 62.50 250 250 62.50 125 chl

S. aureus medbio1-2012 62.50 7.81 31.25 15.62 3.90 31.25 chl

Enterococcus faecium medbio2-2012 125 62.50 62.50 62.50 31.25 >250 chl

Escherichia coli ATCC 25922 125 125 125 125 125 125 a

Acinetobacter pittii Cl2 125 125 125 125 125 >250 a

Pseudomonas aeruginosa PAO1 >250 >250 >250 >250 >250 >250 a

Candida krusei Prx 125 31.25 125 62.50 31.25 62.50 f

C. albicans ATCC 10231 125 62.50 125 62.50 62.50 >500 f

a—ampicillin; chl—chloramphenicol; f—fluconazole. The values are means for at least three replicates.

Based on MIC and MBC values, flavonoid 5e was selected for further tests to assess
the antibacterial effectiveness against the most susceptible test microorganism—a clinical
multidrug-resistant MRSA isolate (S. aureus medbio1-2012).
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2.3. Flavonoid 5e Induced Important Bacteriostatic Effect against MRSA

The effect of 5e and chloramphenicol on S. aureus medbio1-2012 cells during the
exponential phase of growth is presented in Figure 4a,b. No significant differences were
registered during the 24 h incubation time between the growth of MRSA cells incubated in
MHB (growth control) and MHB supplemented with DMSO (negative control). Different
concentrations of 5e induced significant bacteriostatic effects over time against the MRSA-
tested strain compared to controls. Thus, incubation of the cells in the MHB medium
supplemented with 5e at ½ MIC resulted in a 5 h growth delay and a significantly reduced
growth up to 12 h compared to the controls. A total inhibition of MRSA growth was
recorded at a concentration equivalent to an MIC up to 12 h. However, after 24 h of
incubation, the spectrophotometric measurements revealed bacterial growth in the presence
of both 5e and chloramphenicol. Furthermore, no MRSA growth was evidenced at a
concentration equivalent to 2 × MIC during the entire span of the experiment, as the
growth curve depicted in Figure 4a shows.
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chloramphenicol (b). MIC of 5e = 1.95 µg/mL; MIC of chloramphenicol = 7.81 µg/mL. MRSA cells
incubated in MHB served as growth control, and MHB supplemented with DMSO served as negative
control. Values are expressed as means of three independent experiments. Bars indicate SEM.

The growth curve analysis revealed that increasing concentrations of 5e resulted in a
more pronounced bacteriostatic effect, suggesting that the MRSA growth was inhibited by
the tested flavonoid in a dose- and time-dependent manner. Moreover, the bacteriostatic
effects recorded for 5e and chloramphenicol (an antibiotic to which the MRSA strain was
sensitive) were similar for all tested concentrations.

2.4. Flavonoid 5e Is a Potent Bactericidal Compound

Time–kill studies revealed that 5e possesses an important bactericidal potential against
the MRSA strain. No viable cells were evidenced starting with 6 h of incubation in the
presence of 5e at a concentration of 3.90 µg/mL (equivalent to an MBC), indicating a
total kill effect (Figure 5). The same effect was recorded after only 4 h of incubation in
PBS supplemented with 7.81 µg/mL (2 × MBC). Moreover, no colonies were observed
on MHA after cultivating the samples exposed for 24 h to both tested concentrations,
suggesting a significant bactericidal potential of 5e against MRSA. Chloramphenicol also
exhibited bactericidal activity, with a total reduction in CFU count recorded after 9 h of
incubation in PBS supplemented with a concentration of 31.25 µg/mL (equivalent to MBC).
However, after 24 h, a revival of the MRSA culture was evidenced (Figure 5). No significant
differences were recorded between the viability of cells incubated in PBS (growth control)
and PBS supplemented with DMSO (negative control).
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2.5. The Cell Membrane Integrity Was Impaired by 5e

The exposure of S. aureus medbio1-2012 cells to 5e resulted in a progressive increase
in red-stained cell numbers over time, as fluorescence microscopy revealed (Figure 6).
The percentage of control red fluorescent cells was relatively low and constant during the
entire incubation time, confirming that propidium iodide (PI) was unable to penetrate
non-compromised bacterial membranes. After 6 h of incubation, more than 90% of the
exposed cells exhibited red fluorescence, most probably due to the uptake of PI into MRSA
cells with damaged membranes (Figure 6a). Higher percentages of red fluorescent cells
(99%) were recorded after 7 h of incubation in the presence of 5e at a concentration of
3.90 µg/mL. At the end of the exposure time (8 h), all MRSA cells were stained in red
(Figure 6b).

The biggest challenge in the ongoing fight against MRSA is the ability of this pathogen
to rapidly acquire resistance to different antibiotics. Therefore, continuous efforts to develop
new effective drugs should be focused on identifying new molecules never used before
in therapy, for which MRSA did not come into contact and did not develop yet resistance.
A possible solution could be represented by synthetic compounds such as novel tricyclic
flavonoids with a methyl group as a substituent on ring A reported here.

Our studies reveal that flavonoids 5a–e exhibited important antibacterial properties
against Gram-positive bacteria, especially methicillin-sensitive and -resistant S. aureus
strains. The lowest MIC (1.95 µg/mL) and MBC (3.90 µg/mL) values were recorded for
compound 5e against an MRSA strain resistant to multiple antibiotics. A milder effect was
registered against Enterococcus faecium with MIC and MBC values as low as 15.62 µg/mL
and 31.25 µg/mL, respectively. Regarding the Gram-negative strains, our flavonoids
showed a relatively poor activity, with only one active compound (5e) against E. coli
(MIC = 62.50 µg/mL). The different sensitivity of Gram-positive and Gram-negative bacte-
ria might be explained by the different architecture of the cell wall. Thus, Gram-negative
bacteria have an external membrane surrounding the cell wall, containing lipopolysaccha-
rides involved in preventing the penetration of antimicrobials into the cell [18]. However,
our results do not confirm the initial hypothesis regarding the enhancement of the activity
against Gram-negative bacteria because of the new substitution with a methyl group on
the A ring. The MIC values recorded for methyl-substituted flavonoids were higher than
or similar to previously reported halogen-substituted tricyclic flavonoids [14,15]. We may
presume that the interaction of the positive carbon atom C-2 of the 1,3-dithiol-2-ylium
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moiety with nucleophilic components of the bacterial membrane, previously presented
as the main mechanism of action against both type of bacteria, is more important than
increasing the lipophilicity of the A core of flavonoids 5a–e. Furthermore, our previous
studies identified a correlation between the nature of substituents on the A ring and the
increase in MIC and MBC values in the order of H < F < Cl < Br < I. This was correlated with
the size of the substituents and the variation in electronegativity in the halogen series. As
the electronegativity decreases, the antimicrobial activities increase, as the outer membrane
of bacteria are negatively charged at the physiological pH. This behavior is confirmed by
the present study, whereby in tuning substituents at the B ring, the same influence on MIC
and MBC values was detected.
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The important antibacterial properties of flavonoid 5e are highlighted by the com-
parisons with antibiotics used in our experiments as references. Thus, 5e exhibited a
bacteriostatic activity up to 4-fold higher and a bactericidal activity up to 8-fold higher
compared with chloramphenicol against MSSA and MRSA strains (except S. aureus prxbio2).
Also, 5e exhibited a comparable antimicrobial activity with ampicillin and chloramphenicol
against E. faecium and E. coli. However, the antibacterial activity of most flavonoids was
lower compared with the antibiotics used as the control.

Our survey of the literature revealed that 5e displayed enhanced anti-MRSA activity
compared with previously reported natural and synthetic flavonoids. Thus, 5e exhibited
a more significant inhibitory activity against MRSA, with an MIC value up to 420 times
smaller compared with rutin, morin, and quercetin [19]. Flavonoid 5e showed a similar or
even higher anti-MRSA effect compared with plant-derived flavones and isoflavones with
reported MICs between 1 and 8 µg/mL [20]. Also, 5e was more active against MRSA strains
compared with glabrol, licochalcone A, licochalcone C, and licochalcone E from licorice
(MIC90 and MIC50 between 2 and 8 µg/mL) [21] or tetrahydroxyflavanones isolated from
Sophora exigua and Echinosophora koreensis with MIC values of 3.13 µg/mL and 6.25 µg/mL,
respectively [22]. Regarding the bactericidal effect, 5e showed improved potency compared
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with diplacone (MBC = 4.9–39.2 µg/mL) [23] or galangin (MBC = 14.16 µg/mL) [24]. A
lower bactericidal effect was registered compared with sepicanin A—a new flavanone from
Artocarpus sepicanus (MBC = 2.9 µg/mL) [25].

Flavonoid 5e also showed important antifungal activity against Candida krusei and
C. albicans, with MIC and MBC values as low as 31.25 µg/mL. The same compound was
more active than fluconazole against both Candida strains, with an MBC value recorded
for a clinical isolate of C. krusei up to 8 times lower compared with the control antifungal.
The bactericide and fungicide potential of 5e suggests a broad antimicrobial spectrum,
offering the perspective of important applications. The dual antimicrobial activity of
5e may open up new possibilities for the development of antimicrobials with both an-
tibacterial and antifungal activities, which are important for addressing the challenges of
complex co-infections, reducing the likelihood of resistance developing against multiple
pathogens simultaneously.

To confirm the antistaphylococcal potential of 5e, we selected for further tests a MRSA
clinical isolate resistant to cefoxitin, clindamycin, erythromycin, moxifloxacin, penicillin,
and tetracycline. The growth kinetic studies revealed an important bacteriostatic effect
starting with a concentration as low as 0.97 µg/mL corresponding to ½ MIC which induced
a significant 5 h growth delay and a reduced cell growth up to 12 h. Incubating the MRSA
cells in MHB supplemented with 1.95 µg/mL (equivalent to an MIC) resulted in a complete
inhibition of bacterial growth up to 12 h. No growth was evidenced up to 24 h when MRSA
cells were exposed to concentrations of 3.90 µg/mL (2 × MIC), indicating a significant dose-
dependent bacteriostatic activity. Moreover, the growth inhibitory effect of the synthetic
flavonoid was similar to chloramphenicol, but we need to emphasize that the results are
registered at different concentrations. Thus, the 5e bacteriostatic effect was recorded at a
concentration 4 times lower compared with the antibiotic used as reference, suggesting an
important antibacterial activity of the tested compound against the MDR MRSA strain.

The time–kill kinetics studies showed that 5e displayed not only important bacterio-
static activity but also significant bactericidal effects. Thus, all MRSA cells were killed in 6 h
of exposure to 5e at equivalent MBCs (3.90 µg/mL). At higher concentrations (7.81 µg/mL),
the complete killing was recorded after only 4 h of exposure. Moreover, no viable cells were
evidenced after 24 h of incubation in PBS, suggesting a total kill effect. The bactericidal
activity of 5e was more pronounced compared to chloramphenicol for which a total kill
was evidenced after 9 h of exposure at concentrations 8 times higher compared to 5e.
Furthermore, viable MRSA cells exposed to chloramphenicol were evidenced after 24 h
of incubation.

The bactericidal potential of 5e is also confirmed by the fluorescence microscopy results.
When a combination of fluorescent dyes (PI and SYTO 9) is used for staining, bacterial
cells with normal membranes usually impermeable to PI appear stained in green by SYTO
9. Dead cells with compromised membranes emit red fluorescence due to the PI uptake.
Our results show a significant increase over time of red MRSA cells exposed to 5e. Thus,
after 7 h of incubation, 99% of the cells were stained in red and the percentage increased to
100% after 8 h, supporting the important bactericidal activity of 5e. As presented above
(Figure 5), the total kill was recorded for a 5e concentration equivalent to MBCs after 6 h
of incubation, although a similar effect was registered using the fluorescence microscope
after 8 h (Figure 6). This discrepancy may be explained by the different densities of the cell
suspensions exposed to 5e: approximately 106 CFUs/mL for the time–kill assay and 108

CFUs/mL for the evaluation of membrane integrity. Fluorescence microscopy also revealed
massive membrane injuries favoring the PI uptake and pointing to a membrane-type
mechanism of action. Considering our previous results concerning the antibacterial activity
of sulfur-containing tricyclic flavonoids with halogen substituents at the benzopyran
core [14], we have strong reasons to believe that 5e’s primary mechanism of action is related
to cell membrane impairment. However, we do not exclude the hypothesis of additional
action mechanisms being responsible for the antibacterial activity of 5e; therefore, new
investigations are necessary.
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Overall, our results support the idea that 5e possesses important antibacterial prop-
erties, highlighting the suitability for the identification of new strategies to mitigate the
MRSA burden. However, further studies regarding cytotoxicity are necessary to confirm
the potential of 5e in order to develop new and efficient anti-MRSA agents.

3. Materials and Methods
3.1. Chemistry

NMR spectra were recorded on a Bruker 500 MHz spectrometer (Bruker BioSpin,
Rheinstetten, Germany). Chemical shifts were reported in ppm downfield from TMS. Mass
spectra were recorded on a Thermo Scientific ISQ LT instrument (Thermo Fisher Scientific
Inc., Waltham, MA, USA). IR spectra were recorded on a Bruker Tensor 27 instrument
(Bruker Optik GmbH, Ettlingen, Germany). Melting points were obtained on a KSPI
melting point meter (A. KRÜSS Optronic, Hamburg, Germany) and were uncorrected. All
reagents were commercially available and used without further purification.

3.1.1. General Procedure for 6-Methyl-2-phenyl-4-oxochroman-3-yl
N,N-diethyldithiocarbamate (4a)

To a solution of 1-(5-methyl-2-hydroxyphenyl)-1-oxoethan-2-yl N,N-diethyldithiocarba
mate (2) (0.15 g, 0.5 mmol) in a mixture of CHCl3/MeOH (10 mL, 1:1 v/v), aminal 3a (0.13 g,
0.5 mmol) was added and the reaction mixture was heated under reflux for 3 h. After
cooling, the solid material was filtered off and purified by recrystallization from ethanol to
give 4a (0.16 g, 81%) as colorless crystals. IR (ATR, cm−1) 2745, 1694, 1435, 1251, 1201, 973,
807. 1H NMR (CDCl3) δ 7.72 (m, 1H), 7.54 (m, 2H), 7.37 (m, 1H), 7.35 (m, 2H), 7.34 (m, 1H),
7.02 (d, J = 8.4 Hz, 1H), 5.83 (m, 2H), 3.96 (m, 2H), 3.68 (m, 2H), 2.34 (s, 3H), 1.20 (m, 6H).
13C NMR (CDCl3) δ 191.9, 188.1, 158.7, 137.7, 136.8, 131.3, 128.7, 128.4, 127.6, 127.2, 120.8,
117.9, 82.7, 59.7, 50.4, 47.2, 20.4, 12.5, 11.4. MS (EI) m/z: 385.1 (M+, 32%) for C21H23NO2S2.

3.1.2. 6-Methyl-2-(4-methylphenyl)-4-oxochroman-3-yl N,N-diethyldithiocarbamate (4b)

0.15 g, 74%. IR (ATR, cm−1) 2960, 1684, 1409, 1249, 1188, 834. 1H NMR (CDCl3) δ 7.71
(d, J = 2.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 2H), 7.35 (dd, J = 2.0 Hz, J = 8.5 Hz, 1H), 7.16 (d,
J = 8.0 Hz, 2H), 6.99 (d, J = 8.4 Hz, 1H), 5.83 (m, 1H), 5.79 (m, 1H), 3.96 (m, 2H), 3.68 (q,
J = 7.0 Hz, 2H), 2.34 (s, 3H), 2.33 (s, 3H), 1.21 (m, 6H). 13C NMR (CDCl3) δ 191.2, 188.2,
158.7, 138.5, 137.6, 133.9, 131.2, 129.1, 127.5, 127.2, 120.7, 117.9, 82.5, 59.7, 50.4, 47.2, 21.2,
20.4, 12.5, 11.4. MS (EI) m/z: 399.1 (M+, 32%) for C22H25NO2S2.

3.1.3. 6-Methyl-2-(4-fluorophenyl)-4-oxochroman-3-yl N,N-diethyldithiocarbamate (4c)

0.16 g, 78%. IR (ATR, cm−1) 3021, 1691, 1431, 1274, 1219, 981. 1H NMR (CDCl3) δ 7.73
(d, J = 2.0 Hz, 1H), 7.52 (d, J = 8.5 Hz, 2H), 7.37 (dd, J = 2.0 Hz, J = 8.4 Hz, 1H), 7.04 (d,
J = 8.5 Hz, 2H), 6.98 (d, J = 8.4 Hz, 1H), 5.88 (m, 1H), 5.76 (m, 1H), 3.95 (m, 2H), 3.68 (m, 2H),
2.34 (s, 3H), 1.21 (m, 6H). 13C NMR (CDCl3) δ 191.8, 187.9, 163.8, 158.6, 137.7, 132.7, 131.5,
129.6, 127.3, 120.7, 117.8, 115.2, 82.2, 60.1, 50.6, 47.2, 20.4, 12.5, 11.4. MS (EI) m/z: 403.1 (M+,
24%) for C21H22FNO2S2.

3.1.4. 6-Methyl-2-(4-chlorophenyl)-4-oxochroman-3-yl N,N-diethyldithiocarbamate (4d)

0.17 g, 82%. IR (ATR, cm−1) 2967, 1684, 1431, 1298, 878, 547. 1H NMR (CDCl3) δ 7.72
(d, J = 2.0 Hz, 1H), 7.48 (d, J = 8.4 Hz, 2H), 7.37 (dd, J = 2.0 Hz, J = 8.4 Hz, 1H), 7.32 (d,
J = 8.4 Hz, 2H), 6.99 (d, J = 8.4 Hz, 1H), 5.84 (m, 1H), 5.77 (m, 1H), 3.95 (m, 2H), 3.68 (m,
2H), 2.34 (s, 3H), 1.22 (t, J = 7.1 Hz, 6H). 13C NMR (CDCl3) δ 191.7, 187.8, 158.5, 137.7, 135.3,
134.5, 131.5, 129.1, 128.5, 127.2, 120.7, 117.8, 82.1, 59.8, 50.5, 47.2, 20.4, 12.5, 11.4. MS (EI)
m/z: 419.1 (M+, 32%) for C21H22ClNO2S2.

3.1.5. 6-Methyl-2-(4-bromophenyl)-4-oxochroman-3-yl N,N-diethyldithiocarbamate (4e)

0.18 g, 79%. IR (ATR, cm−1) 2984, 1684, 1419, 1245, 1201, 808, 508, 437. 1H NMR
(CDCl3) δ 7.72 (d, J = 2.0 Hz, 1H), 7.48 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.37 (dd,
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J = 2.0 Hz, J = 8.4 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 5.86 (m, 1H), 5.76 (m, 1H), 3.96 (m, 2H),
3.69 (q, J = 7.0 Hz, 2H), 2.34 (s, 3H), 1.22 (t, J = 7.0 Hz, 6H). 13C NMR (CDCl3) δ 191.7, 187.7,
158.5, 137.8, 135.8, 131.5, 131.4, 129.4, 127.2, 122.8, 120.7, 117.8, 82.1, 59.7, 50.5, 47.2, 20.4,
12.5, 11.4. MS (EI) m/z: 463.0 (M+, 296%) for C21H22

79BrNO2S2.

3.1.6. General Procedure for 2-N,N-Diethylamino-6-methyl-4-phenyl-4H-1,3-dithiol[4,5-c]
chromen-2-ylium Tetrafluoroborate (5a)

To a mixture of sulfuric acid (1 mL) and acetic acid (1 mL), flavanone 4a (0.13 g,
0.33 mmol) was added and the resulting solution was heated to 80 ◦C for 30 min. The
reaction mixture was then left to cool to room temperature, and a solution of sodium
tetrafluoroborate (0.3 g) in water (20 mL) was added dropwise with vigorous stirring. The
resulting precipitate was filtered, washed with water, and recrystallized from ethanol,
yielding the desired tetrafluoroborate 5a in the form of colorless crystals (0.13 g, 89%). M.p.
258–259 ◦C. IR (ATR, cm−1) 1567, 1441, 1252, 1181, 784. 1H NMR (DMSO-d6) δ 7.47 (m, 5H),
7.27 (s, 1H), 7.18 (d, J = 8.2 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.71 (s, 1H), 3.93 (m, 2H), 3.84
(m, 2H), 2.28 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H). 13C NMR (DMSO-d6) δ
184.9, 149.2, 137.4, 132.9, 132.7, 130.3, 129.5, 128.6, 127.9, 127.5, 125.4, 117.5, 116.6, 75.5, 54.7,
54.5, 20.4, 10.7, 10.6. MS (EI) m/z: 368.1 (M+-BF4, 8%) for C21H22NOS2]+.

3.1.7. 2-N,N-Diethylamino-6-methyl-4-(4-methylphenyl)-4H-1,3-dithiol[4,5-c]chromen-
2-ylium Tetrafluoroborate (5b)

M.p. 238–240 ◦C (0.14 g, 88%). IR (ATR, cm−1) 1568, 1439, 1247, 1041, 725. 1H NMR
(DMSO-d6) δ 7.38 (d, J = 8.1 Hz, 2H), 7.26 (m, 3H), 7.18 (dd, J = 1.5 Hz, J = 8.3 Hz, 1H), 6.66
(s, 1H), 3.92 (m, 2H), 3.84 (m, 2H), 2.31 (s, 3H), 2.28 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), 1.30 (t,
J = 7.2 Hz, 3H). 13C NMR (DMSO-d6) δ 185, 149.3, 139.9, 134.5, 132.9, 132.7, 130.5, 128.7,
128.0, 127.9, 125.3, 117.5, 116.6, 75.5, 54.6, 54.5, 21.2, 20.4, 10.8, 10.6. MS (EI) m/z: 382.1
(M+-BF4,9%) for C22H24NOS2]+.

3.1.8. 2-N,N-Diethylamino-6-methyl-4-(4-fluorophenyl)-4H-1,3-dithiol[4,5-c]chromen-
2-ylium Tetrafluoroborate (5c)

M.p. 228–229 ◦C (0.13 g, 84%). IR (ATR, cm−1) 1561, 1430, 1220, 1041, 681 1H NMR
(DMSO-d6) δ 7.55 (m, 2H), 7.29 (m, 3H), 7.18 (d, J = 8.3 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H),
6.74 (s, 1H), 3.93 (m, 2H), 3.84 (m, 2H), 2.28 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H), 1.32 (t, J = 7.2
Hz, 3H). 13C NMR (DMSO-d6) δ 184.9, 164.1, 149.0, 133.7, 133.0, 132.8, 130.4, 128.7, 127.4,
125.4, 117.5, 116.6, 116.4, 74.7, 54.6, 54.5, 20.4, 10.8, 10.6. MS (EI) m/z: 386.1 (M+-BF4, 5%)
for C21H21FNOS2]+.

3.1.9. 2-N,N-Diethylamino-6-methyl-4-(4-chlorophenyl)-4H-1,3-dithiol[4,5-c]chromen-
2-ylium Tetrafluoroborate (5d)

M.p. 192–194 ◦C (0.14 g, 85%). IR (ATR, cm−1) 1540, 1451, 1242, 1051, 744, 567. 1H
NMR (DMSO-d6) δ 7.52 (m, 4H), 7.28 (d, J = 1.3 Hz, 1H), 7.19 (dd, J = 1.3 Hz, J = 8.3 Hz,
1H), 6.96 (d, J = 8.3 Hz, 1H), 6.75 (s, 1H), 3.93 (m, 2H), 3.85 (m, 2H), 2.28 (s, 3H), 1.40 (t,
J = 7.2 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H). 13C NMR (DMSO-d6) δ 184.9, 149.0, 136.3, 134.9,
133.0, 132.9, 129.9, 129.5, 128.8, 127.0, 125.4, 117.5, 116.5, 74.7, 54.7, 54.5, 20.4, 10.8, 10.6. MS
(EI) m/z: 402.1 (M+-BF4, 8%) for C21H21ClNOS2]+.

3.1.10. 2-N,N-Diethylamino-6-methyl-4-(4-bromophenyl)-4H-1,3-dithiol[4,5-c]chromen-
2-ylium Tetrafluoroborate (5e)

M.p. 198–200 ◦C (0.15 g, 83%). IR (ATR, cm−1) 1551, 1443, 1254, 1081, 894, 611, 545. 1H
NMR (DMSO-d6) δ 7.66 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 1.3 Hz, 1H),
7.18 (dd, J = 1.3 Hz, J = 8.3 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 6.74 (s, 1H), 3.93 (m, 2H), 3.86
(m, 2H), 2.28 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H). 13C NMR (DMSO-d6) δ
184.9, 149.0, 136.7, 133.1, 132.9, 132.5, 130.1, 128.8, 127.0, 125.4, 123.6, 117.5, 116.5, 74.7, 54.7,
54.5, 20.4, 10.8, 10.6. MS (EI) m/z: 446.0 (M+-BF4, 9%) for C21H21

79BrNOS2]+.
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3.2. Microbial Strains and Culture Media

The synthesized compounds were tested for antimicrobial activity against the follow-
ing strains: Staphylococcus aureus ATCC 25923 (methicillin-sensitive—MSSA), Escherichia coli
ATCC 25922, Pseudomonas aeruginosa PAO1, and Candida albicans ATCC 10231 (purchased
from local distributors); Acinetobacter pittii Cl2 (resistant to ampicillin and chloramphenicol)
was isolated from a waste water sample; S. aureus prxbio2 (resistant to methicillin—MRSA,
cefoxitin, clindamycin, erythromycin, and tetracycline), S. aureus medbio1-2012 (resis-
tant to methicillin—MRSA, cefoxitin, clindamycin, erythromycin, moxifloxacin, penicillin,
and tetracycline), Enterococcus faecium medbio2-2012 (resistant to methicillin, ampicillin,
ciprofloxacin, gentamicin, levofloxacin, nitrofurantoin, and penicillin), and Candida krusei
Prx strains (resistant to fluconazole) were provided by med. biol. PhD Simona Matiut from
Praxis Clinical Laboratory, Iasi, Romania.

Each strain was stored at −80 ◦C in 15% glycerol stocks. Mueller–Hinton agar (MHA,
Accumix, Geel, Belgium) and Sabouraud dextrose agar (SDA, Roth, Germany) were used
for cultivation of bacterial and fungal strains after removal from the freezer. All strains
were cultivated overnight at 37 ◦C in aerobic conditions. The source of inoculum for each
experiment was represented by one colony considered typical for each strain and inoculated
in 10 mL of Mueller–Hinton broth (MHB, Roth, Germany) or 10 mL of Sabouraud dextrose
broth (SDB, Roth, Germany). All precultures were incubated for 24 h at 37 ◦C and 190 rpm
(for bacterial strains) or 130 rpm (for fungal strains).

3.3. Minimum Inhibitory and Bactericidal/Fungicidal Concentration Determination

A microdilution method was employed to determine the minimum inhibitory concen-
tration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC), following
a previously presented protocol [14,26]. Bacterial and fungal suspensions were adjusted to
approximately 2 × 106 CFUs/mL (CFUs = colony-forming units) and 1 × 103 CFUs/mL,
respectively, and used to inoculate each well of a microplate containing the corresponding
culture medium. Each tested flavonoid was diluted using DMSO (Merck, Darmstadt,
Germany) to obtain a concentration range of 0.12 to 250 µg/mL. Negative control was
represented by DMSO (concentrations ranging from 0.012 to 24.87% v/v). Inoculated MHB
or SDB medium served as growth control. Ampicillin, chloramphenicol, ciprofloxacin,
kanamycin, and fluconazole were used as reference antimicrobials. The lowest concentra-
tion of the tested flavonoids showing no visible microbial growth after a 24 h incubation was
considered as the MIC. MBC and MFC were considered as the lowest concentrations with
no colony growth after plating samples taken from MIC assay wells onto MHA or SDA.

3.4. Growth Inhibition Assay

The growth of S. aureus medbio1-2012 strain was assessed in the presence of 5e for
24 h using a previous described method, with minor modifications [14,26]. Inoculum (final
cell density of approximately 106 CFUs/mL) was added in 15 mL MHB supplemented with
5e at final concentrations equivalent to ½ MIC, MIC, and 2 × MIC. Positive control was
represented by inoculated MHB supplemented with chloramphenicol (½ MIC, MIC, and
2 × MIC). DMSO added to the inoculated culture medium (final concentrations equivalent
to those used to prepare the samples) served as negative control. The growth control was
represented by inoculated MHB alone. Samples were taken during incubation (37 ◦C and
190 rpm) every hour until 12 h and then at 24 h. A bacterial growth curve was constructed by
plotting the mean optical densities (OD at 600 nm) over time to assess the bacterial growth.

3.5. Time–Kill Assay

The bactericidal potential of 5e against S. aureus medbio1-2012 was evaluated using a
time–kill kinetic study, as described earlier [14]. Briefly, a bacterial suspension in PBS (final
cell density of approximately 106 CFUs/mL) was supplemented with 5e (final concentration
equivalent to MBC and 2 × MBC). Chloramphenicol added in PBS at a concentration
equivalent to MBC served as positive control, and PBS supplemented with DMSO (final
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concentrations equivalent to those used to prepare 5e corresponding MBC and 2 × MBC)
served as negative control. Samples were taken every hour up to 9 h, and at 24 h, were
plated onto MHA after performing a tenfold serial dilution. Following an incubation at
37 ◦C for 24 h, the number of CFUs was determined and the final values (CFUs/mL)
were transformed into log10 values. The bactericidal effect was considered as a ≥3 log10
reduction in the total CFUs/mL from the initial inoculum. Mean CFU counts versus time
were plotted to construct a viability curve.

3.6. Assessment of Membrane Integrity by Propidium Iodide Uptake

The membrane integrity of the S. aureus medbio1-2012 cells was evaluated using the
Live/Dead BacLight bacterial viability kit (Invitrogen, Waltham, MA, USA) and fluores-
cence microscopy, following a previously described procedure [14]. Briefly, an exponential
phase cell suspension (approximately 108 CFUs/mL) was prepared in PBS supplemented
with 5e (final concentration 3.90 µg/mL, equivalent to MBC) and incubated at 37 ◦C and
190 rpm for 8 h. Cells in PBS supplemented with DMSO at the same concentration used
to prepare the sample served as negative control. Samples taken every hour were stained
with SYTO 9 and propidium iodide (PI), according to the manufacturers’ specifications.
The cell count was performed using a DM100 LED fluorescence microscope (Leica, Wetzlar,
Germany) and an I3 blue excitation range filter cube (BP 450 ± 490 nm band-pass filter).
For each sample, 10 random images were captured which were used further to calculate
the ratio between green/red fluorescent cells and total cells as percentage.

3.7. Statistical Analysis

Each experiment was repeated at least three times. Dunnett’s multiple comparisons
test was used for the evaluation of the results. All data were analyzed using GraphPad
Prim 9 software (GraphPad Software, Inc., La Jolla, CA, USA) and presented as mean (n = 3)
± SEM. Differences between groups were considered significant when p < 0.05.

4. Conclusions

Novel tricyclic flavonoids were synthesized and tested for antimicrobial activities
against selected bacterial and fungal strains. The structures of novel flavonoids and of their
3-dithiocarbamic flavanones were unambiguously proven by analytical and spectral data.
X-ray structural analyses of two compounds confirm the structures of the investigated
flavonoids. Our results show that the tricyclic flavonoids exhibited important antimicrobial
activity, especially against Gram-positive bacteria, with flavonoid 5e as the most active
compound. Flavonoid 5e displayed significantly higher bacteriostatic and bactericidal
effects compared to chloramphenicol against an MDR MRSA strain. This compound
induced a total kill effect up to 24 h at very low concentrations most probably due to the
impairment of the cell membrane. All the data support the idea that flavonoid 5e could be
a reliable candidate to develop effective anti-MRSA agents, but further studies regarding
the mechanism of action and cytotoxicity are necessary.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ph17101276/s1. Elemental analysis data for compounds 4a–e and 5a–e.
Copies of 13C-NMR spectra. Details of X-ray structure determinations. Additionally, complete
crystallographic data have been deposited with the Cambridge Crystallographic Data Centre under
the numbers CCDC 2375914 (4a) and 2375915 (5c). Copies of the data can be obtained free of charge
from www.ccdc.cam.ac.uk/data_request/cif, accessed on 25 September 2024.
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23. Navrátilová, A.; Nešuta, O.; Vančatová, I.; Čížek, A.; Varela, M.R.; López-Abán, J.; Villa-Pulgarin, J.A.; Mollinedo, F.; Muro, A.;
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