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Abstract: Background: Acute sarcopenia refers to the swift decline in muscle function and mass
following acute events such as illness, surgery, trauma, or burns that presents significant challenges
in hospitalized older adults. Methods: narrative review to describe the mechanisms and management
of acute sarcopenia. Results: The prevalence of acute sarcopenia ranges from 28% to 69%, likely
underdiagnosed due to the absence of muscle mass and function assessments in most clinical settings.
Systemic inflammation, immune–endocrine dysregulation, and anabolic resistance are identified
as key pathophysiological factors. Interventions include early mobilization, resistance exercise,
neuromuscular electrical stimulation, and nutritional strategies such as protein supplementation,
leucine, β-hydroxy-β-methyl-butyrate, omega-3 fatty acids, and creatine monohydrate. Pharmaceu-
ticals show variable efficacy. Conclusions: Future research should prioritize serial monitoring of
muscle parameters, identification of predictive biomarkers, and the involvement of multidisciplinary
teams from hospital admission to address sarcopenia. Early and targeted interventions are crucial to
improve outcomes and prevent long-term disability associated with acute sarcopenia.
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1. Introduction

Acute sarcopenia is characterized by a rapid decline in muscle mass and function,
typically triggered by acute events such as illness, surgery, trauma, or hospitalization. While
chronic sarcopenia associated with aging has been extensively studied, acute sarcopenia
remains a relatively underexplored area, despite its significant impact on patient outcomes,
especially in older adults. The swift onset of muscle degradation in response to acute
stressors poses unique diagnostic and therapeutic challenges, often leading to prolonged
recovery, increased risk of complications, and higher mortality rates.

This narrative review aims to provide a comprehensive examination of the mecha-
nisms, clinical implications, and management strategies for acute sarcopenia. Specifically,
the objectives of this review are to: (i) summarize the current understanding of the patho-
physiological mechanisms driving acute sarcopenia, (ii) discuss the diagnostic challenges
and the limitations of current methods used to assess muscle mass and function in acutely
ill patients, (iii) evaluate the existing therapeutic interventions, such as nutritional supple-
mentation, physical therapy, and pharmacological agents, while highlighting the variable
efficacy of these treatments in preventing or mitigating muscle loss, (iv) identify key gaps
in the literature and propose future research directions, particularly in the areas of early
intervention, biomarker identification, and personalized treatment approaches for acute
sarcopenia, (v) emphasize the importance of multidisciplinary management, integrating
medical, nutritional, and rehabilitative strategies to improve outcomes for patients at risk
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of or recovering from acute sarcopenia. By addressing these objectives, this review aims
to provide healthcare professionals and researchers with a clearer understanding of acute
sarcopenia and its clinical significance, while also highlighting the urgent need for further
investigation and evidence-based interventions.

2. Methods

Given the narrative nature of this review, the literature search was conducted with
the aim of providing a comprehensive overview of current knowledge on acute sarcopenia.
Peer-reviewed journals were consulted to cover the key aspects of the condition, from
underlying mechanisms to therapeutic interventions. The search was carried out using
PubMed, focusing on articles published in the last decade, although older foundational
studies were also included when relevant. Search terms included “acute sarcopenia”,
“muscle wasting”, “hospitalization-related muscle loss”, “acute sarcopenia treatment”. No
rigid inclusion or exclusion criteria were applied, given that the objective of a narrative
review is to synthesize and discuss available literature rather than perform a systematic
assessment. Instead, studies were selected based on their relevance to the understanding of
acute sarcopenia’s pathophysiology, diagnosis, and management. Through this approach,
the review captures the breadth of the topic and offers insights into the current state of
knowledge while identifying areas where further research is needed.

3. Definitions of Sarcopenia

Sarcopenia is a disease characterized by a reduction of muscle mass and function
which is associated with an increased risk of developing adverse clinical outcomes [1].
Primary sarcopenia is a chronic condition; it refers to the gradual decline of muscle function
and mass typical of aging [2]. Muscle mass decreases on average from 50% of total body
weight in young adults to 25% in those over 80 years old [3]. The mechanisms driving this
process are complex and multifactorial, and they are not yet completely understood [4].
Disrupted protein homeostasis, impaired proteolytic and autophagic pathways [5–8], mi-
tochondrial dysfunction [9], reduction in myofiber nuclei [10,11], decrease in satellite cell
numbers and/or alterations in their proliferation and differentiation abilities [12,13], my-
ofiber denervation [14], diminished and altered microvascular structure [15], elevated
levels of inflammatory mediators [16], and hormonal imbalances [17] are all significant
contributors to the age-related decline in muscle mass and function (Figure 1).

Nutrients 2024, 16, x FOR PEER REVIEW 2 of 43 
 

 

patients at risk of or recovering from acute sarcopenia. By addressing these objectives, this 
review aims to provide healthcare professionals and researchers with a clearer under-
standing of acute sarcopenia and its clinical significance, while also highlighting the ur-
gent need for further investigation and evidence-based interventions. 

2. Methods 
Given the narrative nature of this review, the literature search was conducted with 

the aim of providing a comprehensive overview of current knowledge on acute sarcope-
nia. Peer-reviewed journals were consulted to cover the key aspects of the condition, from 
underlying mechanisms to therapeutic interventions. The search was carried out using 
PubMed, focusing on articles published in the last decade, although older foundational 
studies were also included when relevant. Search terms included “acute sarcopenia”, 
“muscle wasting”, “hospitalization-related muscle loss”, “acute sarcopenia treatment”. 
No rigid inclusion or exclusion criteria were applied, given that the objective of a narrative 
review is to synthesize and discuss available literature rather than perform a systematic 
assessment. Instead, studies were selected based on their relevance to the understanding 
of acute sarcopenia’s pathophysiology, diagnosis, and management. Through this ap-
proach, the review captures the breadth of the topic and offers insights into the current 
state of knowledge while identifying areas where further research is needed. 

3. Definitions of Sarcopenia 
Sarcopenia is a disease characterized by a reduction of muscle mass and function 

which is associated with an increased risk of developing adverse clinical outcomes [1]. 
Primary sarcopenia is a chronic condition; it refers to the gradual decline of muscle func-
tion and mass typical of aging [2]. Muscle mass decreases on average from 50% of total 
body weight in young adults to 25% in those over 80 years old [3]. The mechanisms driv-
ing this process are complex and multifactorial, and they are not yet completely under-
stood [4]. Disrupted protein homeostasis, impaired proteolytic and autophagic pathways 
[5–8], mitochondrial dysfunction [9], reduction in myofiber nuclei [10,11], decrease in sat-
ellite cell numbers and/or alterations in their proliferation and differentiation abilities 
[12,13], myofiber denervation [14], diminished and altered microvascular structure [15], 
elevated levels of inflammatory mediators [16], and hormonal imbalances [17] are all sig-
nificant contributors to the age-related decline in muscle mass and function (Figure 1). 

 

 
Figure 1. Main modifications in aging muscles.



Nutrients 2024, 16, 3428 3 of 41

This figure presents a schematic overview of the key factors contributing to muscle
degeneration in aging. The central image depicts aging muscle surrounded by various
pathological changes that impact muscle health, like impaired autophagy, reduction in
the muscle’s ability to degrade and recycle damaged proteins, leading to accumulation of
dysfunctional proteins, decreased levels of hormones like testosterone and growth hormone,
along with a decline in muscle proteins and downregulation of sarcomeric and oxidative
phosphorylation genes, contributing to muscle weakness and atrophy. Increased presence
of immune cells with an inflammatory profile and excessive extracellular matrix deposition
and fat accumulation can impair muscle function and regeneration. Moreover, decreased
mitochondrial function reduces energy production, while loss of nerve innervation leads to
muscle fiber atrophy. These factors collectively highlight the multifaceted nature of muscle
aging, which is exacerbated in conditions like sarcopenia.

In particular, inflammation and denervation can alter myonuclear identity with type
I myonuclei undergoing a metabolic shift towards a more glycolytic profile [3]. On the
contrary, type II myonuclei display an important glycogen depletion, making them more
vulnerable to muscle atrophy [3]

When sarcopenia is caused by factors beyond the natural aging process, such as
diseases, inactivity, or malnutrition, it is classified as secondary sarcopenia. For many older
adults, sarcopenia arises from a combination of these factors, making it challenging to
categorize each case strictly as primary or secondary.

Muscle strength is the key indicator of sarcopenia, as it currently serves as the most
reliable measure of muscle function. Sarcopenia is probable when low muscle strength is
observed. To confirm a diagnosis of sarcopenia, there must also be evidence of reduced
muscle mass or quality. When low muscle strength, diminished muscle quantity or qual-
ity, and reduced physical performance are all present, sarcopenia is classified as severe.
Table 1 illustrates the cut-off to diagnose sarcopenia according to the European Working
Group on Sarcopenia in Older People 2 definition [2], the 2019 Asian Working Group for
Sarcopenia [18], and the Sarcopenia Definition and Outcomes Consortium [19].

Table 1. Sarcopenia: cut-offs for the diagnosis.

EWGSOP2 AWGS SDOC

Muscle
strength

Grip strength <27 kg ♂; <16 kg ♀ Grip strength <28 kg ♂; <18 kg ♀ Grip
strength <35.5 kg ♂; <20 kg ♀

5-time chair
stand test >15 s

Muscle
mass

ASM <20 kg ♂; <15 kg ♀

Not required
ASM/height2 <7 kg/m2 ♂; <5.5 kg/m2 ♀ ASM/m2 <7 kg/m2 ♂;

<5.4 kg/m2 ♀

Muscle
perfor-
mance

Gait speed ≤0.8 m/s Gait speed ≤1 m/s Gait speed <0.8 m/s

SPPB ≤8 point score SPPB ≤9 point score

TUG ≥20 s 5-time chair
stand test ≥12 s

400 m walk test Non-completion or ≥6 min
for completion

Sarcopenia
definitions

Low strength + low
muscle mass

Low strength OR low
performance + low

muscle mass Low strength
+

low performance
SEVERE: Low strength + low muscle

mass + low performance SEVERE:
Low strength + low
muscle mass + low

performance

AWGS = Asian Working Group for Sarcopenia, ASM = Appendicular Skeletal Muscle Mass, EWGSOP2 = European
Working Group on Sarcopenia in Older People 2, SDOC = Sarcopenia Definitions and Outcomes Consortium,
SPPB = Short Physical Performance Battery, TUG = Timed Up and Go Test, ♂ = male, ♀ = female.
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Acute sarcopenia is characterized by a rapid onset of muscle insufficiency following
illness, surgery, trauma, or burns. There is no consensus on the period during which the
onset of sarcopenia can be considered related to an acute event, with some studies using
a 28-day cut-off [20,21] and others using 6 months [2,22]. To define acute sarcopenia, the
decline in muscle mass and function must be significant enough to meet the criteria for
sarcopenia using previously defined cut-off points (Table 1) [1].

Some individuals experience an acute-on-chronic phenotype, where acute illnesses
exacerbate chronic sarcopenia. This condition is termed acute-on-chronic sarcopenia [23].
Recovery from acute sarcopenia can be incomplete (Figure 2), especially in frail and older
adults [24,25], who may not return to their pre-illness baseline muscle status [20].
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This figure illustrates the progression of muscle mass and function over time under
various aging conditions, emphasizing the impact of acute stressors: (i) healthy aging:
represented by a green line, showing gradual decline in muscle mass and function with
occasional stressors leading to complete recovery. (ii) Normal aging: shown in blue, with
a more pronounced decline and less robust recovery following acute stressors. (iii) Frail:
indicated by the orange line, depicting accelerated decline with incomplete recovery after
stressors, leading to persistent functional impairment. (iv) Chronic sarcopenia: marked by
the purple line, characterized by a steep decline in muscle mass and function with minimal
recovery, highlighting the vulnerability of individuals with sarcopenia to acute stressors.
The figure underscores the importance of maintaining muscle health to mitigate the impact
of aging and acute health events on muscle function.

The accumulation of short periods of acute sarcopenia throughout an individual’s
lifespan likely contributes significantly to the etiology of chronic sarcopenia [26]. With
an assumption of 80% recovery of muscle mass following each period of disuse, an older
person would lose at least 400 g of muscle tissue after only two short periods of illness or
injury per year. This equates to a 0.8% muscle loss per year, contributing substantially to
the estimated 1–2% yearly muscle loss from the age of 50 onwards [27].

A recent study of intensive care unit (ICU) patients on mechanical ventilation revealed
that muscle mass loss occurred in a caudal-to-cranial direction over a period of 7 days.
Notably, the lower limbs experienced the most significant loss within the initial 3 days,
which then gradually decreased by day 7. In contrast, substantial muscle mass reduction in
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the upper limbs was observed after day 5, and abdominal muscle mass notably declined by
day 7 [28].

4. Epidemiology

The prevalence of acute sarcopenia among inpatients is not well known. Diagnosing
acute sarcopenia requires evidence of rapid declines in muscle mass and function, necessi-
tating that these measurements are available from either before the illness or its early stages.
Unfortunately, routine clinical practice does not typically include assessments of muscle
mass and function, leading to frequent underdiagnosis of acute sarcopenia. An Italian study
by Martone et al. showed that acute sarcopenia occurred in 14.7% of older patients in acute
internal medicine and geriatrics care wards [29]. In rehabilitation settings, particularly
among post-hip-fracture patients, the estimated prevalence of acute sarcopenia ranges from
28% to 69% [30]. After colorectal surgery, the prevalence of sarcopenia increased from 28.6%
at baseline to 83.3% one week post-surgery [31]. Six months after gastrectomy for gastric
cancer, the prevalence of acute sarcopenia was 20%, compared to a pre-surgery prevalence
of chronic sarcopenia of 2% [32].

5. Pathophysiology

Muscle protein is constantly turned over with a net synthesis of approximately 1–2%
per day in healthy adult humans, balanced by an equivalent rate of protein breakdown
such that total muscle mass is maintained [33]. Sarcopenia results from an imbalance in
these rates. The imbalance can arise from either a reduction in protein synthesis or an
increase in protein breakdown that is greater than any change in the opposite direction and
very small changes can lead to significant muscle loss over time [33,34]. Acute sarcopenia
is considered to be caused by a combination of muscle disuse during bed rest [35,36],
heightened inflammation [37], endocrinological stress response [38,39], and microRNAs
involved in the regulation of muscle protein turnover [40–42].

5.1. Disuse

Research involving healthy volunteers has shown that bed rest leads to reductions in
muscle quantity, strength, and aerobic performance [3,13–22]. Periods of disuse ranging
from 10 to 42 days typically result in a muscle loss rate of approximately 0.5–0.6% of
total muscle mass per day [35,43–49] with muscle strength declining variably between
0.3% [50,51] and 4.2% [49] per day.

The disproportionately greater loss of muscle strength compared to muscle mass is
likely due to declines in neuromuscular recruitment and function associated with dis-
use [52].

Given that skeletal muscle mass turnover occurs at a relatively slow rate of about 1–2%
per day, muscle atrophy due to disuse must be driven by a chronic, persistent disturbance
in muscle protein balance. This means that, over an extended period, either muscle
protein synthesis rates decrease, protein breakdown rates increase, or both processes occur
simultaneously [15,21,30–32].

5.1.1. Decreased Protein Synthesis

Extensive evidence indicates that immobilization impairs de novo muscle protein
synthesis [35,44,53–55]. Muscle protein synthesis is regulated by growth factors, including
insulin and IGF-1, which stimulate protein synthesis and increase muscle mass through
the PI-3K-Akt-mTOR pathway [56]. Upon binding to IGF-1, the IGF-1 receptor (IGF-1R)
phosphorylates an intracellular adaptor protein, insulin receptor substrate-1 (IRS-1), which
in turn recruits and phosphorylates phosphoinositide 3-kinase (PI3K), followed by Akt
phosphorylation. The PI3K/Akt pathway is crucial for myotube hypertrophy, and Akt
activation in rat muscle prevents denervation-induced atrophy. Mammalian target of
rapamycin (mTOR) is a downstream target of Akt. Immobilization negatively regulates the
IGF-1/Akt/mTOR pathway, with the Akt-mTOR pathway being downregulated in rodent
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models of muscle atrophy [57]. It has been shown that IGF-1 levels, after initially dropping
post-cardiac surgery, fail to return to normal in patients who develop post-surgery muscle
wasting [42]. The decrease in muscle protein synthesis is an early phenomenon: in young
men, a significant reduction in muscle phosphorylation status of Akt occurs after just
2 days of disuse [58]. Recent data also show that both Akt and p70S6K phosphorylation
are suppressed between 1 and 4 days following the onset of disuse in younger adults [59]
and in vivo muscle protein synthesis rates decline over a 24 h inactive period following
surgery [60]. The reduction in Akt expression removes its inhibitory effect on catabolic
pathways [56] and thus the reduction of muscle protein synthesis can also favor the increase
in muscle protein breakdown. Animal models of disuse atrophy exhibit a marked increase
in muscle protein breakdown rates following the onset of inactivity, along with a reduction
in muscle protein synthesis rates [34,39–41,57,61,62].

5.1.2. Increased Protein Breakdown

Protein breakdown in skeletal muscle occurs through several distinct processes, in-
cluding caspase proteases involved in apoptosis [26], cathepsins integral to autophagy [63],
the calcium-dependent calpain system [64], and the ubiquitin–proteasome pathway. Al-
though the ubiquitin–proteasome pathway cannot degrade intact myofibrils without initial
pre-processing by other pathways, it is considered the primary mediator of net skeletal
muscle protein breakdown in humans [65–67]. During this process, specific proteins are
marked for degradation through a three-step, enzymatic cascade [67]. This specificity is
provided by a family of ubiquitin ligases, particularly the muscle-specific ligases muscle
atrophy F-Box/atrogin-1 (MAFbx) and muscle-specific RING-finger protein 1 (MuRF1).
These ligases are transcriptionally upregulated in various conditions that lead to muscle
atrophy [67,68]. Notably, knocking out these specific ligases has been shown to induce par-
tial resistance to muscle atrophy [67]. While it was once believed that MAFbx and MuRF1
operated together within a specific muscle “atrophy program” [68] recent research has re-
vealed that they can also function independently during muscle atrophy [69]. Additionally,
MuRF1 may play a role in inhibiting muscle protein synthesis pathways. Consequently, the
transcriptional regulation of these ubiquitin ligases is widely regarded as a key indicator of
increased ubiquitin–proteasome activity, protein breakdown, and muscle atrophy [65–67].
In the absence of direct, dynamic measurements of muscle protein breakdown rates, re-
searchers often use the upregulation of the ubiquitin–proteasome system as an indicator
of increased muscle protein degradation following disuse. For example, elevated mRNA
levels of MAFbx [48] and/or MuRF1 [44,48,70], fork head box protein 01 (FOXO1; a known
transcription factor for these ubiquitin ligases) [59], and the 20S proteasome 7 subunit [48]
have been observed after 10–21 days of limb immobilization or bed rest in young individ-
uals. Additionally, consistent with previous findings [70] recent research has shown an
increase in polyubiquitinated proteins within skeletal muscle after prolonged bed rest [71].
Enhanced production of reactive oxygen species (ROS) during diseases and surgeries [72]
can increase the activity of FOXO transcription factors, thereby elevating the expression of
MuRF and Atrogin and promoting muscle catabolism.

Oxidative stress may also contribute to chronic low-grade inflammation [73]. Inflam-
matory signals further boost the expression of MuRF1 and Atrogin [56,74].

Muscle protein breakdown may indeed be elevated early during disuse, primarily
mediated by the ubiquitin–proteasome pathway. Consistent with this, a previous study
demonstrated that after 48 h of disuse in young men, there was an increase in the ubiq-
uitination of high-molecular-weight proteins, alongside elevated mRNA levels of both
MAFbx and MuRF1 [75]. Also, other studies have reported increased mRNA expression of
MAFbx and/or MuRF1 following 2 [59,76], 3 [77], or 4 [59] days of limb immobilization in
human volunteers. However, alterations in muscle protein breakdown do not appear to
contribute to muscle loss during prolonged disuse in humans [78] as protein breakdown
rates either remain unchanged or adaptively decrease [30,31]. Evidence indicates that
short-term inactivity swiftly leads to a reduction in muscle protein synthesis rates and a
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concurrent, rapid, and potentially temporary increase in muscle protein breakdown. This
combination of decreased synthesis and increased breakdown within skeletal muscles likely
accounts for the significant muscle mass loss observed in the initial phase of inactivity.
Subsequently, if inactivity persists, muscle protein breakdown rates return to near-normal
levels. At this stage, gradual muscle loss continues at a slower pace, primarily due to a
sustained decrease in both basal and post-prandial muscle protein synthesis rates.

5.2. Inflammation

Inflammation plays a pivotal role in the development of acute sarcopenia [79]. During
acute inflammatory states, such as critical illness, infections, or trauma, proinflamma-
tory cytokines like TNF-α, IL-6, and IL-1β are rapidly released. These cytokines activate
catabolic pathways in muscle tissue, leading to increased proteolysis and muscle protein
breakdown through the ubiquitin–proteasome system and autophagy–lysosome pathway.
Additionally, inflammation induces oxidative stress, as reactive oxygen species (ROS) pro-
duction is heightened, causing further damage to muscle cells and mitochondria. Damaged
mitochondria release mitochondrial damage-associated molecular patterns (mDAMPs),
which exacerbate inflammation by activating the NF-κB pathway and inflammasomes, such
as NLRP3. This results in a vicious cycle of inflammation and muscle degradation [80–83].
The acute inflammatory environment also impairs anabolic signaling pathways and inhibits
muscle protein synthesis, further contributing to rapid muscle atrophy. Inflammatory-
induced mitochondrial dysfunction and impaired energy production hinder muscle repair
and regeneration, accelerating the progression of acute sarcopenia. Experimental models,
such as lipopolysaccharide-induced inflammation, have demonstrated that acute inflamma-
tory signaling can swiftly lead to muscle catabolism, underscoring the critical link between
inflammation and acute sarcopenia [84].

Notably, two recent meta-analyses have demonstrated a correlation between the in-
flammatory marker CRP and sarcopenia [85,86]. Fast-twitch fibers (type II) are particularly
sensitive to the inflammatory processes associated with critical illnesses and are the most
affected [87]. These fibers may undergo necrosis and be replaced by adipose tissue or fibro-
sis, which directly compromises daily living activities, especially those requiring power, in
which these fibers are predominantly used [87–89].

GDF-15

Growth Differentiation Factor 15 (GDF-15), a member of the transforming growth
factor-beta (TGF-β) superfamily, is significantly upregulated in various forms of stress. It
has been demonstrated that patients who developed post-surgery muscle wasting after
elective cardiac surgery failed to reduce the post-surgery increase in GDF-15 levels [42].
These findings were confirmed in patients post-aortic surgery [60]. In this study, pre-
surgical levels of GDF-15 were higher in patients who subsequently lost more than 10% of
the cross-sectional area of the rectus femoris muscle.

5.3. Hormonal Imbalances

Cortisol, a stress hormone, significantly increases during acute illness and stressful
events [90]. It acts as a catabolic stimulus on muscles, and hypercortisolemia has been
shown to exacerbate muscle mass and strength loss associated with bed rest. A controlled
study demonstrated that timed hydrocortisone administration to healthy young men over a
28-day period of bed rest resulted in greater lean leg mass loss compared to a bed rest-only
model [38]. A recent study demonstrated that the cortisol:cortisone ratio remained elevated
after aortic surgery in patients who developed muscle wasting [91]. 11β-Hydroxysteroid
dehydrogenase type 1 (11β-HSD1) regulates glucocorticoid exposure at the pre-receptor
level. The type 1 isoform acts as an oxide reductase, converting cortisone to active cortisol.
It can be induced by proinflammatory cytokines such as TNF-α. Recent studies have
shown that skeletal muscle expression of 11β-HSD1 is negatively associated with grip
strength in both men and women and with total lean mass in men [92]. Transgenic animal
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models have demonstrated that inactivation of 11β-HSD1 protects against skeletal muscle
atrophy induced by exogenous glucocorticoids [93]. 11β-HSD1 has been identified as
a major regulator of intramyocellular protein metabolism, influencing myotube size in
both animal and human models and affecting the expression of various genes involved in
protein synthesis, growth factors, and the ubiquitin–proteasome system [94].

5.4. MicroRNAs

MicroRNAs (miRNAs) are non-coding RNAs increasingly implicated in muscle wast-
ing associated with various disease states. Several miRNAs interact with different pathways
involved in muscle protein turnover. For instance, miR-29b inhibits IGF-1 and PI3K, leading
to muscle atrophy [95]. Human muscle biopsies have shown that miRNAs such as miR-542
and miR-424 are overexpressed in individuals with intensive-care-unit-acquired weakness
compared to controls, whereas miR-181a, miR-1, and miR-133b are underexpressed [40–42].
Furthermore, chronic obstructive pulmonary disease (COPD) has been linked to higher
levels of miR-424 and miR-542, suggesting that the underlying disease state may stimulate
their expression [40,41].

6. Assessment

Acute sarcopenia is characterized by a significant decrease in muscle strength and
mass and performance compared to baseline levels, meeting the established cut-offs defined
for the diagnosis of chronic sarcopenia (Table 1) [2,18,19].

6.1. Muscle Mass Measurement

Computed tomography (CT) and magnetic resonance imaging (MRI) are considered
the gold standards for non-invasive muscle mass assessment [96] and dual energy X-ray
absorptiometry (DEXA) is the most commonly used technique for evaluating body com-
position [97]. However, these methods are not suitable for assessing acute sarcopenia due
to concerns about radiation exposure (for CT and DEXA) [96] and long duration of the
procedure and high costs (for MRI). Bioelectrical impedance analysis (BIA) is a non-invasive
method that indirectly evaluates body composition by assessing tissue conductivity. Small
electrical currents pass through intra- and extracellular fluids, varying with tissue charac-
teristics. Skeletal muscles, having the largest volume and lowest resistance among body
tissues, allow most of the BIA current to flow through them. In contrast, adipose tissue
displays current resistance [98]. Validated conversion equations are then used to estimate
muscle and fat mass, with reference values established for different ethnicities and age
groups [99–102]. Notably, the Sergi equation is based on older European populations [100].
BIA offers several advantages: it is inexpensive, easily reproducible, and suitable for re-
peated measurements in both ambulatory and bedridden patients. Additionally, BIA results
under standard conditions correlate well with MRI findings. Muscle quantity measured by
BIA also shows a good correlation with muscle echography [103]. However, BIA’s accu-
racy can be significantly affected by fluid balance [104,105]. Moreover, it is currently not
recommended for use in individuals with implantable cardiac devices, although emerging
research suggests it may be safe in these cases [106]. Ultrasound is an emerging technique
that is gaining increasing attention for evaluating muscle quantity and quality. It can
detect changes in muscle thickness and cross-sectional area even over short periods [107].
Measurements of bilateral anterior thigh thickness (BATT) using ultrasound show excellent
consistency between different observers and the same observer over time [108]. The EWG-
SOP2 endorses ultrasound for clinical sarcopenia assessment, [2] and a consensus protocol
has been established [107,109]. The threshold values for reduced muscle mass using BATT
ultrasound are 3.86 cm for women and 5.44 cm for men [108].

The Sarcopenia Definition and Outcomes Consortium (SDOC) criteria suggest that
lean mass measured by DXA should be excluded from the definition of sarcopenia because
it has shown to be a weak predictor of negative health outcomes [19]. Given that the
reduction of muscle mass has historically been considered a key aspect of sarcopenia, the
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SDOC allows for the potential inclusion of more precise measures of muscle mass in the
future, provided these measures are shown to be linked to adverse clinical outcomes.

6.2. Muscle Quality Measurement

The assessment of muscle quality has become increasingly important as it appears to
decline before muscle mass does. Additionally, muscle quality is independently linked to
significant health outcomes [110]. It is affected by the proportion of non-contractile and
contractile elements within the skeletal muscle [111] and can be histologically characterized
by fat infiltration and fibrosis [1,112,113]. Activation of genes promoting fibrosis has been
observed in both critical illness myopathy and in intensive care unit patients infected with
SARS-CoV-2 [114]. Muscle echography is capable of assessing muscle quality through the
determination of muscle echointensity (EI) [115,116] and muscle stiffness (SI) [117]. EI,
which indicates the brightness of an ultrasound image, is expressed as a value between 0
(black) and 255 (white) arbitrary units (AU) in a region of interest. Fat and fibrous tissues
appear whiter than muscle fibers. SI, calculated with specialized software, inversely corre-
lates with muscle quality, meaning higher stiffness indicates poorer muscle quality. There
is currently no consensus on which parameter is preferable for evaluating muscle quality
via ultrasound. Increased echogenicity of the rectus femoris has been observed in cases of
acute sarcopenia among COVID-19 patients [118] and COVID-19 survivors [111,119].

6.3. Muscle Strength Assessment

Muscle strength can be assessed using either grip strength or the chair stand test [2].
Grip strength moderately correlates with strength in other parts of the body. Due to its
simplicity, it is recommended for the assessment of acute sarcopenia in hospital settings.
The handgrip test is performed using a calibrated handheld dynamometer. Individuals are
positioned with their elbows bent at a 90◦ angle and forearms in a neutral position, and
they are instructed to “squeeze as hard as they can”. The Jamar dynamometer is a validated
and widely used tool for measuring grip strength, although other brands are also being
considered. The cut-off values for low grip strength are less than 27 kg for men and less
than 16 kg for women [2] for the EWGSOP2, less than 28 kg in men and less than 18 kg in
women for the AWGS [18], and less than 35.5 kg in men and less than 20 kg in women for
the SDOC criteria [19]. The chair stand test can serve as an indicator of leg muscle strength.
It measures the time it takes for an individual to stand up from a seated position five times
without using the arms [120]. A duration of more than 15 s to complete this task indicates
low muscle strength [2].

6.4. Muscle Performance Assessment

Muscle performance is typically assessed using the Short Physical Performance Battery
(SPPB) or measuring gait speed [2]. The SPPB comprises three subtests that evaluate
standing balance, usual gait speed over a short distance, and the ability to rise from a
chair. For the standing balance test, the subject is asked to stand in three progressively
challenging positions for 10 s each: a side-by-side feet position, a semi-tandem position,
and a full tandem position. In the gait speed subtest, the subject walks at usual pace over a
4 m course, starting from a stationary position. The faster of the two trials (measured in
seconds) is used to calculate the summary score. For the chair stand subtest, the subject
is asked to rise from and sit back in a chair five times as quickly as possible with their
hands folded across the chest. The performance is recorded as the total time (in seconds)
taken to complete the task. The results of these three timed tasks are scored from 0 (worst
performance) to 4 (best performance) based on predetermined cut-off points. The sum of the
scores from the three subtests produces a summary score of physical performance, ranging
from 0 (worst performance) to 12 (best performance) [121]. An SPPB score of ≤8 indicates
reduced physical performance according to the EWGSOP2 criteria [2]. Considering that the
Asian population is usually more active the cut-off point for the SPPB according to AWGS
is ≤9 [18].
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Alternatively, physical performance can be measured using gait speed. A gait speed of
≤0.8 m/s (over a 4-meter walk) indicates a reduction in muscle performance [2] according
to the EWGSOP2 criteria, whereas the cut-off is ≤1 m/s (over a 6 m walk) for the AWGS [18]
and <0.8 m/s for usual gait speed for the SDOC criteria [19].

7. Biomarkers of Acute Sarcopenia

Inflammatory biomarkers such as C-reactive protein (CRP), granulocyte–monocyte
colony-stimulating factor (GM-CSF), interferon-γ (IFNγ), interleukins (IL-6 and IL-8),
myeloperoxidase (MPO), P-selectin, and tumor necrosis factor-α (TNF-α) may naturally
be elevated in cases of acute sarcopenia. However, distinguishing fluctuations in these
biomarkers specifically related to acute changes in muscle mass and function from those
driven by the underlying acute condition that triggered sarcopenia presents a signifi-
cant challenge. The complex interplay between the inflammatory response and muscle
degradation makes it difficult to clearly differentiate these influences.

Possible innovative biomarkers of acute sarcopenia include a range of molecules that
reflect the underlying mechanisms of rapid muscle loss (Table 2). Growth Differentiation
Factor 15 (GDF-15) is a key biomarker, as it is associated with inflammation and muscle
wasting [42,60]. MicroRNAs (miRNAs) are also significant; specific miRNAs such as
miR-29b [122], which inhibits IGF-1 and PI3K pathways, contribute to muscle atrophy.
Elevated levels of miR-542 and miR-424, and decreased levels of miR-181a, miR-1, and
miR-133b, have been observed in acute muscle weakness [40–42]. A promising but not yet
demonstrated biomarker of acute sarcopenia might be myokine fibroblast growth factor 21
(FGF21). Muscle-derived FGF21 is produced in large quantities in response to muscular
stress, such as mitochondrial dysfunction, and respiratory chain blockage. FGF21 reduces
oxidative stress damage to skeletal muscle mitochondria, helps prevent muscle myopathy,
and maintains muscle metabolic balance. Notably, FGF21 production is sensitive to protein
content, increasing when protein intake is low. Higher circulating FGF21 levels have
already been linked to chronic sarcopenia in older people but its role as a biomarker of
acute sarcopenia remains to be explored [123–125].

Table 2. Potential biomarkers of acute sarcopenia.

Biomarker Concentrations Mechanisms

MicroRNA

miR-29b Elevated Inhibits IGF-1 and PI3K, leading to muscle atrophy

miR-542 Elevated

Targets mitochondrial ribosomal proteins (S2, S10, S18C, S25, S26, and S27)
inducing stress, leading to decreased expression of proteins encoded by
mitochondrial DNA. This reduction is expected to impair mitochondrial
function, including energy production. Moreover, it targets inhibitors of

the TGF-b signaling pathway, which is known to mediate muscle atrophy,
suggesting that it may increase TGF-b signaling

miR-424 Elevated Reduces rRNA and protein synthesis in muscle cells

miR-181a Reduced

Is an endogenous regulator of mitochondrial dynamics through concerted
regulation of Park2, p62/SQSTM1, and DJ-1 in vitro. Downregulation of

miR-181a with age was associated with an accumulation of
autophagy-related proteins and abnormal mitochondria. Restoring

miR-181a levels in old mice prevented accumulation of p62, DJ-1, and
PARK2 and improved mitochondrial quality and muscle function
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Table 2. Cont.

Biomarker Concentrations Mechanisms

miR-1 Reduced

Helps maintain muscle homeostasis by downregulating Pax3, a
transcription factor necessary for muscle progenitor cell activity. This

downregulation is essential for initiating the myogenic program, which
leads to the formation and differentiation of muscle cells. However, during

acute sarcopenia, the dysregulation of miR-1 can impede the proper
initiation of the myogenic program. This disruption can result in impaired
muscle regeneration and repair, exacerbating muscle atrophy. Additionally,
miR-1 is involved in other pathways critical for muscle function, including
those related to muscle protein synthesis and degradation. Altered miR-1
expression can therefore lead to an imbalance in these pathways, further

contributing to muscle wasting and weakness

miR-133b Reduced
Regulates fundamental processes of myogenesis including myoblast
differentiation, regeneration, and satellite cell fate determination. Its

downregulation appears to promote satellite cell quiescence.

GDF-15 Elevated Member of the transforming growth factor-beta (TGF-β) superfamily and
is significantly upregulated in various forms of stress

FGF21

Promising role as acute
sarcopenia biomarker to
be confirmed in future

studies

Produced in large quantities in response to muscular stress; reduces
oxidative stress damage to skeletal muscle mitochondria; association with

chronic sarcopenia

GDF-15: Growth Differentiation Factor 15; FGF21: Fibroblast Growth Factor 21.

8. Risk Factors

During acute illness, the upregulation of catabolic pathways generates energy to
combat the disease. However, this process may lead to a loss of muscle mass and function
as a trade-off. Identifying risk factors for acute sarcopenia is crucial for recognizing patients
at risk and preventing both the immediate and long-term consequences of the condition.
Some risk factors are modifiable, while others are not. Nevertheless, early detection of
these factors can facilitate the implementation of countermeasures to prevent or mitigate
the severity of acute sarcopenia.

8.1. Old Age

Advanced age is a significant risk factor for the development of acute sarcopenia.
Multiple underlying mechanisms in older adults contribute to the onset of this condition.

8.1.1. Inflammaging

As people age, systemic basal inflammatory mediators increase independently of acute
immune challenges, a phenomenon known as inflammaging [126]. Chronic inflammation
is believed to be a major factor contributing to immunosenescence [127] and predisposes
older people to various diseases with a shared inflammatory origin, termed the “diseasome
of inflammaging” [128]. Inflammation, by activating catabolic pathways, also plays a role
in the development of acute sarcopenia. The presence of inflammatory cells [129] and
cytokines [130] has been observed in muscle biopsies of individuals with intensive-care-
unit-acquired weakness (ICUAW), a condition marked by acute loss of muscle mass and
function, which is closely related to acute sarcopenia.

8.1.2. Immunosenescence

Immunosenescence is marked by a reduced capacity to respond to new antigens [131]
and inability to deactivate inflammatory signals once an infection has been resolved.
This results in persistently high levels of inflammatory markers, which trigger catabolic
signals in muscles, promoting the development of sarcopenia. Additionally, aging alters
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neutrophil migratory dynamics, leading to increased tissue damage due to excessive release
of neutrophil elastase, further contributing to muscle loss [132].

8.1.3. Mitochondrial Damage

Aging is marked by increased generation of reactive oxygen species (ROS) in muscle
mitochondria, particularly those under the sarcolemma [104–106], along with mitochondrial
vacuolization and enlargement. Additionally, there is an increase in damaged mitochon-
drial DNA (mtDNA), the release of apoptogenic factors usually stored in the mitochondrial
intermembrane [133,134], and elevated levels of mitophagy, while mitochondrial biogen-
esis declines. These age-related mitochondrial changes contribute to the susceptibility
to developing sarcopenia [135–137]. One of the primary mechanisms regulating mito-
chondrial quality and turnover is the mTORc1 pathway. Its inhibition leads to decreased
mitochondrial biogenesis, reduced mtDNA production, increased mitochondrial damage,
and impaired mitochondrial quality [135]. Inflammation, physical inactivity, increased
adiposity, and type 2 diabetes mellitus all interact with the mTORc1 pathway, resulting in
decreased muscle protein synthesis.

8.1.4. Gut Microbiota

As individuals age, the gut’s ability to contain microbes and their byproducts dimin-
ishes [138]. These harmful microbial products can then leak into surrounding tissues and
the bloodstream, exacerbating the existing inflammaging [126]. Additionally, since the
gut microbiota influences the immune system’s memory mechanisms [139], age-related
changes in its composition [140] can worsen immunosenescence-related muscle damage.

8.1.5. Oral Health and Protein Intake

Anorexia of aging [141,142], along with poor dental health, reduced salivation, and
decreased strength in the masticatory muscles and tongue [143] can lead to swallowing diffi-
culties, reducing the intake of protein necessary for muscle anabolism. Consequently, these
changes can promote chronic sarcopenia that favors the development of acute sarcopenia
when an acute trigger occurs.

8.1.6. Anabolic Resistance

Anabolic resistance refers to the decreased ability of muscles in older adults to syn-
thesize protein in response to anabolic stimuli, such as protein consumption and physical
activity. This decline in muscle response makes it harder for older individuals to build or
maintain muscle mass. Anabolic resistance is driven by several mechanisms: increased
splanchnic sequestration of amino acids, reduced post-prandial muscle perfusion, de-
creased muscle uptake of dietary amino acids, impaired anabolic signaling for protein
synthesis, compromised digestive capacity [144–148], and reduced nutrient delivery due to
macrovascular and microvascular changes [149].

Anabolic resistance can also be triggered by prolonged disuse [150]. For example,
seven days of bed rest can cause approximately a 35% decline in the muscle protein
synthetic response to essential amino acid ingestion in older individuals [55,151]. Extended
periods of immobilization (i.e., 14 days) can induce anabolic resistance in response to
hyperaminoacidemia even in young men [151,152]. Anabolic resistance likely worsens the
catabolic state observed in critically ill patients, suggesting that traditional protein goals
should be increased to compensate for this effect [153].

8.1.7. Endocrine Dysregulation

Age-related changes in endocrine signals contribute to increased catabolic and de-
creased anabolic pathways in muscles. Cortisol levels slightly rise with age [154], leading
to muscular weakness [155]. Additionally, serum levels of the androgen precursor dehy-
droepiandrosterone sulfate (DHEAS) decline, resulting in an increased cortisol:DHEAS
ratio and a state of relative cortisol excess. Acute illness or stress exacerbates this imbal-
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ance, further compromising muscle health [156]. Anabolic hormones such as testosterone,
growth hormone (GH), and insulin-like growth factor 1 (IGF-1) decrease after the age of
60, contributing to muscle loss. Testosterone inhibits the production of myostatin and
reactive oxygen species (ROS), prevents apoptosis, enhances myosatellite stem cells, ac-
celerates muscle IGF-1 expression, regulates skeletal muscle metabolism, and increases
muscle protein synthesis and mass in elderly men. Low GH/IGF-1 expression decreases
protein anabolism in skeletal muscle cells, leading to structural and functional changes that
favor the development of sarcopenia [157].

8.2. Inactivty

Inactivity is associated with significant metabolic disruptions [158]. Studies on step
reduction in both younger (mean age 29 years) and older (mean age 69–72 years) healthy
adults have shown a decrease in insulin sensitivity [159,160]. Even after returning to
previous activity levels for 14 days, changes in glucose tolerance and proinflammatory
cytokines were not fully reversed [158,161]. Chronic muscle disuse also leads to excessive
production of reactive oxygen species, causing additional mitochondrial damage [153]

Immobility

Disuse leads to rapid skeletal muscle loss [53,162] through several mechanisms, includ-
ing inflammation, myostatin, Atrogin-1/Muscle atrophy F-Box (MaFbx)/Muscle ring finger
1 (MuRF1), and IGF-1-AKT-mTOR pathways [26,163,164]. The mechanisms responsible
for early muscle loss during disuse differ from those involved in prolonged disuse. In
the initial phase of disuse (10 to 42 days), the rate of muscle loss is higher, approximately
0.5–0.6% per day [165,166]. In contrast, during extended periods of disuse (17 weeks), the
rate of muscle loss decreases to about 0.1% per day [50]. Interestingly, immobilization leads
to changes in muscle composition similar to those seen in chronic sarcopenia [167,168]. For
instance, 14 days of bed rest in middle-aged individuals primarily resulted in a reduction
of type 2a muscle fibers and satellite cell content [169]. The negative effects of bed rest on
muscles are evident even in healthy individuals [20,35] but are more pronounced in older
adults [26]. For example, just five days of bed rest in older adults can lead to a reduction
in lean leg mass [36]. Martone et al. demonstrated that patients who developed acute
sarcopenia during hospitalization in internal medicine and geriatric wards spent more time
in bed compared to those who did not develop acute sarcopenia (5.1 days vs. 3.2 days) [29].
These findings were corroborated in intensive care units, where longer ICU stays were
associated with increased loss of quadriceps muscle mass [170]. Lastly, it is crucial to
recognize that extended bed rest can impair baroreceptor reflexes, leading to orthostatic
hypotension. This condition may cause a fear of falling, further reducing physical activity
and worsening sarcopenia [171,172].

8.3. Malnutrition

A reduced intake of essential nutrients such as protein, vitamin D, and calcium impairs
the maintenance of muscle mass, strength, and performance [2,158,173]. Specifically, a
decreased intake of foods rich in essential amino acids, particularly leucine, may result
in fewer physiological stimuli for muscle mass growth. Leucine is known to activate the
mTORc1 pathway, enhancing mitochondrial biogenesis and muscle growth [174].

8.3.1. Anorexia

During acute illnesses, decreased appetite is a major contributor to malnutrition [142,175,176],
leading to insufficient protein intake and promoting the development of acute sarcopenia. The
prevalence of decreased appetite is reported to be 64% during hospitalization and 28% after
discharge [177–179]. A diminished appetite at the time of hospital admission is linked to several
adverse outcomes, including reduced muscle strength during and after hospitalization, impaired
mobility skills during hospitalization, and decreased physical performance both during and after
the hospital stay [142,175,176,180].
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8.3.2. Obesity

The relationship between obesity and sarcopenia is bidirectional. On one side, the
lower basal metabolic rate of aged fat-free mass promotes the accumulation of fat mass.
On the other side, obese individuals tend to be less active than their lean counterparts,
further increasing fat accumulation. Obesity can create resistance to anabolic stimuli,
such as growth factors, hormones, amino acids, and exercise, which impairs muscle mass
anabolism. Moreover, obesity leads to systemic low-grade inflammation, especially from
visceral fat, which secretes various proinflammatory cytokines like IL-6 and TNF-α. This
inflammation is also a predisposing factor for sarcopenia though the activation of catabolic
pathways [181].

The coexistence of obesity and sarcopenia configures a condition named sarcopenic
obesity (SO) [182]. SO should be recognized as a distinct clinical condition, separate from
either obesity or sarcopenia alone. This is due to two key factors: the abovementioned
bidirectional, pathological interaction between the accumulation of body fat and the loss
of skeletal muscle mass and function and the combined negative effects of obesity and
sarcopenia, which together create a significantly higher risk of metabolic diseases and
functional impairments than the risks posed by each condition individually [183–188].
This synergy increases the overall health burden beyond what would be expected from
simply adding the risks of obesity and sarcopenia together. Individuals with sarcopenic
obesity are likely at an elevated risk of developing acute sarcopenia compared to those
affected by either obesity or sarcopenia alone. However, further research is needed to
confirm this hypothesis and fully understand the underlying mechanisms contributing to
this increased vulnerability.

8.4. Hospitalization and Delirium

Hospitalization in both medical and surgical units has been linked to the onset of
acute sarcopenia [189]. Muscle mass loss is a well-documented outcome of critical illness,
and a condition closely related to acute sarcopenia—intensive-care-unit-acquired weakness
(ICUAW)—has been observed in patients in intensive care units [164]. Hospitalization
is often associated with prolonged bed rest, with up to 50% of hospitalized older adults
being active for only about 30 min per day [190]. Furthermore, the inflammatory response
can trigger catabolism, leading to reductions in muscle mass and function. Conditions
with a strong inflammatory component, such as sepsis, are associated with significant
muscle wasting, resulting in the loss of more than 10% of lower limb muscle mass in less
than two weeks [191,192]. These effects are further exacerbated by aging [35,36]. Notably,
hospitalization can be complicated by delirium. In its hypoactive form, delirium directly
reduces physical activity. In its hyperactive form, it may necessitate antipsychotic treatment,
which also tends to increase bed rest. Additionally, some patients may develop pressure
ulcers despite preventive measures, adding to the catabolic burden and further limiting
their voluntary movements [131]. Older adults who are dependent at home face a higher
risk of worsening sarcopenia during and after hospitalization [193].

8.5. Chronic Sarcopenia

Individuals with chronic sarcopenia, characterized by a long-term reduction in muscle
mass and function, are at a heightened risk of further muscle decline when faced with acute
triggers [164]. Multimorbid individuals are at a higher risk of developing sarcopenia [194],
as they tend to be less active than those without multiple chronic conditions and exhibit
increased inflammation due to their disease burden. Additionally, sarcopenic individuals,
especially the comorbid ones, are more likely to be hospitalized compared to those without
sarcopenia, increasing their likelihood of encountering acute triggers for acute sarcope-
nia [195]. Furthermore, sarcopenic patients tend to have longer hospital stays, making
them more susceptible to the adverse effects of immobilization during acute illness [196].
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8.6. Drugs

Corticosteroids are known to have catabolic effects on muscles (e.g., prednisone,
dexamethasone, methylprednisolone, hydrocortisone). It has been demonstrated that
healthy young individuals on bed rest lose more muscle when given hydrocortisone
compared to bed rest alone [38].

Numerous other medications can also cause weight and muscle mass loss due to vari-
ous factors such as anorexia (caused by opiates, antibiotics, non-steroidal anti-inflammatory
drugs, digoxin, metformin, anticholinergics, iron, potassium), malabsorption (caused by
metformin, proton pump inhibitors, antacids, antibiotics), muscle disuse (caused by seda-
tives, neuroleptics), motor neuron loss, and endocrine dysfunction (caused by hormonal
therapy in cancer, glucocorticoids) [197,198].

Non-steroidal anti-inflammatory drugs (NSAIDs) can sometimes lead to gastropathy,
which may limit calorie and protein intake, ultimately affecting muscle mass. However,
research by Trappe et al. [199] demonstrated that older adults who took cyclooxygenase
(COX) inhibitors daily during a 12-week resistance training program saw 25–50% greater
improvements in muscle mass and strength compared to a placebo group following the
same regimen. This indicates that COX pathways are involved in controlling muscle protein
turnover and mass and it is possible that COX inhibition has a more pronounced effect in
slowing muscle protein breakdown than on protein synthesis itself. Thus, NSAIDs might
also prevent muscle loss with age.

8.7. Surgery

Surgery can contribute to muscle wasting through several mechanisms, including
inflammation, oxidative stress, immobilization, and reduced oral intake. The trauma as-
sociated with surgery triggers a significant inflammatory response, which has long been
considered a primary factor in post-surgical muscle wasting [200]. Another study exam-
ining the metabolic impacts of surgery found that the circulating levels of chemokines
C-C motif chemokine 23 (CCL23) and IL-8 were positively correlated with the levels of
circulating amino acids, whereas IL-5 was negatively correlated with amino acid levels
post-surgery [91]. These findings suggest that various inflammatory factors play a role in
the reduction of muscle mass following surgery. Oxidative stress during surgery can arise
from several sources. Ischemia–reperfusion injury, in particular, is known to induce oxida-
tive stress in various surgical contexts, such as transplantation, aortic unclamping, limb
tourniquet release during orthopedic procedures, and reperfusion during coronary bypass
surgery [201]. Moreover, emergency surgery is associated with greater oxidative stress
than elective surgery [202]. Pre-operatively, levels of miR-424 and miR-542-3p in muscle
biopsies were found to be higher in patients undergoing aortic surgery who went on to lose
muscle [40,41]. Additionally, emergency surgeries are linked to higher levels of oxidative
stress compared to elective surgeries [203]. miR-424 and miR-542 play a direct role in
regulating muscle protein homeostasis. Both miR-424-5p and miR-542-3p target the protein
synthesis machinery, with miR-542-3p also contributing to mitochondrial dysfunction and
promoting TGF-β signaling [40]. Conversely, miR-422a, which is negatively associated
with muscle loss following surgery, inhibits TGF-β signaling by targeting SMAD4 [203].
Surgery poses a high risk of immobility due to various factors, including pain, the necessity
for non-weight-bearing status following certain procedures, and a reduced functional state
resulting from underlying disease or the effects of surgery and anesthesia. These factors
collectively contribute to development of acute sarcopenia. Protein intake is crucial for
muscle maintenance, and deficiencies due to either reduced intake or malabsorptive states
can directly lead to muscle wasting [1]. This issue is particularly relevant for surgical pa-
tients. For instance, those with an “acute abdomen” might experience anorexia or vomiting
for several days before an emergency laparotomy. Additionally, most surgeries require
pre-operative fasting to reduce the risk of aspiration [204]. Furthermore, patients undergo-
ing certain procedures, especially gastrointestinal surgeries, are often advised to continue
fasting post-operatively for various reasons, such as minimizing the risk of vomiting and
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protecting surgical anastomoses. Even when feeding resumes, the gradual return to a
normal diet is typically prolonged [205].

After hip replacement surgery, reductions in muscle cross-sectional area have been
observed [46,206], persisting for up to 3.5 years post-surgery [207]. Similarly, a decrease
in psoas muscle area within the first year following endovascular aortic aneurysm repair
has been reported [67], along with a reduction in fat-free muscle mass after cardiac by-
pass surgery [208]. Additionally, research involving older adults admitted electively for
colorectal surgery has shown acute declines in handgrip strength and muscle quantity, as
measured by BIA [209] and BATT [31].

8.8. Stroke

Stroke patients are at a higher risk of developing severe sarcopenia due to various
factors such as muscle atrophy from paralysis and disuse, spasticity, inflammation, den-
ervation and reinnervation, and impaired feeding and intestinal absorption [210,211].
Neuropathy can start as soon as four hours after the onset of a stroke [212] and transsy-
naptic inhibition of spinal alpha motor neurons results in a reduction of motor units [212].
Additionally, patients with acute stroke generally experience significant inactivity, engag-
ing in less than 40 min of physical activity during hospitalization [213]. Sarcopenia has a
detrimental impact on clinical outcomes in stroke patients [214], as it hinders functional
recovery and delays the return to home [215]. The prevalence of acute sarcopenia in stroke
patients is estimated to range from 8.5% to 33.8% [214,216–219], and it tends to increase
progressively in the days following the acute event. Within the first 10 days post-stroke, the
prevalence is about 29.5%, rising to 51% between 10 days and 1 month after the stroke [220].

8.9. COVID-19

Coronavirus disease (COVID-19) can lead to the development of acute sarcopenia
through several mechanisms: inflammation, increased ROS generation, immobility and
reduced physical activity, anorexia, hospital-related malnutrition and subsequent weight
loss, direct cytopathic effects of SARS-CoV-2 on muscles, hypoxia, and steroid therapy [221].
The acute inflammatory response to the infection has a high potential to damage a wide
range of organs, including muscles [131,222]. Additionally, it raises caloric demand, which
is often inadequately met. COVID-19-related mitochondrial damage has a significant
potential to induce sarcopenia. Ferritin, an acute-phase reactant and key regulator of iron
homeostasis, can directly affect mitochondrial energy production. This interaction increases
ROS generation and heightens cellular susceptibility to damage and cell death [223,224].
Mitochondrial impairment, in combination with accumulation of amyloid and muscle shift
to fast fatigable fibers, seem to be involved in the persistent reduction of exercise capacity
after the resolution of SARS-CoV-2 infection [225]. During the acute stage of COVID-19,
anosmia (experienced by 41.0–52.7% of cases) and ageusia (experienced by 38.2–43.9% of
cases) [226–228] may lead to a reduction in oral intake. Additionally, within a month of
infection, up to 30% of individuals with olfactory dysfunction and 20% with gustatory
dysfunction may not recover, and those who do may experience paraosmias or distorted
taste, potentially affecting oral intake even in COVID-19 survivors [229]. Furthermore,
symptoms such as nausea and diarrhea, along with liver dysfunction commonly seen in
some patients, may exacerbate anorexia and impair nutrient assimilation [230]. Inadequate
nutrition in COVID-19 patients and survivors can also contribute to the development of
sarcopenia. Data from an international survey revealed that unhealthy food consumption
increased during the pandemic [231], alongside a reduction in vegetable intake [232].
Additionally, there was a rise in compulsive eating habits [233,234]. These dietary changes
can significantly contribute to the onset of sarcopenia through various mechanisms. Clinical
observations indicate that during the acute phase of infection, patients were at risk of
losing 5–10% of their body weight [235,236]. During the COVID-19 pandemic, reduced
physical activity or bed rest was linked not only to the acute disease but also to widespread
lockdown measures and social distancing [231,233]. Extended hospitalization periods could
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lead to greater muscle damage, potentially in an exponential rather than linear fashion.
Immobilization during COVID-19 hospitalization differs significantly from immobilization
due to other conditions. COVID-19 patients often experience profound weakness, spending
extended hours on high-flow oxygen therapy or in the prone position. According to Mayer
et al., ICU stays were associated with a median decrease of 18.5% in rectus femoris muscle
mass between the first and seventh day [237]. Sarcopenic dysphagia, which can acutely
develop in COVID-19 patients, may create a self-perpetuating cycle of events [238]. Coupled
with the proanorectic effects of inflammation and hypoxia, this condition can significantly
reduce food intake [239]. Given that skeletal muscles express ACE2 abundantly, it is
possible that SARS-CoV-2 exerts a direct cytopathic effect on these muscles [240].

Hypoxia can contribute to acute sarcopenia by negatively affecting various functions.
It diminishes the sensation of hunger by stimulating leptin production [223,241]. Hypoxia
is also associated with higher levels of myostatin and a shift from the IGF-1/Akt pathway
to the IGF-1/ERK pathway, which stimulates myogenesis but not differentiation in skeletal
muscle [239]. Sarcopenic involvement of the diaphragm and intercostal muscles impairs
ventilatory function, further worsening hypoxia and perpetuating the vicious cycle [241].
Parenteral steroids have been administered to patients with severe COVID-19 and respi-
ratory failure requiring oxygen therapy. Steroids are known to increase protein turnover
in skeletal muscles, resulting in decreased muscle mass and outright wasting [242,243].
Post-COVID-19 emotional disorders have been observed [244,245], leading to an increase
in individuals experiencing depressed mood. This condition can result in abulia, negatively
impacting physical activity [246].

In summary, similar to many geriatric syndromes, individuals with higher base-
line vulnerability require lower levels of acute stress to develop acute sarcopenia. Con-
versely, in healthy young adults, a much more intense stress is needed to induce acute
sarcopenia (Figure 3).

Figure 3 outlines the predisposing factors and precipitating events that contribute to
the development of acute sarcopenia, particularly in hospitalized patients. Predisposing
factors include old age, anabolic resistance, inactivity, malnutrition, chronic sarcopenia,
and chronic drug use, which increase vulnerability to muscle loss. Factors such as systemic
inflammation, cytokine storm, bed rest, delirium, stroke, acute drug side effects, surgery,
reduced nutrient intake, and intensive care unit (ICU) stay represent highly noxious insults
that can precipitate acute muscle loss. The figure emphasizes the interaction between base-
line vulnerability and acute health events, leading to rapid muscle degradation. Individuals
with higher baseline vulnerability require lower levels of acute stress to develop acute
sarcopenia. Conversely, in healthy young adults, a much more intense stress is needed to
induce acute sarcopenia.
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9. Consequences

The implications of muscle mass in various clinical scenarios have reshaped our
understanding of muscle. It is now recognized as a crucial component of metabolism
with endocrine and paracrine functions, rather than merely a mechanical organ [247].
Indeed, muscles significantly influence physical recovery, rehabilitation potential, and
long-term function following hospitalization. Acute sarcopenia can lead to chronic sar-
copenia, as recovery from acute muscle wasting is often incomplete, particularly in older
adults [164,248–250]. People with chronic sarcopenia are less active and display an in-
creased risk of gaining weight and obesity. Obesity and sarcopenia create a vicious cycle
where muscle loss leads to decreased physical activity and metabolic rate, promoting fat
gain. Excess fat causes chronic inflammation and metabolic dysregulation, further acceler-
ating muscle degradation. This results in reduced mobility, increased fat deposition, and
insulin resistance, exacerbating both conditions. Acute sarcopenia is linked to higher finan-
cial costs due to longer hospital stays, increased ICU admission risk [251], transplantation
graft failure [252], greater rehabilitation needs, higher rates of discharge to institutional
care, and increased social care requirements [164,253–256]. Moreover, acute sarcopenia
increases the risk of falls both during and after hospital stay and consequently the risk of
fractures. In addition, acute sarcopenia in the oral district can cause dysphagia leading
to ab ingestis pneumonia which further increases the length of hospital stay [164,173].
Acute sarcopenia has been linked to higher mortality rates in older patients hospitalized in
medium-complexity units [256], in COVID-19 patients [251], and in those undergoing liver
transplantation [252,257], colorectal cancer surgery across all age groups [258,259], and
endovascular aortic aneurysm repair [260]. Interestingly, in colorectal cancer patients, mor-
tality was highest among those with acute-on-chronic sarcopenia compared to those with
either acute sarcopenia or chronic sarcopenia alone (with the lowest mortality observed in
the chronic sarcopenia group) [258]. This indicates that acute muscle wasting plays a more
significant role in determining mortality than baseline sarcopenia status.

Figure 4 illustrates the short-term and long-term consequences of acute sarcopenia,
highlighting its impact on overall health and healthcare systems. Short-term consequences
include increased risk of falls, fractures, prolonged hospital stay, respiratory complications,
acute frailty/disability, dysphagia due to acute sarcopenia in muscle of the oral district
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and consequent risk of ab ingestis pneumonia, and increased healthcare costs and risk of
death. Long-term consequences include chronic sarcopenia reducing physical activity and
increasing the risk of becoming overweight or obese. Moreover, there is a long-term risk of
falls and fractures, disability, reduced quality of life, increased risk of hospital readmissions,
and higher mortality rates. The figure also depicts the economic burden associated with
long-term care needs and increased healthcare utilization. These consequences underscore
the need for early intervention to prevent and manage acute sarcopenia.
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10. Interventions

The efficacy of chronic sarcopenia interventions in treating acute sarcopenia remains
uncertain due to differing underlying mechanisms. Acute sarcopenia is characterized by
heightened systemic inflammation and immune–endocrine dysregulation. Inflammation,
whether acute or chronic, can impede the body’s response to exercise or protein intake,
leading to anabolic resistance [261]. Acute sarcopenia progresses rapidly, potentially
rendering traditional treatments insufficiently fast-acting [164]. Furthermore, implementing
community-based interventions in a hospital setting may prove impractical. Various
interventions have been safely tested for the treatment of acute sarcopenia in diverse
populations and settings. However, treatment approaches may need to be tailored to
individual needs.

10.1. Physical Activity

The potential for exercise to reverse acute sarcopenia appears encouraging but remains
unconfirmed [262].

Minimizing bed rest during hospitalization is highly recommended [263] due to its
broad health benefits beyond improving muscle function [164]. A variety of physical
activity interventions have been tested for treating hospitalized patients. These include
strength and balance training [264–267], early and/or increased mobilization [268–273],
group exercise [274], water exercise/physiotherapy [275], chair-based exercise [265,276],
seated side-tapping [277], pedal exercisers [278,279], and progressive weight-bearing exer-
cise in orthopedic rehabilitation [280–282] using specialized harnesses where appropriate.
Exercise training activates the mechanistic target of rapamycin (mTOR) pathway and
insulin-like growth factor 1 (IGF-1), promoting muscle protein synthesis [283]. Resistance
exercise is the most effective approach, backed by substantial evidence [284], for treating
chronic sarcopenia [285] as it is able to improve muscle strength and physical performance
if performed for three to eighteen months. Indeed, it specifically enhances satellite cell re-
cruitment and muscle hypertrophy [286]. Thus, resistance exercise seems to be a promising
option for the treatment of acute sarcopenia. Previous studies showed that hospitalized
patients who performed resistance exercise improved their muscle strength, power, and
performance compared to individuals treated with usual care [287]. Three randomized
controlled trials (RCTs) implemented progressive resistance exercise (RE) using specialized
equipment such as machines, external weights, or a cycle ergometer, while four other RCTs
focused on bodyweight-based resistance exercises. On average, the RE sessions lasted
between 20 to 40 min and were conducted 5 to 7 consecutive days each week. Furthermore,
in five of the RCTs, participants performed the RE exercises more than once daily, with
sessions occurring up to twice a day [287].

However, none of the trials included in the review specifically selected participants
with sarcopenia, nor did they evaluate sarcopenia levels before and after the treatment [287].

Also, a comprehensive physical training program, incorporating resistance exercises
with machines and/or weights along with gait and balance training, significantly enhanced
physical performance (such as gait speed and SPPB) and muscle strength [288,289]. In
this study the multicomponent intervention consisted of two daily sessions performed
in the morning and in the evening. Each session lasted 20 min and they were conducted
over 5 to 7 consecutive days, including weekends. A qualified fitness specialist oversaw
each session, providing guidance and motivation. The exercises were adapted from the
multicomponent Vivifrail program [290], designed to prevent weakness and falls. The
morning sessions included personalized progressive resistance exercises, balance training,
and walking exercises. Resistance training was customized to each participant’s abilities
using adjustable resistance machines, with a target of 2 to 3 sets of 8 to 10 repetitions at
30% to 60% of the participant’s 1-repetition maximum. These exercises focused on lower-
body muscles (such as chair squats, leg presses, and knee extensions) and one upper-body
exercise (seated chest press). Participants were instructed to perform the exercises at high
speed to maximize muscle power, with attention given to correct technique. Balance and
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gait exercises increased in difficulty over time and included tasks like semi-tandem standing,
line walking, step practice, navigating small obstacles, and proprioceptive exercises on
unstable surfaces (using foam pads), along with altering the base of support and shifting
weight from one leg to the other. In the evening, participants performed functional exercises
without supervision, using light weights (0.5 to 1 kg anklets and a handgrip ball), such as
knee extensions and flexions, hip abductions, and daily walks in the unit corridor, following
the guidelines of the Vivifrail [290] program for clinical physical exercise.

The outcomes of these studies varied depending on the delivery and adherence to
the interventions. A previous systematic review of exercise interventions for hospitalized
older adults found that their impact on activities of daily living (ADL) performance was
unclear. However, a small but significant reduction in hospital stay length and overall
costs was reported [291]. For elective admissions, prehabilitation, involving increased
physical activity prior to admission, may be beneficial. A randomized controlled trial
comparing prehabilitation with rehabilitation in patients undergoing colorectal surgery
showed similar complication rates between the groups but significantly improved 6 min
walking test (6MWT) results in the prehabilitation group at the eight-week follow-up [292].

In addition, treating acute sarcopenia in the oral region through oral health man-
agement and tongue training provided by dental hygienists may improve oral intake,
contributing to the overall management of acute sarcopenia [293].

Exercise can also have beneficial effects on gut microbiota composition [294]. Re-
sistance training, in particular, can encourage the growth of beneficial bacteria such as
Faecalibacterium prausnitzii, Eubacterium, Roseburia, and Ruminococcus species. These bacteria
produce short-chain fatty acids (SCFAs), which act as an energy source for muscles. Ad-
ministering SCFAs to germ-free mice, which typically experience muscle atrophy, helped
reverse muscle deterioration and improved muscle strength [295].

Furthermore, professional athletes often exhibit greater gut microbiota diversity com-
pared to sedentary individuals [296,297] and this diversity correlates with better physical
fitness markers, such as peak oxygen uptake [298].

10.2. Nutritional Interventions

No randomized trial has specifically enrolled older hospitalized patients with sarcope-
nia to evaluate the effects of nutritional interventions so far [262]. However, nutritional
counselling is crucial during acute conditions to prevent malnutrition [299].

10.2.1. Proteins

Establishing protein needs and ensuring that protein intake is distributed across all
meals and snacks is essential [300]. According to the PRO-TAGE recommendations [301],
the required amount of protein during an acute condition depends on various factors: (i) the
type and severity of the illness, (ii) the patient’s nutritional condition before becoming
ill, and (iii) how the illness affects nutritional health. Typically, older adults dealing with
acute disease need around 1.2 to 1.5 g of protein per kilogram of body weight (BW) per
day. However, for those experiencing more serious conditions, injuries, or malnutrition,
protein needs can increase up to 2.0 g/kg BW/day. An important exception applies to older
individuals with severe kidney disease who are not undergoing dialysis, as they should
reduce their protein intake (0.8 g/kg BW/day) to avoid further kidney strain.

10.2.2. Leucine and Beta-Hydroxybeta-Methylbutyrate

Both leucine and beta-hydroxybeta-methylbutyrate (HMB) may help enhance mus-
cle mass and muscle function [301], but more studies are needed to recommend precise
dosages in the treatment of acute sarcopenia. Leucine intake is particularly important [302].
Leucine is a type of branched-chain amino acid. It stands out as one of the most effec-
tive in promoting anabolic activity compared to other essential amino acids [303,304]. A
meta-analysis revealed that supplementing with leucine increased muscle mass in older
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individuals with sarcopenia compared to controls (mean difference of 1.14 kg, 95% CI (0.55,
1.74), p = 0.0002) [305].

HMB is an anabolic metabolite derived from leucine that is produced in muscles and
occurs in small quantities in the diet. When taken orally, HMB promotes muscle protein
synthesis in a manner comparable to leucine but reduces muscle protein breakdown more
effectively than leucine [306].

As only 5% of leucine is metabolized to HMB, direct administration of HMB may
therefore be a more efficient alternative [307]. HMB administration prevents loss of lean
leg mass in healthy older adults during bed rest [308] and has been shown to reduce post-
discharge mortality in hospitalized populations [309]. Moreover, a systematic review and
meta-analysis, encompassing 15 randomized controlled trials (RCTs) across various clinical
scenarios, revealed that HMB supplementation (either on its own or as part of combined
formulations) contributed to increases in muscle mass (standard mean difference = 0.25;
95% CI: −0.00, 0.50; z = 1.93; p = 0.05) and strength (standard mean difference = 0.31;
95% CI: 0.12, 0.50; z = 3.25; p = 0.001; I2 = 0%), though with a small to moderate effect
size [310].

In diverse patient groups, such as those undergoing orthopedic surgery [311] and geri-
atric [312], general [265,313], respiratory medicine [314,315], and critical care [316] patients,
various interventions have been tested. These include protein-enriched foods [317,318],
supplements [265,313,319], HMB [311], and nutritional consultation [289].

10.2.3. Creatine Monohydrate

Creatine is an organic compound naturally produced in the kidneys and liver through
chemical reactions involving the amino acids arginine, glycine, and methionine. It can also
be obtained through external sources such as meat and fish and commercial supplements.
About 95% of the body’s creatine is located in skeletal muscles, with roughly 66% stored
as phosphocreatine (PCr). PCr is essential for regenerating and maintaining adenosine
triphosphate (ATP) levels [320].

Creatine monohydrate is a dietary supplement which betters bioenergetics both at
rest and during physical activity. Multiple studies have demonstrated that supplementing
with creatine monohydrate (≥3 g/day), alongside a strength training regimen, can enhance
muscle mass and improve functional performance in older adults [321,322].

However, its role in the treatment of acute sarcopenia remains to be explored.

10.2.4. Polyunsaturated Fatty Acids

The primary bioactive omega-3 long-chain PUFAs are eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA). These fatty acids are found in seafood, fish oil, krill
oil, and certain algal oils. EPA and DHA work by lowering the production of inflamma-
tory eicosanoids, such as prostaglandins, thromboxanes, and leukotrienes, and serving
as precursors for alternative compounds, including resolvins, protectins, and maresins,
which help reduce inflammation [323]. This process ultimately leads to a decrease in the
release of inflammatory cytokines. The anti-inflammatory and inflammation-resolving
properties of EPA and DHA are important for both the prevention and treatment of mus-
cle loss [323]. In vitro studies suggest that n-3 PUFAs help reduce muscle protein loss
and cell death caused by cytokines with catabolic effects [324]. Regular supplementation
with n-3 PUFA has been linked to increases in muscle mass and better physical perfor-
mance in healthy older adults [325]. Additionally, cancer patients receiving omega-3
supplements have shown improvements in muscle composition [326]. A meta-analysis
also highlighted the beneficial effects of n-3 PUFA supplementation on muscle mass (ef-
fect size 0.31, 95% CI 0.01 to 0.60) and lower-body strength (mean difference 0.47, 95% CI
0.02 to 0.93, p = 0.022) but not handgrip strength (effect size: 0.91, 95% CI: 1.13 to 2.96,
p = 0.326) across both healthy individuals and those with clinical conditions [323].
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10.2.5. Nutritional Supplements

A subanalysis of the NOURISH trial [327] revealed that providing nutritional supple-
ments (with 350 kcal, 20 g protein, 11 g fat, 44 g carbohydrate, 1.5 g calcium-HMB, and
26 other essential vitamins and minerals) led to an improvement in handgrip strength
compared to placebo among acutely malnourished patients.

10.2.6. Probiotics and Prebiotics

It is likely that acute conditions triggering acute sarcopenia may also affect gut micro-
biota composition. The development of an unfavorable microbiota profile, characterized
by low diversity, an increase in opportunistic pathogenic bacteria, reduced expression of
SCFA-related genes, and diminished sugar-decomposition capacity—along with enhanced
proteolytic activity, as observed in older individuals with chronic inflammation [328]—has
yet to be confirmed in cases of acute sarcopenia during acute inflammation.

Nevertheless, the administration of probiotics and prebiotics, which can improve
intestinal dysbiosis, has been shown to have beneficial effects on muscle mass and func-
tion in chronic sarcopenia. This approach may also prove helpful in the treatment of
acute sarcopenia.

Probiotics are live microorganisms that aid in restoring gut flora after stress and may
benefit muscle health through several mechanisms. Firstly, probiotics can release proteases
and peptidases, which enhance protein digestion and increase the availability of amino
acids for muscle protein synthesis. Secondly, they help maintain gut integrity by reducing
the leakage of bacterial cells and their proinflammatory toxins into the bloodstream, which
are known to trigger inflammation and have catabolic effects on muscles [329]. Indeed,
probiotic supplementation has been shown to improve markers of intestinal barrier integrity
and reduce inflammation in both human studies [330] and rodent studies [331,332]. Thirdly,
probiotic bacteria are known producers of short-chain fatty acids (SCFAs), which play a
crucial role in muscle health. A strong association between SCFAs and muscle mass and
strength has been demonstrated in both human studies [333] and murine models [295]

Supplementation with Lactobacillus plantarum TWK10 for six weeks has been shown
to increase muscle mass and function in frail older adults [334], primarily by enhancing
glycogen concentration in muscle tissue [335] and reducing inflammatory markers [336].
Analogously, in aged mice, Lactobacillus casei Shirota supplementation attenuates sarcopenia.
The mechanisms behind this effect include the modification of gut microbiota composition
to preserve SCFA levels, along with the reduction of mitochondrial dysfunction, reactive
oxygen species, and inflammation [337].

Prebiotics have the potential to improve intestinal dysbiosis and, in some studies,
have been shown to positively affect chronic sarcopenia [338]. As a result, they may also
play a beneficial role in the treatment of acute sarcopenia by promoting a healthier gut
environment and supporting muscle function.

Prebiotics are indigestible components of food that promote the growth of beneficial
bacteria in the gut. Common prebiotic sources include chicory root, which provides inulin,
and garlic and onions, which are rich in fructooligosaccharides (FOSs). Soybeans and lentils
also serve as sources of galactooligosaccharides (GOSs). These compounds can enhance the
production of short-chain fatty acids (SCFAs) by gut bacteria, which play an important role
in maintaining gut health and muscle function.

In particular, studies have shown that supplementation with inulin and FOS can
improve physical outcomes, such as grip strength in frail older adults [338] and en-
durance [339] in young healthy adults.

However, it is important to note that other studies have reported inconsistent results
regarding the supplementation of prebiotics and probiotics [340,341] These variations
suggest that their efficacy may depend on various factors such as dosage, population,
and study design. Moreover, their potential effects on acute sarcopenia have not yet been
thoroughly investigated, leaving a gap in our understanding of how these supplements
may influence muscle health in the short term.
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10.2.7. Combined Approaches

Combined approaches involving nutritional consultation and strength/resistance train-
ing have also been explored [265,289,313]. These interventions aimed to enhance physical
performance [265,313,316–319], strength [311,313,314,317–319], and muscle mass [265,315,342].
However, the small scale of these studies limits the generalizability of their results. Also, in
patients with acute stroke, a high-energy diet combined with adequate rehabilitation time was
linked to the prevention of acute sarcopenia [343]. Similarly, in older patients in convalescent
hospitals, the combination of branched-chain amino acids and rehabilitation improved ADL
and increased muscle mass [344].

10.3. Neuromuscular Electrical Stimulation

Neuromuscular electrical stimulation (NMES), which involves applying electrical
currents to stimulate muscle contractions, has been explored as a potential intervention for
acute sarcopenia, particularly when mobilization is not feasible, such as in ICU settings.
However, trials using NMES have yielded conflicting results. A randomized controlled
trial involving critically ill patients post-cardiothoracic surgery found no effect of bilaterally
applied NMES on quadriceps muscle layer thickness, although patients in the NMES
group regained muscle strength faster than the control group. The mean age in the NMES
group was 63.3, compared to 69.7 in the control group [345]. Conversely, another study
found that unilaterally applied NMES significantly prevented reductions in muscle fiber
cross-sectional area compared to biopsies from control quadriceps, with a mean patient
age of 70 [346]. In geriatric patients, a trial combining NMES with exercise did not show a
statistically significant difference in gait speed changes between those receiving functional
training alone and those receiving functional training with NMES [276]. In contrast, a
trial in respiratory medicine patients showed significantly less decline in knee extension
strength with NMES compared to usual care. Additionally, a trial in a general medicine
population demonstrated significant improvements in physical performance in the group
treated with NMES plus physical activity compared to the usual care group [347].

10.4. Pharmacological Treatments

At present, no medication has been approved for the treatment of acute sarcopenia [262].
Pharmaceutical interventions for treating acute sarcopenia have included growth

hormone (GH) [348,349], testosterone [265], and erythropoietin (EPO) injections [350].
The study by Weissberger et al. [348] examined the effects of GH administration on

muscle mass of patients undergoing hip replacement. GH was given both pre-operatively
(for 14 weeks) and post-operatively (for one month, with doubled dose for first 2 weeks
post-operatively).

Before surgery, lean body mass increased by an average of 5.2% (approximately 1.8 kg)
in the group treated with GH compared to the placebo group (difference 4.9, 95% CI
0.3–9.6, p = 0.037) but decreased by 3% in both groups after surgery (difference −0.4,
95% CI −4.1–3.4, p = 0.84). GH treatment determined a significant improvement in the hip
abductor strength on the non-operated side, where strength increased by 7%, compared to
a 25% decrease in the placebo group (p < 0.02). Post-operatively, walking distance over four
minutes improved by an average of 26.9 m in the GH group, whereas the placebo group saw
a decline of 19.5 m (difference 46.4, 95% CI 1.3–91.5, p = 0.04). Most patients treated with GH
experienced dose-dependent side effects. Signs of fluid retention, including hand swelling,
carpal tunnel syndrome, and ankle edema, along with increased or newly appearing pain
in joints other than the injured hip, were noted. These issues were mostly well tolerated
and, in some instances, subsided without treatment.

Another pilot study by Hedström et al. [349] assessed the effect of GH given post-
operatively in 20 hip fracture patients. The treatment lasted between 21 and 28 days, based
on the length of the patient’s hospital stay. The patients in the group receiving GH treatment
maintained their lean body mass throughout the treatment period, whereas the placebo
group experienced a significant reduction in lean body mass (difference in lean body mass
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(g) from baseline to 4 weeks after surgery: −646 g in the GH group vs. −3246 g in the
placebo group p = 0.03). However, the difference from baseline in lean mass two months
after the termination of treatment was not significant anymore in the two groups (–3164 g
in the GH group vs. −2856 g in the placebo group p = 0.5). Quadriceps strength did not
differ in the GH and placebo group both immediately after the termination of treatment
and two months later. In this study, two patients in the GH group developed soft edema in
both feet that resolved after the reduction of the GH treatment dose to 50%.

In a pilot study conducted by Deer et al. [265] an intramuscular injection of testos-
terone enanthate within 24 h of hospital discharge (200 mg for men and 100 mg for women)
improved physical performance (change in SBBP 4 weeks post-discharge: 2.83 ± 2.07 in
the testosterone group vs. 1.31 ± 1.93 in the placebo group) and reduced 30-day readmis-
sion rates (5% in the testosterone group vs. 28% in the placebo group) in older patients
discharged from an acute care unit. No adverse events related to testosterone treatment
were reported in the study; however, only 19 individuals received testosterone, which
may have led to an underestimation of potential side effects. Therefore, possible side
effects—such as cardiovascular events, prostatic hyperplasia and accelerated growth of
pre-existing prostate cancer, increased risk of blood clots, skin conditions like acne, fluid
retention, mood and behavioral changes, and liver issues—should be carefully considered,
and the risk–benefit ratio should be evaluated when considering testosterone as a treatment
option for acute sarcopenia.

EPO has manifold effects. Beyond promoting blood cell production, it prevents cell
death, reduces oxidative stress and inflammation [351,352], and promotes the growth and
maturation of skeletal muscle myoblasts [353,354]. A study by Rotter et al. [355] showed
that in mice intramuscular administration of EPO led to a significant enhancement in
muscle strength by day 7 compared to saline-treated controls. Moreover, following injury,
the proliferation of satellite cells and interstitial cells was significantly higher in EPO-
treated mice compared to the control group. Another study by Hida et al. [356] showed that
mice treated with EPO increased muscle strength and had a greater cellular regeneration
compared to non-treated mice.

The beneficial effects of EPO were also confirmed in humans. In a study conducted
by Zhang et al. [350], patients aged 60 and above undergoing hip surgery for femoral
intertrochanteric fractures were given daily intravenous EPO injection (10,000 IU) for
10 days after surgery, while the control group received a corresponding amount of normal
saline. Both groups received the same nutrition, diet, fluids, and exercise.

One week after surgery in females, handgrip strength increased more in the EPO-
treated group than in the control group (13.95 ± 3.327 kg vs. 9.30 ± 2.812 kg, p < 0.05).
This trend was confirmed both 2 and 4 weeks after surgery. In contrast, males showed
no statistically significant difference in handgrip strength between the intervention and
control groups.

In both female and males, treatment with EPO produced a small but significant reduc-
tion in muscle mass loss after orthopedic surgery (females before intervention: ASM/kg
12.77 ± 1.49 in those treated with EPO vs. 12.41 ± 1.23 in controls; 4 weeks after surgery:
ASM/kg 12.98 ± 1.66 in treated vs. 12.48 ± 1.25 in controls; males before intervention:
ASM/kg from 18.60 ± 1.67 in those treated with EPO vs. 18.37 ± 1.76 in controls; 4 weeks
after surgery: ASM/kg 18.81 ± 1.82 in treated vs. 18.36 ± 1.85 in controls). No adverse
effect of the treatment with EPO was reported.

11. Future Perspectives

While this review provides a comprehensive summary of the existing literature on
acute sarcopenia, there are several major open questions that warrant further exploration.
First, there remains a limited understanding of the precise molecular mechanisms driving
rapid muscle loss following acute events such as trauma, surgery, or severe illness. Further
research is needed to elucidate the exact pathways, including those related to inflammation,
anabolic resistance, and hormonal dysregulation, to better inform targeted interventions.
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Second, although biomarkers such as C-reactive protein and GDF-15 have been associated
with muscle wasting, their accuracy and clinical utility as early diagnostic tools in acute
sarcopenia are still uncertain. Future studies should focus on validating these biomark-
ers and identifying additional indicators that can predict sarcopenia risk and recovery.
Additionally, the therapeutic efficacy of interventions like nutritional supplementation,
pharmacological agents, and physical therapies remains inconsistent across studies, indi-
cating a need for larger, well-designed trials to establish standardized treatment protocols.
Looking forward, personalized approaches that integrate genetic, metabolic, and clinical
data offer a promising avenue for tailoring sarcopenia interventions to individual patient
profiles. Moreover, the role of multidisciplinary care involving geriatricians, nutritionists,
and physical therapists should be explored further, as collaborative care models could
enhance patient outcomes. Lastly, advancements in technology, such as real-time muscle
mass and function monitoring using muscle ultrasound or bioimpedance analysis, present
an exciting opportunity for early detection and timely interventions. These areas represent
critical frontiers in the management and understanding of acute sarcopenia and require
attention in future research endeavors.

12. Conclusions

Acute sarcopenia is a significant and often underrecognized condition that can severely
impact the recovery and overall health of hospitalized patients, particularly older adults.
Despite advancements in understanding its pathophysiology, the development of effective
interventions remains challenging. Current evidence highlights the potential benefits of
early nutritional and physical activity interventions, although results have been mixed and
further research is necessary to establish standardized treatment protocols.

Future studies should focus on the early identification of acute sarcopenia through the
use of predictive biomarkers and consistent monitoring of muscle strength and size. These
efforts, combined with a deeper understanding of the underlying mechanisms, will enable
more precise risk stratification and targeted therapies. Additionally, raising awareness
among healthcare providers about the importance of early intervention and the role of
multidisciplinary teams in managing acute sarcopenia is crucial for improving patient
outcomes. Overall, addressing acute sarcopenia proactively rather than reactively holds
promise for enhancing recovery, reducing hospital stays, and improving the quality of life
for affected individuals. The integration of comprehensive management strategies into
routine clinical practice will be essential in mitigating the impacts of this condition.
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