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Abstract: The protozoan parasite Leishmania causes leishmaniasis, a neglected tropical disease, that
disproportionately affects underdeveloped countries. This disease has major health, economic, and
social implications, particularly because of the limited treatment options, high cost, the severe side
effects associated with available therapeutics, and the high rate of treatment failure caused by the
parasites’ growing resistance to current medications. In this review, we describe first the common
strategies used by pathogens to develop drug resistance and then focus on the arsenal of available
drugs to treat leishmaniasis, their modes of action, and the molecular mechanisms contributing to
drug resistance in Leishmania spp., including the role of genomic, transcriptional, and translational
control. We focus more specifically on our recent discovery of translational reprogramming as a
major driver of drug resistance leading to coordinated changes in the translation of transcripts
and orchestrating changes in metabolome and lipidome to support drug resistance. A thorough
understanding of these mechanisms is essential to identify the key elements needed to combat
resistance and improve leishmaniasis treatment methods.

Keywords: drug resistance; genomic changes; transcriptional control; translational reprograming;
Leishmania parasites

1. Introduction

Drug resistance is a major health problem of modern times, causing serious economic
losses associated with high treatment costs and a reduction in drug effectiveness, treatment
failures and relapses, a higher risk of disease spread, and longer hospitalizations. This issue
also poses a significant social burden associated with difficult access to treatment options
for people with limited resources in underdeveloped countries, increasing morbidity
and mortality as well as impacting the quality of life of patients and their families [1].
Diseases caused by drug-resistant microorganisms are a proven global challenge with
decreasing rates of successful treatments, limiting available options and potentially leading
to untreatable disease [2]. These resistant infections can be caused by several factors related
to the microorganism itself, such as its genetic diversity, horizontal gene transfer, and
genetic mutations induced by the environment that cause aneuploidies and polygenic
resistance phenotypes [3]. Likewise, other factors related to the human host such as
immune system disorders, as well as the misuse of antimicrobial drugs during medical
procedures and their dissemination in the environment by the agricultural and veterinary
industry, contribute significantly to drug resistance [3,4].

Another mechanism allowing pathogen survival despite drug treatment is through
persistence. It is important to emphasize that the mechanisms of drug resistance and
persistence are different. Persisters survive therapeutic intervention by increasing their
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tolerance via entering a dormant state and evading host cell defenses. There are typically
no genetic changes in persisters and when drug pressure is gone, they may return to the
proliferative state, sensitive to the drug [5]. Both resistance and persistence are mechanisms
developed by microorganisms to ensure survival in the host environment, and although
they are different, it has been suggested that persistent cells may be precursors to resistance
mechanisms [6].

Several common strategies have been reported in the development of drug resistance
in bacteria, fungi, protozoan parasites, and even in human cancer cells [7,8]. These strategies
fall into four main categories: (i) limiting drug uptake; (ii) increasing drug efflux; (iii) drug
inactivation; and (iv) drug target modification. Decreased uptake and an increased efflux of
antibiotic drugs through membrane pumps are the most well-known mechanisms that lead
to multidrug resistance in different microorganisms, especially in bacteria [9,10]. Efflux
pumps are transmembrane proteins that can recognize and expel a variety of toxic chemi-
cals and antimicrobial compounds from the cell, and are used to reduce the level of cellular
concentrations of antibiotics to a minimum level that would not affect their survival and
multiplication [10]. Other common mechanisms in bacteria are directly related to the target
sites: the modification of the target, its substitution with new targets with similar functions,
the protection of target sites such as ribosomal protection proteins (RPPs), and the massive
production of the target, exceeding the antibiotic’s capacity [11]. Similar to bacteria, the
general mechanisms of antifungal resistance include modifications in the drug binding
site, efflux pumps, and drug inactivation [8]. Likewise, mutations in genes involved in
ergosterol synthesis and glucan synthases, as well as the positive regulation during the
translation of genes encoding efflux pumps proteins, confer resistance to antifungal drugs.
For instance, mutations in single genes such as ERG11 and pectin degradation regulator-1
(PDR-1), along with the positive regulation of genes (ERG5, ERG6 and ERG25), associated
with ergosterol biosynthesis, are associated with amphotericin B (AmB) resistance [3,4,12].
Cancer cells have also developed various drug resistance mechanisms similar to those
used by bacteria and other eukaryotes; these mechanisms involve alterations at genomic,
transcriptional, translational, and metabolomic levels [13]. Genetic alterations conferring
drug resistance include mutations, deletions, rearrangements, and translocations [13–15].
At the translational level, the overexpression of efflux pumps and alterations in signaling
pathways are significant contributors to resistance [16,17]; moreover, translational repro-
graming allows cancer cells to modify their protein synthesis machinery to evade the effects
of therapeutic agents, influencing metabolic processes that support cellular proliferation,
survival, and resistance to death [18,19].

Resistance mechanisms have been substantially less studied in pathogenic protozoa
parasites of the Trypanosomatidae family. In general, protozoa parasites also have the
machinery necessary to limit uptake, inactivate, or increase the active efflux of a drug, as
well as the tools to modify a drug’s target. The principles are similar to other pathogens
such as bacteria, fungi, and other protozoa as well as cancer cells. It has been shown
that the loss of membrane transporters could generate resistance to treatment due to the
reduction in drug accumulation in parasitic cells [20]. For instance, in Trypanosoma brucei,
the functional loss of membrane transporters such as aminopurine transporter P2 encoded
by the gene TbAT1 and high-affinity pentamidine transporter (HAPT1), lead to cross-
resistance to melarsoprol and pentamidine (PTM) drugs, used to treat human African
trypanosomiasis [20].

Similar to previously described models, the mechanisms of acquired resistance in
Leishmania species are associated with the up-regulation of proteins that degrade or reduce
the toxic effects of these drugs, decrease drug entry, and increase export via transporters [21]
(Figure 1). For instance, the deletion or reduced expression of aquaglyceroporin 1 (AQP1)
renders parasites resistant to trivalent antimony (SbIII) [22,23]. The overexpression of ATP
binding cassette (ABC) transporters involved in transmembrane ATP-dependent transport
confers resistance associated with vesicle sequestration; while another type of ABC trans-
porters like the pentamidine resistance protein (PRP1) has been related to the resistance
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to pentamidine (PTM). The molecular mechanisms of resistance in Leishmania have been
primarily described for antimonials, but it is also important to understand the mechanisms
that confer resistance to other drugs used in the treatment of leishmaniasis, especially
considering combination therapies to which parasites can also develop resistance [24].
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Figure 1. Drug-resistance mechanisms employed by amastigotes of Leishmania spp. (A) Deletion or re-
duced expression of drug transporters such as aquaglyceroporin 1 (AQP1) can diminish cellular drug
uptake. (B) The overexpression of ABC transporters like MDR1, ABCI4, ABCG4 or ABCG6 helps the
parasite efflux the drug and diminish its effect [25]. (C) Target alteration involves (i) the modification
of the target to reduce drug binding, (ii) the substitution of the target by a new protein with a similar
function that is not inhibited by the drug, (iii) the association of a target protection protein with the
target, and iv) target overproduction to compensate for the drug’s inhibitory effect [26,27]. (D) Drug
inactivation can occur through modification, hydrolysis, or the sequestration of the drug, rendering
it ineffective [25,26]. (E) Drug exocytosis involves the encapsulation and expulsion of the drug or
its conjugates from the parasite cell, usually thorough the flagellar pocket [25]. These mechanisms
collectively enable the parasite to evade the therapeutic effects of drugs and persist in the host.

The mechanisms of resistance in Leishmania have not been explored in depth, espe-
cially during translation. There is little information available about translation profiles
during infection and the transition to the host environment; however, there is evidence
for the important role of translational reprogramming as a major driver of drug resistance
mechanisms [28]. Recurrent treatment failures, long-term infections, limited treatment
alternatives, reports of persistence, and drug resistance mechanisms that could rapidly
evolve during the treatment of leishmaniasis have motivated us to further explore what
is known about the molecular mechanisms of drug resistance. Understanding the mecha-
nisms associated with molecular changes during resistance could enhance the approach to
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treatments, predict the susceptibility of strains from clinical specimens to a drug, thereby
extending the half-life of the drug, improve the development and efficacy of new drugs,
and ultimately reduce the spread of resistant strains leading to the adequate control of
leishmaniasis disease [29].

2. Available Treatments against Leishmaniasis

Leishmaniasis is a neglected tropical disease (NTD) caused by several species of the
protozoan parasite Leishmania. These parasites are digenetic, and acquire their infectivity
inside a phlebotomine vector, where the procyclic promastigote passes through several
stages before developing into its infectious form as a metacyclic promastigote. Subsequent
introduction into the bloodstream of the human host through the sandfly’s bite then allows
the parasite to establish itself inside host macrophages and differentiate into intracellular
amastigotes [30]. The disease represents a significant public health issue and can occur in
three different forms: cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL),
and visceral leishmaniasis (VL), with the last being the most lethal [31]. Various drugs
have been used over the years to treat the different manifestations of this disease. Current
treatment regimens are individualized, and their success is related to the clinical manifes-
tations and other patient-associated factors [32]. Some of the most common treatments
approved by the Food and Drug Administration (FDA) include pentavalent antimony (SbV),
miltefosine (MLT), amphotericin B (AmB), paromomycin (PMM), pentamidine (PTM), and
others [33] (Figure 2). Although the mechanisms of action of these commercially available
treatments have not been fully described for Leishmania spp., it is known that PMM may
interfere with the cellular energy metabolism and can induce respiratory dysfunction in
Leishmania parasites [34]. MLT and SbV could affect the mitochondria, AmB could alter the
permeability of the cell membrane, and PTM and PMM are associated with DNA damage
and the inhibition of RNA and protein synthesis, all culminating in the death of the parasitic
cells [35]. The modes of action of the most-used drugs to treat leishmaniasis are described
in Table 1.
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leishmaniasis (VL) [38]. Pentamidine is also employed for the treatment of all three forms of this
disease [39–41]. Paromomycin and miltefosine have shown effectiveness in treating both VL [42] and
CL [43–45]. Amphotericin B is also an effective treatment option for VL [46] and CL [47].

Table 1. Modes of action of current antileishmanial drugs.

Current Drugs for
Leishmaniasis Treatment Mode of Action and Parasite Targeting References

Pentavalent
Antimony

(SbV)

Inhibits the mitochondrial enzyme trypanothione reductase, increasing
the parasite’s susceptibility to oxidative stress generated by the

macrophage during infection. It can obstruct major energy-driven
pathways such as fatty acid oxidation and glycolysis.

[35,48,49]

Miltefosine
(MLT)

Inhibits the enzyme cytochrome c oxidase located in the mitochondria,
directly affecting energy production in the parasite. Also inhibits

phosphatidylcholine synthesis, which affects lipid metabolism through
the CDP-choline pathway by acting on CTP-phosphocholine

cytidylyltransferase activity.

[50,51]

Liposomal
amphotericin B

(AmB)

Forms transmembrane channels through the cell wall and is known to
have a high affinity for ergosterol, causing micropores in the membrane,

increasing permeability and ion loss, and resulting in cell death.
[52,53]

Paromomycin
(PMM)

Inhibits the cytosolic ribosome, affecting protein synthesis through
binding to the 16S ribosomal unit and creating an alteration in

its structure.
[54–56]

Pentamidine
(PTM)

Inhibits DNA and protein synthesis and causes cell-cycle arrest in the
G2/M phase. Inhibits RNA polymerase, leading to apoptosis. Inhibits

arginine transport.
[57,58]

First-line prescription drugs including SbV have remained the mainstay of treatment
for visceral leishmaniasis in recent years; however, they have limitations related to signifi-
cant adverse effects such as liver, renal, and cardiac toxicity as well as other gastrointestinal
symptoms associated with systemic administration [59]. To reduce some of these side ef-
fects, the Pan American Health Organization has approved the intralesional administration
as an acceptable alternative [60]. The ability to reduce SbV to SbIII has been reported as a
mechanism of resistance, especially in the intracellular amastigotes of Leishmania [61]; other
mechanisms have also been described, such as drug sequestration, efflux, and the increase
in intracellular thiol levels as a defense mechanism to combat the oxidative stress gener-
ated by antimonials [21,62,63]. MLT is a chemotherapeutic agent included in the World
Health Organization (WHO)’s list of essential medicines as a first-line treatment option for
cutaneous and mucocutaneous leishmaniasis caused by New World species of Leishmania
(Viannia) braziliensis, L. (V.) panamensis, and L. (V.) guyanensis in Latin American countries,
such as Brazil, Colombia, Guatemala, and Peru [64]. This pharmaceutical agent induces an
alteration in Ca2+ homeostasis [50], resulting in increased an intracellular Ca2+ concentra-
tion and contributing to the death of the parasite. Clinical studies have documented renal
and hepatic toxicity [65], as well as other drug-related drawbacks such as effects on the
gastrointestinal mucosa, potential teratogenicity, and drug resistance mechanisms [66].

Second-line agents, including PTM and AmB, are still being used as an option for
treating infected patients; some of the most serious adverse effects caused by AmB are
nephrotoxicity and myocarditis [28]. Moreover, liposomal AmB has been approved by the
FDA in some countries as a better tolerated alternative when compared to conventional
amphotericin B deoxycholate; however, due to its high cost, it has been limited as an
option [29]. In addition, PTM has been used via systemic intravenous administration, its
approval for use in certain types of leishmaniasis varies between countries, as the FDA-
approved indications do not include leishmaniasis [6]; nevertheless, it shows insufficient
efficacy, and its safety profile may include serious side effects such as renal toxicity and
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pancreatitis [25,29]. On the other hand, PMM is an antibiotic typically used to treat bacterial
infections and has been used in topical formulations to treat selected cases of leishmaniasis.
Topical and parenteral formulations have been approved in India as alternative treatments,
but despite their low cost and absence of serious toxicity issues, some mechanisms related
with drug resistance have been reported [25].

Among the strategies used to combat treatment failure in patients with leishmania-
sis, combination therapies involving the use of different drugs in the same patient have
been indicated; for instance, MLT has been used in combination with PMM and AmB
as treatment. In India, a combination of AmB and MLT was used, resulting in a more
cost-effective treatment [66]. However, a cross-resistance between these two drugs has been
described by evaluating MLT-resistant mutants generated in vitro, and alterations in the
lipid composition of the plasma membrane were found to also be associated with AmB
resistance [67]. Combination therapies have also been used as a short-term treatment; for
instance, combining MLT and PMM can result in a safe and highly effective alternative,
suggesting that MLT could delay the expected development of resistance to PMM [68,69].
Although many strategies have been developed to provide access to treatment through
public health programs in underdeveloped countries with high rates of the disease, there
are other limitations, such as the high toxicity of certain drugs and the rapid development
of drug-resistant parasites, which can lead to treatment failure. However, the molecular
mechanisms of drug resistance are not well understood and require further investigation.

3. Genomic Changes and Drug Resistance

Leishmania has an atypical genome that displays an extreme plasticity, variation in
chromosomal dosage between species, a lack of introns and the presence of a modified
base [70–72]. The extreme plasticity is achieved by exploiting genome instability through
gene dosage changes [70]. The genome is distributed over 34–36 chromosomes depending
on the species. The different number of chromosomes between species seems to be associ-
ated with chromosome fusion as has been described in L. braziliensis and L. mexicana [71].
Furthermore, despite being a eukaryotic genome, it does not have introns and also tran-
scribes polycistronically, like bacteria, although the polycistronic genes are not necessarily
functionally related [73]. A modified thymidine (β-D-glucopyranosyloxymethyluracil) has
also been found to be present in its genome, especially in the sub-telomeric regions and is
known as the J base [74]. Leishmania’s genome has high plasticity, allowing it to develop
genomic modifications as a survival mechanism in response to stressful conditions. These
alterations can modify the expression levels of certain genes and play an important role
in the parasite´s resistance to drugs commonly used to treat the disease. Some of those
genomic alterations that affect or modulate gene expression levels are aneuploidies, genetic
amplifications, and gene deletions [75–78]. These changes usually regulate the expression
of drug targets, drug transporters, or enzymes associated with drug inactivation, but other
modifications exist that are associated with specific changes in the sequence of a gene
that modify or change the structure and/or function of proteins, as generally occurs with
some single nucleotide polymorphisms (SNPs) [27,79]. In this review, the genomic changes
associated with the most-used treatments for leishmaniasis will be discussed.

Polyploidy has been described for several chromosomes in several Leishmania species
that are resistant to drugs [77,78,80–82], with a genomic amplification being one of the most
common alterations leading to the change in the chromosomal number [80,83]. The most
common genes that have been found to be involved in antimony resistance through changes
in their ploidy are MRPA, APX, and G6PDH (Table 2) [80,83–85]. Changes associated
with aneuploidies have been reported in PMM-resistant strains [81]. Gene deletion and
mutations, especially deletions of nucleotides, also have been reported; these mutations
may be alone or accompanied by gene deletions or gene amplifications, as is the case with
the membrane transporter associated with antimony uptake, which is the AQP1 whose
action has been associated with both antimonials and pentamidine [83]. Other mutations
associated with antimonial-resistant species correspond to changes in the multi-drug
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resistance 1 (MDR1) protein [86]. On the other hand, in AmB-resistant parasites, an 8 Kb
deletion in the gene that codes for 24-sterol methyltransferase (SMT) or mutations in sterol
C5-desaturase (SC5D) or sterol 14-demethylase (CYP51) have also been reported [87,88].
Miltefosine (MLT) mutations in the MLT transporter gene have been described that have
also been associated with cross-resistance to AmB; likewise, the deletion of the MLT-
sensitive locus has been reported in four species of Leishmania [67,89,90]. In a study
selecting the resistance to PMM in Leishmania donovani amastigotes, a total of 11 short
nucleotide variations and alterations in copy numbers for 39 genes were associated with
the resistance to this drug, several of which were involved in transcription, translation, and
protein turnover [91]. The summary of the best studied genomic alterations associated with
drug resistance is presented in Table 2.

Table 2. Genomic alterations associated with drug resistance.

Drug Gene Name Genomic Changes Effect Associated with Drug Resistance Reference

Antimony

MRPA Amplification Increases drug efflux [80,92]

APX Amplification Protection from ROS accumulation [84]

G6PDH Amplification Protection from ROS accumulation [84,93]

AQP1 Amplification, Deletion Reduces drug uptake [83]

MDR1 Point mutation Increases drug efflux [86]

AmB

SMT Deletion Reduces drug uptake [87]

SC5D Point mutation Alters sterol biosynthesis [94]

CYP51 Point mutation Alters sterol biosynthesis [88]

LMT Deletion, Point mutation Alters sterol biosynthesis [67]

Miltefosine LMT Deletion Reduces drug uptake [89]

Paromomycin Gene 18S RNA Point mutation Decreases binding of PMM [81]

Extrachromosomal DNA, which can be linear or circular, has also been detected in
drug-resistant Leishmania. These episomal fragments have been found to be associated
with resistance to antimony [76] and AmB [95]. An evaluation of L. tarentolae strains
found that the more episomal copies the parasite had, the greater the resistance to AmB it
exhibited [95]. Lately, the possibility of extracellular vesicles transferring from resistant to
sensitive strains has been described, and the characterization of the vesicles´ content has
demonstrated the presence of DNA containing genes associated with drug resistance [96].

4. Changes in Transcriptomes Associated with Drug Resistance

Leishmania’s dynamic genome plays a vital role in the development of drug resis-
tance; however, the role of transcriptional control is limited due to its unique mechanisms.
Contrary to most other eukaryotes, Leishmania parasites lack introns and employ unidirec-
tional polycistronic transcription units (PTUs). From PTUs, pre-mRNA encoding potential
polypeptides are produced, typically via RNA polymerase II (RNAP II). The transcription
of the PTU by RNAP II is terminated upon the detection of the unique kinetoplast base J (β-
D-glucosyl-hydroxymethyl uracil), first identified in T. brucei, located in the sub-telomeric
regions, and later shown to prevent transcriptional readthrough in Leishmania [74,97–99].
Resulting polycistronic pre-mRNA are then processed into mature mRNA via two mecha-
nisms: (1) trans-splicing with the addition of a 39–41 nucleotide spliced leader RNA to the
5′-terminus and (2) 3′-end cleavage/polyadenylation [100].

Leishmania parasites lack the canonical transcription factors, promoters, and individ-
ually regulated genes found in higher eukaryotes. This apparent lack of transcriptional
regulation; however, seems to indicate that modulation occurs via a few different mech-
anisms: gene dosage variation and post-transcriptional regulation. Mechanisms of gene
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dosage modulation include the generation of episomal amplicons and mosaic aneuploidy,
including regional and chromosomal copy number variation (CNV) [79]. Translational
efficiency and mRNA stability are crucial for the modulation of effective transcript quantity.
These mechanisms are not fully understood in the context of therapeutic resistance, but
they nonetheless offer insight into the complex and interconnected methods by which
Leishmania spp. are able to rapidly develop resistance [101].

Among the most studied antileishmanial therapeutic options, SbV have been shown
to elicit profound modulatory effects at the mRNA level, likely due to the existence of
multiple cellular targets [102]. Among these modulations, some of the most important
differentially expressed genes (DEGs) in resistant L. infantum lines were found to play a role
in protein phosphorylation, microtubule-based movement, protein ubiquitination, stress
response (e.g., HSP-100 and DNAJ), the regulation of membrane lipid distribution (e.g.,
ABC transporters), RNA metabolism proteins (e.g., RNA-binding proteins (RBPs)), trans-
lation, and ribosome biogenesis [102]. In the same study, other notable over-expressions
in the transcriptome included GSH1 (encoding γ-GCS, a key enzyme in the glutathione
pathway), RBPs (particularly RNA recognition motifs responsible for transcriptional con-
trol), ribosomal proteins, ABC transporters (e.g., MRPA), and HSP-100 (a key component
of the stress response). Other studies have shown similar expression patterns regarding
these transcripts [87,103]. Notable in these studies was also a lack of differential expression
for AQP1, a key drug-entry point which has previously been seen to be down-regulated in
SbIII-resistant strains [23].

Another important consideration includes expression across varying life cycle stages
and species. In a recent study, the transcriptome of L. infantum amastigotes resistant to
antimonials displayed significant differential expression which contrasted with profiles
found in the promastigotes of other studies and likely contributed to their survival within
the harsh phagolysosome environment [104]. Another study found differential responses
to SbIII in a comparative analysis across five Leishmania species of medical importance, but
found no common DEGs across these five species—although RBPs, nicotinamide adenine
dinucleotide phosphate (NADPH), and the cytochrome-B5-oxidoreductase complex were
found among four of the five [105].

Regarding MLT, resistance mechanisms at the mRNA level have been correlated with
alterations in drug transport, modulating the MT/ROS3 transporter complex [106–109].
Likewise, it has been demonstrated that differential gene expression of the miltefosine
transporter complex is involved in the parasite’s susceptibility to MLT [110]. Another
study, however, found only a slight up-regulation of LMT/LROS3 (an accessory protein)
in resistant L. donovoni parasites [87]. In this study, a heterozygous SNP in the Leishmania
miltefosine transporter (LMT) gene, leading to the appearance of a stop codon potentially
associated with decreased miltefosine transporter expression, was found, along with the
down-regulation of the ribosomal protein L17, amastin-like surface proteins, and super-
oxide dismutase, as well as the up-regulation of histone H1. Additionally, comparative
analyses of MLT-resistant and MLT-sensitive L. donovani transcriptomes have shown signif-
icant modulation of the following mechanisms: (i) DNA replication and repair machinery,
(ii) protein translation, (iii) energy generation mechanisms, (iv) transporters (e.g., ABC1,
ABCA7, and AQP1), and (v) antioxidant defense mechanisms [111]. Similar findings across
these studies may suggest that MLT resistance in Leishmania spp. is more profoundly
influenced by regulation elsewhere along the expression pathway.

Many of the other antileishmanial agents have also been shown to exert a modulatory
effect on Leishmania spp. transcriptomes but are less studied than SbV or MLT. In regards
to AmB, a study of four resistant L. mexicana lines demonstrated reduced expression of
two genes coding for sterol C24-methyltransferase (SMT) influenced by chromosomal
ploidy, which is associated with the resistance to this drug in multiple strains [94]. These
observations were mirrored in another study of resistant L. donovani, which additionally
showed the up-regulation of amastins and tryparedoxin 1 transcripts (an antioxidant
molecule which has been previously linked to AmB resistance) [87,112]. Transcript levels
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of Sir2 and the related PARP1 (apoptotic regulators) have also been associated with AmB
resistance in L. donovani, demonstrating effects on drug efflux, the ABC transporter (MDR1)
mRNA levels, and ROS concentrations [113]. As for PMM, transcriptome profiling of
PMM-resistant L. donovani suggests adaptations including: (i) the down-regulation of
the aerobic metabolism, (ii) the up-regulation of glycolysis and glycosomal succinate
fermentation, (iii) decreased DNA synthesis (via the down-regulation of DNA polymerase
θ) and increased DNA repair, (iv) decreased protein synthesis and degradation (the down-
regulation of tryptophanyl-t-RNA synthetase, ribosomal proteins, metallopeptidases, and
carboxypeptidases), and (v) increased PMM efflux by means of the increased expression of
ABC transporters [114]. Another study, also using PMM-resistant L. donovani, found DEGs
including two very strongly up-regulated transcripts encoding D-lactate dehydrogenase-
like protein (D-LDH) and the aminotransferase of branched-chain amino acids (BCAT) [87].
This study also suggested that the overexpression of these proteins may allow for alternative
energy production in the form of additional ATPs to compensate for a mitochondrial
dysfunction, as well as the up-regulation of proteins including ABC10, ribosomal protein
L38, and amastins.

5. Translational Control as a Major Driver of Drug Resistance

Leishmania spp. eludes transcriptional control due to the nature of its polycistronic
transcription and the absence of other elements important for the regulation of RNA levels
at pre-translational stages, such as RNA interference (RNAi) machinery [100]. In contrast,
other eukaryotes have monocistronic transcription, meaning that there is only one gene per
mRNA and introns are removed from pre-mRNA within the same transcript. Furthermore,
promoters, enhancers, and other regulatory elements interact with the translation machin-
ery to control transcription initiation, referring transcriptional and post-transcriptional
control the dominant mode of gene regulation [115,116]. This behavioral pattern of Leish-
mania spp. is also exhibited in other trypanosomatids, such as T. brucei and T. cruzi, since
their genetic regulation seems to primarily be led by post-transcriptional mechanisms such
as mRNA stability, translational control, and RNA-binding proteins (RBPs) [100,101].

This absence of transcriptional regulation suggests that parasites require more special-
ized translational machinery as a compensatory mechanism to maintain mRNA stability
and regulate gene expression [117]. Translational control mechanisms, such as the altered
initiation, elongation, or termination of mRNA translation, can directly impact the dynamic
abundance of proteins crucial to the parasite response to varied stimuli [115]. However, the
role of translational control in drug resistance has been poorly investigated. It has been
shown previously that calcium-dependent protein kinase 1 (CDPK1) acts as a modulator
of translation efficiency for selective transcripts, and mutations in this protein contribute
to paramomycin and antimony resistance [118]. This kinase can alter the translational
efficiency of mRNAs encoding for drug efflux pumps and enzymes involved in drug
metabolism, thereby enhancing the parasite’s ability to survive in the presence of thera-
peutic agents and hinting at the importance of translational control in drug resistance in
Leishmania spp. [118,119].

In order to investigate the role of translational control in drug resistance, our group
examined translatomes of sensitive and resistant Leishmania tropica parasites. Resistant
parasites were generated using parental sensitive parasites through stepwise antimony
selection [28]. We have shown that the development of antimony resistance involves a dra-
matic reprogramming of mRNA translation in Leishmania parasites (Figure 3). Translatomes
of resistant parasites were drastically different from those of sensitive parasites, even in
the absence of the antimony drug, and included 2431 differentially translated transcripts
(DTTs). The transcriptome analysis demonstrated that the vast majority of changes in
resistant parasites are observed in the translatome rather than the transcriptome, support-
ing the important role of translational control in drug resistance. In contrast, resistant
parasites that are grown while exposed to antimony induced changes in the translation of a
specific population of only 189 transcripts. Dramatic changes in the translatome observed
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in the absence of the drug challenge support that complex pre-emptive adaptations are
needed to compensate for the loss of the biological fitness of parasites exposed to the drug
essential for immediate survival to the drug challenge. This reprogramming includes the
translation of mRNAs involved in trypanothione metabolism (a defense mechanism against
oxidative stress), proteins related to drug efflux, and the remodeling of the cell membrane.
Likewise, an enrichment of genes involved in the energy metabolism and the expression
of putative translational regulators is also observed. Thus, the coordinated reprogram-
ming of translation leads to diverse pre-emptive adaptations that combat drug effects and
involve enhanced antioxidant response, energy metabolism, and cell surface, lipidome,
and metabolome remodeling [28,120,121]. Our recent findings in the same drug-resistant
Leishmania tropica parasites uncovered dramatic lipidome and metabolome remodeling,
even in the absence of the antimony drug [120,121]. Our data support that those changes
could be essential pre-emptive adaptations needed to counteract the drug upon exposure.
We hypothesize that during the stepwise development of drug resistance, parasites exhibit
changes in the translatome directed by translational regulators. The translational regulators
themselves undergo changes occurring at both genomic and translational levels to support
the complex reprogramming of translation. The association between drug-resistant pheno-
types and reprogrammed mRNA translation has been previously observed in refractory
cancer cells [122]. Translational reprogramming is commonly recognized as a source of
adaptive plasticity that allows cancer cells to become resistant to new therapies and our
data support that this is the case in Leishmania parasites.
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parasites possess a remodeled translational profile that is distinct from profile of sensitive parasites
even in the absence of the antimony drug, which serves as a pre-emptive adaptation to drug challenge.
(B) This depicts the response of drug-resistant parasites to drug challenge. Once the resistant parasite
recognizes the presence of the drug, it activates the selective translation of mRNAs encoding drug-
resistance modulators. These modulators are involved in various response mechanisms, such as
surface protein remodeling, drug efflux, the optimization of the energy metabolism, antioxidant
response, and drug inactivation. Together, these mechanisms act quickly and in a coordinated manner
to combat treatment.

6. Changes in Metabolomes and Lipidomes Associated with Drug Resistance

Drug-resistant parasites are known to exhibit profound changes in both the lipidome
and metabolome to support drug resistance [120,121]. Metabolomic approaches have
unraveled many of the mechanisms of action of drugs used to combat Leishmania infections;
additionally, they have demonstrated how parasites can respond to these drugs and the
strategies they use to acquire resistance [123–128]. This resistance involves alterations
and the differential expression of metabolites involved in lipid, energy, or amino acid
metabolism. Nonetheless, the metabolic mechanisms used by resistant parasites are still
poorly understood, with lipid remodeling and changes in lipid metabolism being the most
characterized so far.

At the lipidome level, Leishmania parasites have exhibited changes in the composition
of phospholipids, fatty acids, sphingolipids, and glycerolipids in drug-resistant strains. For
instance, fatty acids, the most prominent type of fatty acyls and the building blocks for sev-
eral lipids [129], have long and highly unsaturated alkyl chains in different membrane com-
ponents like phospholipids, glycerolipids, and glycolipids in drug-resistant parasites [29].
These changes have been reported in Leishmania strains resistant to MLT [130], AmB [131],
and SbV [80,120,132], and it has been suggested that these alterations can decrease the
ordered state of the membranes and modulate their fluidity, thereby improving the par-
asitic response to drug treatment and the resistance to oxidative stress [29,130,131,133].
On the other hand, phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs),
two of the most abundant phospholipids (PLs) in the cell membranes of Leishmania, have
exhibited alterations in abundance and composition in resistant parasites [51,134,135]. PCs
with high fatty acyl unsaturation are more abundant in Sb and MLT-resistant strains, usu-
ally accompanied by changes in the quantity of PEs and other phospholipids [29,120,123].
Sterols are another group of altered lipids in resistant strains of Leishmania. Ergosterol and
ergosterol-like lipids are the main sterols in the cell membranes of trypanosomatids, while
cholesterol (despite not being synthesized by Leishmania) is incorporated from the environ-
ment [136,137]. Some studies have shown differences in the sterol composition of resistant
parasite membranes. For instance, increased levels of ergosterol have been observed in SbIII-
resistant parasites [138] and cholesta-5,7,24-trien-3β-ol (instead of ergosterol) is increased in
AmB-resistant strains [131], but reduced sterol biosynthesis is observed in atovaquone and
MLT-resistant strains [130,139]. On the other hand, cholesterol is increased in MLT-resistant
parasites [139], while both cholesterol and ergosterol are reduced in sitamaquine-resistant
Leishmania [140]. Other altered lipids found in drug-resistant strains of Leishmania are
sphingolipids, being generally reduced in Sb-resistant strains [29,120,123,127].

Regarding the amino acid metabolism, some studies have shown differences in
the abundance of metabolites relevant for cell survival during environmental stress in
drug-resistant parasites. One such metabolite is proline, an essential amino acid mainly
used as a carbon source for recovery during the osmotic stress response and as a protec-
tive agent during oxidative stress [141]. Proline is highly abundant in Sb-resistant para-
sites [80,121,123,127,142], but is not involved in PMM resistance [81]. Similar to proline,
alanine is an amino acid contributing to osmotic balance in Leishmania spp. which is in-
creased in Sb-resistant parasites [121,127,142]. Arginine is another important amino acid in
resistant strains, involved in the polyamine metabolism and activating trypanothione down-
stream [143]. Arginine has been found to be elevated in Sb-resistant parasites [80,121,142].
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The increase in these amino acids, accompanied by the decrease in others like betaine, helps
resistant parasites respond to oxidative and osmotic stress while potentially even inducing
drug inactivation by thiol metabolism [121].

Energy metabolism is also important in resistant parasites since it contributes to
energy production by fueling the NADPH necessary for drug response pathways like
thiol metabolism activation [121]. Some metabolites involved in the energy metabolism of
drug-resistant parasites are acetate, valine, threonine, and lactate [80,81,121,127,142].

All of these that are coordinated in metabolomes and lipidomes are essential for
the development of drug resistance and Leishmania spp. survival. Drug resistance is a
multifactorial chain of events that is still not fully understood in Leishmania spp. However,
the study of resistant strains through different molecular approaches may help to clarify
the unique mechanisms used by these parasites to develop resistance and illuminate the
path to finding new drug targets for combating leishmaniasis.

7. Conclusions and Perspectives

In this review, we have summarized known molecular mechanisms by which Leish-
mania spp. may develop drug resistance and evaluated the main mechanisms in protozoa
parasites and other eukaryotes during the gene regulation associated with drug resistance.
Genomic alterations, such as aneuploidies, gene deletions, and SNPs, could modify gene
expression and protein function, particularly in response to commonly used treatments
like Sb, AmB, MLT, and PMM. Transcriptomic control, while limited, further reveals the
parasite’s ability to adapt to drug pressures through the differential expression of genes
involved in several cellular processes, including stress responses, protein ubiquitination,
and RNA metabolism. Otherwise, due to the lack of transcriptional regulation, the impor-
tance of translational control mechanisms in Leishmania spp. highlights the role of mRNA
stability and specialized translational machinery in drug resistance. Some key proteins,
such as CDPK1 and ABC transporters, are crucial to the modulation of a parasite’s response
to drugs, and metabolic changes coordinated during translational reprograming also sup-
port resistance by enhancing the parasite’s ability to face oxidative stress and maintain
membrane integrity.

Despite the extensive research that has already been conducted, significant gaps exist
in understanding the full picture of drug resistance in Leishmania parasites. The interaction
between genomic changes and translational control as well as how both processes influence
resistance mechanisms are still unclear. The variability in the regulation of resistance
mechanisms between different Leishmania species, different life cycle stages, and throughout
the infection processes also require more exploration. Furthermore, the precise mechanisms
of translational control and their contributions to resistance, like the role of translational
reprogramming in pre-emptive adaptations, require further investigation through the
validation of genes associated with resistance using CRISPR-Cas9 functional gene knock-
out analysis. It remains unknown if similar translational reprogramming mechanisms exist
in parasites that are resistant to different drugs and what differences parasites exhibit in
response to different drugs at a translational level. It is important to carry out more work
on naturally occurring resistant strains obtained from patients who did not respond to
treatment. With so much still being unknown, there is significant motivation to continue
the study of drug resistance in Leishmania spp. using integrative advanced sequencing
technologies, polysome profiling, proteomics, and other novel techniques [28,120,144].
Investigating translational modulation could identify new gene targets and regulatory
elements involved in the drug resistance pathways. Exploring the role of different proteins
in specific translational control pathways or the stress response could lead to promising
strategies to combat drug resistance in Leishmania spp. Lastly, investigating the role of
non-coding RNAs during the regulation of gene expression and translation could provide
new pharmacological targets for the development of novel therapeutics.
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Abbreviations

aa-tRNA Aminoacyl transfer ribonucleic acid
ABC ATP binding cassette
AmB Amphotericin B
APX Ascorbate Peroxidase
AQP1 Aquaglyceroporin 1
ATP Adenosine triphosphate
BCAT Branched-chain amino acids
CDP Cytidine-5’-diphosphate
CNV Copy number variation
CTP Cytidine-5’-triphosphate
CDPK1 Calcium dependent protein kinase 1
CL Cutaneous Leishmaniasis
CRISPR-Cas9 Clustered Regularly Interspaced Short Palindromic Repeats-Protein 9
CYP51 Sterol 14-demethylase
D-LDH D-lactate dehydrogenase-like protein
DNA Deoxyribonucleic Acid
DEGs Differentially expressed genes
FDA Food and Drug administration
G6PDH Glucose-6-Phosphate Dehydrogenase
HAPT1 High affinity pentamidine transporter
HIV Human immunodeficiency virus
JAK-STAT Janus kinase/signal transducers and activators of transcription
LMT Miltefosine Transporter gene
MCL Muco-Cutaneous Leishmaniasis
MDR1 Multi-drug resistance 1
MLT Miltefosine
mRNA Messenger ribonucleic acid
MRPA Multidrug-resistance protein A
NADPH Nicotinamide adenine dinucleotide phosphate
NTD Neglected tropical disease
PC Phosphatidylcholines
PE Phosphatidylethanolamines
PL Phospholipids
PMM Paromomycin
PRP1 Pentamidine resistance protein 1
PTM Pentamidine
PTUs Polycistronic transcription units
PDR-1 Pectin degradation regulator-1
RBP RNA Binding protein
RBPs RNA-binding proteins
RNAP II RNA polymerase II
RPP Ribosomal protection protein
rRNA Ribosomal ribonucleic acid
SbV Pentavalent antimony
SC5D Sterol C5 -desaturase
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SMT 24-sterol methyltransferase
SNPs Single nucleotide polymorphisms
VL Visceral Leishmaniasis
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