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Abstract: Combining near-earth remote sensing spectral imaging technology with unmanned aerial
vehicle (UAV) remote sensing sensing technology, we measured the Ningqi No. 10 goji variety
under conditions of health, infestation by psyllids, and infestation by gall mites in Shizuishan City,
Ningxia Hui Autonomous Region. The results indicate that the red and near-infrared spectral bands
are particularly sensitive for detecting pest and disease conditions in goji. Using UAV-measured
data, a remote sensing monitoring model for goji pest and disease was developed and validated
using near-earth remote sensing hyperspectral data. A fully connected neural network achieved an
accuracy of over 96.82% in classifying gall mite infestations, thereby enhancing the precision of pest
and disease monitoring in goji. This demonstrates the reliability of UAV remote sensing. The pest
and disease remote sensing monitoring model was used to visually present predictive results on
hyperspectral images of goji, achieving data visualization.

Keywords: hyperspectral; diseases and pests; unmanned aerial vehicle (UAV); remote sensing
monitoring

1. Introduction

Ningxia is a major goji berry-producing area in China, and its goji berry industry has
become one of the pillars of Ningxia’s agriculture after many years of development. Goji
berries have been cultivated in Ningxia for over 500 years. In recent years, as the main
cash crop of the region, the planting area for goji berries has been expanding annually. The
region now maintains a cultivation area of 380,000 mu (approximately 25,333 hectares),
with a fresh fruit output of 300,000 tons and a total industry value exceeding 27 billion
yuan. With the expansion of the cultivated area and the increase in years of cultivation,
the occurrence of pests and diseases has become increasingly severe, causing significant
economic losses. Common pests and diseases include the goji psyllids and the goji gall
mites [1,2].

The spectral characteristics of ground objects form the basis for both theoretical and
applied research in the field of remote sensing. As early as the 1980s, researchers have
utilized portable spectrometers to study crop diseases and pest infestations [3]. Near-earth
remote sensing spectral imaging technology involves the use of handheld or portable
spectrometers to measure the spectral reflectance of crop canopies and leaves affected by
diseases and pests in both laboratory and field settings. This technology is not only used
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for analyzing the spectral characteristics of various diseases and pests and identifying
sensitive spectral bands after damage, but it also allows for the calibration of target spectral
data on the ground before satellite remote sensing applications. Near-earth remote sensing
spectral imaging can also determine the spectral characteristics of plants to assess the
health of vegetation. Moreover, the continuous monitoring of spectral data from near-earth
remote sensing spectral imaging in fields allows for the real-time tracking of crop growth,
providing critical data support for scientific agricultural management.

Drone remote sensing involves the use of sensors mounted on unmanned aerial
vehicles (UAVs) to gather surface information. Drones can carry high-resolution optical
and multispectral sensors to capture high-resolution images of farmland, providing detailed
spatial information. They can quickly cover large areas of farmland and gather real-time
data, offering timely support for agricultural decision-making. The combined use of
near-surface spectral technology and drone remote sensing, such as equipping drones
with near-earth remote sensing instruments, can more comprehensively capture spectral
information of farmland, thereby enhancing the precision of crop and soil monitoring.
This is of significant importance for the management of agricultural production, pest and
disease control, and the optimization of resource utilization.

In recent years, deep learning has become a pivotal tool in modern intelligent agricul-
ture, owing to its ability to extract complex features from large datasets [4,5]. As a result,
deep learning models are increasingly used in agricultural research. For example, Guo,
Q et al. employed a principal component analysis and the successive projections algorithm
to reduce the dimensionality of hyperspectral data for wheat rust and powdery mildew,
subsequently developing discriminative models. In 2017, Whetton, R.L et al. used partial
least squares regression (PLSR) to create calibration models that predict the infection rates of
wheat and barley by leaf rust and fusarium diseases [6]. In 2019, Wang, X.L et al. developed
a pest and disease identification model based on hyperspectral data from cotton leaves
infested by aphids and spider mites using support vector machine (SVM) algorithms [7].
Similarly, in 2021, Lakshmi V et al. extracted texture features from healthy and diseased
cotton leaves using the gray-level co-occurrence matrix and constructed an SVM-based pest
and disease identification model [8]. In 2022, Dilixiatl, Y et al. selected specific vegetation
indices to build regression models for identifying and monitoring the occurrence of cotton
aphids, cotton spider mites, and cotton bollworms [9]. In the case of goji berries, pest and
disease monitoring currently relies on linear methods, such as multiple regression, while
research into nonlinear approaches involving neural networks remains limited [10].

2. Materials and Methods
2.1. Subsection

In the elite goji berry ecological demonstration garden located in the Dawukou District,
Shizuishan City, Ningxia Hui Autonomous Region, detection was carried out using the
Flame-T-VIS-NIR-ES spectrometer and the Nano-Hyperspec miniature airborne hyper-
spectral imager from Ocean Optics, located in Dunedin, Florida, USA. In July, when pest
infestations are most common, Ningqi No. 10 goji berry cultivars in their peak fruiting
phase were used as detection targets. The two experimental fields were selected under the
guidance of Ms. Gao Min from the Ningxia Forest Pest Control and Quarantine Station.
The fields are free of mixed pest infestations and only have single infections of either goji
psyllids or goji gall mites. Each field included healthy goji plants as controls. The field
detection experiment picture is shown in Figure 1. The technical specifications of the
Flame-T-VIS- NIR-ES spectrometer and Nano-Hyperspec miniature airborne hyperspectral
imager are detailed in Tables 1 and 2, respectively.
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Figure 1. Field detection experiment diagram. (a) Near-ground hyperspectral detection; (b) UAV
detection.

Table 1. Parameters for handheld spectrometer.

Parameters Value

Model FLAME-T-VIS-NIR-ES
Signal-to-noise ratio 250:1
Spectral resolution 1.33 µm
Dark noise 50 RMS counts
Integration time 1 ms~65 s

Table 2. Parameters for drone-mounted hyperspectral imager.

Parameters Value

Unmanned aerial vehicle model DJI M300
Imaging spectrometer model Nano-Hyperspec
Altitude 15 m
Geospatial resolution 1 cm
Lateral overlap 30%
Flight speed 1.1 m/s
Spectral wavebands 400~1000 nm
Number of channels 270
Field of view 32◦

2.2. Spectral Reflectance Measurement

Under the guidance of Ms. Gao Min from the Ningxia Forest Pest Control and
Quarantine Station, the detection was performed around 13:00 on clear, sunny days with
wind speeds of less than 3 on the Beaufort scale.

Ground Spectral Data: Measurements with the handheld spectrometer were conducted
with the probe positioned vertically downward and consistently about 1 m above the
canopy. The field of view angle of the probe was fixed at 25◦. Before each measurement, the
instrument was calibrated against a standard whiteboard. To ensure the representativeness
of the spectral data, branches were randomly sampled from five directions (north, south,
east, west, and center) within each detection area, with 10 repeats per sample. The average
value was used to represent the spectral reflectance of the goji canopy.

Drone Spectral Data: A single flight detection was conducted over the entire experi-
mental area at a flight altitude of 15 m.

2.3. Data Analysis

The images collected by the drone are shown in Figure 2. The experimental field
infected with goji psyllids pests is shown in Figure 2a, while the field infected with goji gall
mites pests is shown in Figure 2b. The collected data were processed and analyzed using
ENVI 5.6, SPSS 17.0, Excel 2007, and Matlab R2022a.
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Figure 2. Drone images collected in Dawukou District, Shizuishan City, Ningxia Hui Autonomous
Region. (a) Experimental field infected with goji psyllids pests; (b) experimental field infected with
goji gall mites.

2.3.1. Spectral Data Preprocessing

Hyperspectral image preprocessing involves a series of steps performed on images
before data analysis to enhance data quality, reduce noise, and eliminate invalid infor-
mation. To mitigate the effects of background factors, outlier data are removed from the
collected spectral data, and the ground spectral data are subjected to first-order derivative
processing [11,12]. For the stitched drone images, noise reduction and smoothing are first
performed using ENVI 5.6 software. To reduce soil interference, a masking process is ap-
plied to the drone images to segment green vegetation from the image, excluding soil and
other non-target areas to enhance data quality and analytical precision. The preprocessing
steps for hyperspectral images acquired by the drone are illustrated in Figure 3.
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2.3.2. Feature Parameter Selection

The spectral index method is an approach that utilizes spectral information from
various bands in remote sensing imagery to compute specific index values, thereby reflect-
ing the characteristics and information of the target object [13,14]. Vegetation reflectance
characteristics are influenced by vegetation structure, leaf surface features, and vegetation
coverage. By analyzing the reflectance across different bands, information about the growth
state of the vegetation can be obtained [15,16]. The commonly used hyperspectral feature
parameters in the field of remote sensing are shown in Table 3.

Table 3. Hyperspectral characteristic parameters and their descriptions.

Characteristic Parameter Definition

SDb Sum of the first-order derivative values within the blue edge wavelength range (492~530 nm)
SDg Sum of the first-order derivative values within the green edge wavelength range (505~553 nm)
SDy Sum of the first-order derivative values within the yellow edge wavelength range (555~571 nm)
SDr Sum of the first-order derivative values within the red edge wavelength range (680~760 nm)
SDr/SDb Ratio of the total sum of first-order derivatives within the red edge to that within the blue edge
SDr/SDg Ratio of the total sum of first-order derivatives within the red edge to that within the green edge

(SDr − SDb)/(SDr + SDb) The normalized sum of first-order derivatives within the red edge compared to that within the
blue edge.

(SDr − SDg)/(SDr + SDg) The normalized sum of first-order derivatives within the red edge compared to that within the
green edge.

PSSRa R800/R680
PSSRb R800/R635
PSSRc R800/R470

Vegetation indices are calculated by analyzing the light reflected from vegetation
at different wavelengths to assess vegetation health, growth status, and other biological
characteristics. The seven representative vegetation indices selected are shown in Table 4.

Table 4. Representative vegetation indices and their definitions.

Vegetation indices Formula Reference

Normalized Difference Vegetation Index NDVI = (NIR–Red)/(NIR + Red) [17]
Green Normalized Difference Vegetation Index GNDVI = (NIR−Green)/(NIR + Green) [18]
Modified Triangular Vegetation Index MTVI = 1.2 × (1.2 × (NIR−Green) − 2.5 × (Red−Green)) [19]
Modified NDVI 705 mNDVI705 = (NIR−RedEdge)/(NIR + RedEdge) [20]
Modified Simple Ratio 705 mSR705 = NIR/RedEdge [21]
Red–Green Ratio Index RGRI = Red/Green [22]
Triangular Vegetation Index TVI = 0.5 × (120 × (NIR−Green) − 200 × (Red−Green)) [23]

2.3.3. Method Selection

From the goji psyllid data, 6481 pixels were selected, including 98 healthy, 2064 light,
3480 middle, and 839 heavy instances. From the goji gall mite data, 2722 pixels were
selected, comprising 723 healthy, 1036 light, 505 middle, and 458 heavy instances. Three
methods were employed to construct remote sensing monitoring models for goji berry pests
and diseases, including monadic regression (MR), multiple linear regression (MLR), and
fully connected neural network (FCN), with a comparative analysis conducted thereafter.
The models were validated using the coefficient of determination (R2) and the root mean
square error (RMSE), where an R2 closer to 1 and a smaller RMSE indicate a better predictive
performance of the model [24].

3. Discussion
3.1. Spectral Reflectance Detection Results

According to the Ningxia Hui Autonomous Region Local Standard DB64/T 852-2023,
plants infected with psyllids and gall mites are classified into three levels of damage: light,
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moderate, and severe. The canopy reflectance of goji trees infected with goji psyllids and
goji gall mites are shown in Figures 4a and 4b, respectively [25].
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Figure 4. Spectral reflectance measurement results of goji canopies (a) for goji psyllids and (b) for goji
gall mites.

In Figure 4, it is evident that goji exhibits typical vegetation spectral characteristics,
with a small reflection peak around 550 nm in the green light band. Due to chlorophyll
absorption, there is strong absorption of red light, initially leading to low reflectance
around 680 nm, which then increases, reaching a peak near 800 nm and reflecting strong
near-infrared radiation intensely.

The canopy spectrum of psyllid-infected goji in the blue, green, and red light bands
between 600 and 700 nm shows no significant difference in reflectance; however, in the
red light band from 700 to 760 nm and in the near-infrared band, as the infestation level
increases, the spectral reflectance decreases. This is because the nymphs and adults of
psyllids adhere to the goji leaves, damaging the internal structure of the leaves, thereby
reducing the reflectance in the near-infrared band.

For goji infected with gall mites, the canopy spectrum in the blue and green light
bands between 500 and 550 nm shows no significant difference in reflectance. However,
in the green light band from 550 to 600 nm and in the red light band from 600 to 700 nm,
as the infestation level increases, the spectral reflectance rises; in the red light band from
700 to 760 nm and in the near-infrared band, as the infestation level increases, the spectral
reflectance decreases. This occurs because the mites damage the leaves, turning the affected
areas from green to reddish-brown and, in severe cases, to purple or black. In the visible
light band, the destruction of chlorophyll in the leaves causes an increase in spectral
reflectance, while in the near-infrared band, the mites cause the leaves to form patchy galls,
similarly damaging the internal structure, thus reducing reflectance in this band [26].

3.2. Correlation Analysis of Disease Index

From Figure 4, it is evident that goji diseases and pests are sensitive to the red light
band from 700 to 760 nm and the near-infrared band. Therefore, we calculate the spectral
reflectance parameters for the sensitive bands at 700, 760, 850, 955, and 975 nm.

Using SPSS 17.0 software and a Pearson two-tailed test, a correlation analysis was
conducted on the hyperspectral characteristic parameters in Table 3, the vegetation indices
in Table 4, and the selected sensitive bands with respect to the disease index. The results
are shown in Table 5.

The results from Table 5 indicate that whether infected with psyllids or gall mites, the
disease index of goji pests and diseases correlates strongly with the sum of the first-order
derivative values within the blue edge, yellow edge wavelength range, or normalized value
of the sum of the first-order derivatives within the red edge relative to that within the green
edge, GNDVI and first-order derivative of R700.
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Table 5. Correlation analysis results between hyperspectral feature parameters and sensitive bands
and the disease index of goji psyllids and goji gall mites.

Characteristic Parameter
and Sensitive Bands

DI

Goji Psyllids Goji Gall Mites

Pearson Correlation Sig. Pearson Correlation Sig.

SDb 0.985 ** 0.002 0.996 ** 0
SDg −0.921 * 0.026 −0.94 * 0.018
SDy 0.965 ** 0.008 0.962 ** 0.009
SDr 0.893 * 0.041 0.951 * 0.013
SDr/SDb 0.405 0.499 −0.149 0.811
SDr/SDg 0.753 0.142 −0.22 0.722
(SDr − SDb)/(SDr + SDb) 0.443 0.455 −0.051 0.935
(SDr − SDg)/(SDr + SDg) 0.977 ** 0.004 0.975 ** 0.005
PSSRa 0.483 0.41 0.501 0.39
PSSRb 0.059 0.925 0.789 0.113
PSSRc 0.725 0.166 0.448 0.449
GNDVI −0.983 ** 0.003 −0.99 ** 0.001
first-order derivative of R700 −0.993 ** 0.001 −0.99 ** 0.001
first-order derivative of R760 −0.767 0.13 −0.561 0.325
R850 −0.945 * 0.015 0.62 0.264
R975/R955 0.89 * 0.043 0.144 0.817
NDVI 0.853 0.066 0.863 0.06
GNDVI −0.983 ** 0.003 −0.99 ** 0.001
MTVI 0.508 0.382 0.56 0.326
mNDVI705 0.654 0.232 0.623 0.262
mSR705 −0.676 0.21 −0.777 0.122
RGRI −0.533 0.355 −0.227 0.713
TVI −0.472 0.422 −0.561 0.325

Note: “*” indicates significant correlation, while “**” indicates highly significant correlation.

3.3. Univariate Linear Regression Model

The construction of regression equations holds significant importance in statistical
analysis. By using regression equations, one can predict the dependent variable using
known values of independent variables, which is very useful for estimating and predicting
future events or phenomena.

The univariate linear regression model is the simplest and most basic model in regres-
sion equation formulation [27,28]. Based on the highly significant disease index parameters
in Table 5, univariate linear regression models are constructed for goji psyllids and goji gall
mites. The results are shown in Table 6.

Table 6. Univariate linear regression models of goji psyllids and goji gall mites with respect to
disease index.

Types of Diseases and Pests Simulation Equation R2 Sig.

goji psyllids

DI = 10.119 − 1264.591 × first-order
derivative of R700

0.986 0.001

DI = 13.587 − 520.533 × SDb 0.967 0.003
DI = 8.264 + 1496.754 × SDg 0.827 0.016

goji gall mites

DI = 5.732 − 474.858 × first-order
derivative of R700

0.983 0.001

DI = 5.959 − 173.345 × SDb 0.98 0.001
DI = 6.072 − 155.721 × SDg 0.972 0.002

A higher R2 coefficient, closer to 1, indicates better model fit; a smaller standard error (Sig.) value indicates better
regression performance. According to Table 5, the regression models using the first-order derivative of R700 as
variables proved to be the best for both goji psyllids and goji gall mites.
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3.4. Multiple Linear Regression

When multiple independent variables are involved, some factors may not significantly
impact the dependent variable, and there might be interactions among the independent
variables, preventing them from independently influencing the dependent variable. In such
cases, a stepwise regression analysis is used to filter the independent variables, identifying
a subset of variables that significantly and independently affect the dependent variable [29].
Based on the highly significant disease index parameters in Table 5, multivariate stepwise
regression models are constructed for goji psyllids and goji gall mites. The results are
shown in Table 7.

Table 7. Multivariate stepwise regression models for the disease index of goji psyllids and goji
gall mites.

Types of Diseases and Pests Simulation Equation R2 Sig.

goji psyllids DI = 13.587 − 520.533 × SDb 0.976 0.003
DI = 12.267 − 614.427 × SDb − 176.924 × SDy 0.985 0.001

goji gall mites DI = 5.732 − 474.858 × GNDVI 0.972 0.003
DI = 6.223 − 544.749 × first-order derivative of R700 − 209.454 ×
GNDVI 0.988 0.001

To verify whether multiple stepwise regression correctly eliminates the interaction
between variables, a principal component analysis (PCA) was employed. PCA aims to
transform data from a high-dimensional space to a lower-dimensional space through linear
transformations while preserving as much variability as possible. This method allows the
dataset in the lower-dimensional space to exhibit maximum variance, with the direction
of maximum variance representing the linear direction of the majority of the data. The
chart in Figure 5 illustrates the proportion of each eigenvalue’s contribution to the total
eigenvalues (variance contribution) for the pests and diseases of goji berries related to the
psyllids and gall mites.
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In Figure 5, it can be observed that the cumulative contribution rates of the first principal
component (F1) and the second principal component (F2) exceed 90%. This indicates that a
significant amount of the original variables’ limited information has been retained, thereby
allowing the construction of multiple regression models for the pest and disease of goji psyllids
and goji gall mites using the first and second principal components, respectively.
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3.5. Fully Connected Neural Network Model

Fully connected neural networks are a fundamental type of neural network archi-
tecture, in which each neuron is connected to every neuron in the previous layer. They
learn patterns and relationships from input data for accurate predictions by continuously
adjusting connection weights and biases and utilizing activation functions. Input signals
are passed to the output layer through forward propagation, and parameters are adjusted
via backward propagation to minimize prediction errors [30,31].

Fully connected neural networks (also known as dense neural networks) are a basic
architecture of neural networks, in which each neuron in one layer is connected to every
neuron in the next layer. Here, the fundamental mathematical principles of fully con-
nected neural networks will be discussed through the following key components: forward
propagation, loss functions, and backpropagation.

3.5.1. Forward Propagation

Consider a simple fully connected neural network with one hidden layer. The network
structure is as follows: input layer with n inputs: x1, x2, . . ., xn; hidden layer with h neurons;
and output layer with m outputs.

1. Hidden layer: Each neuron j in the hidden layer receives a weighted sum of all inputs
from the input layer plus a bias, as follows:

zj =
n

∑
i=1

wijxi + bj (1)

where wij is the weight from input neuron i to hidden neuron j, and bj is the bias for
hidden neuron j.

2. Apply an activation function f (such as ReLU) to each input of the hidden neurons to
obtain the following output:

aj = f (zj) (2)

3. Output layer: Each neuron k in the output layer similarly receives a weighted sum of
all outputs from the hidden layer plus a bias, as follows:

yk =
h

∑
j=1

vjkaj + ck (3)

where vjk is the weight from hidden neuron j to output neuron k, and ck is the bias for
output neuron k.

3.5.2. Loss Functions

Commonly used loss functions include mean squared error (for regression problems)
and cross-entropy loss (for classification problems).

1. The mean squared error is as follows:

L =
1
2

m

∑
k=1

(yk − tk)
2 (4)

where tk is the target output.
2. The cross-entropy loss is as follows:

L = −
m

∑
k=1

[tk log(yk) + (1 − tk) log(1 − yk)] (5)
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3.5.3. Backpropagation

Backpropagation is used to compute the gradient of the loss function with respect to
each weight, allowing for the use of gradient descent methods to update the weights.

1. Compute the error term for the output layer as follows:

δk = (yk − tk) · f ′(yk) (6)

2. Propagate the error term to the hidden layer as follows:

δj =

(
m

∑
k=1

vjkδk

)
· f ′(zj) (7)

3. Update weights and biases as follows:

(1) Update weights in the output layer as follows:

vjk = vjk − η · aj · δk (8)

(2) Update weights in the hidden layer as follows:

wij = wij − η · xi · δj (9)

where η is the learning rate.

3.5.4. Application of Fully Connected Neural Networks in the Detection of Diseases and
Pests in Goji Berries

The fully connected neural network consists of several key components tailored for
processing goji berry hyperspectral data. The network architecture starts with a feature
input layer designed to receive 13 input features, reflecting the dimensionality of the input
data. This is followed by a series of fully connected layers, each interleaved with ReLU
activation layers to introduce non-linearity and aid in preventing vanishing gradients. The
network culminates in a fully connected output layer with four neurons corresponding
to the classification categories, topped off with a softmax layer to convert the output into
a probability distribution over the predicted categories. The final piece is a classification
layer, which interprets the softmax output to produce a categorical prediction.

The hidden layers of a fully connected neural network are one of the key factors
influencing the performance of the network. The number of hidden layers and the number
of neurons within them directly affect the model’s training and inference times. A three-
layer architecture is typically a reasonable choice, as it provides sufficient flexibility and
expressive capability to capture nonlinear relationships within the data. This structure
can maintain high performance while avoiding excessive computational costs, thereby
reducing network complexity and the risk of overfitting.

The number of neurons in the hidden layers directly determines the network’s learning
capacity and performance. A higher number of neurons increases the model’s capacity
to learn and express more complex patterns and features. By augmenting the number
of neurons, the network can better fit the training data in a higher-dimensional space,
thus enhancing model performance. However, for small datasets, an excessive number of
neurons may lead to overfitting, in which the model performs well on the training set but
poorly on the test set. Conversely, too few neurons may prevent the model from adequately
learning the features of the training data, resulting in underfitting. Therefore, the careful
selection of the number of neurons is essential to achieve good generalization ability [32,33].

To address this issue, the mean squared error (MSE) can be calculated to determine the
optimal number of neurons in the hidden layers. A smaller MSE indicates better predictive
performance. If a particular configuration yields the lowest MSE on the validation set
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without signs of overfitting, it is generally considered the optimal configuration. The
formula for mean squared error is as follows:

MSE =
1
N

N

∑
i=1

(Ei − Pi)
2 (10)

where Ei is the actual value, Pi is the predicted value, and N is the total number of sam-
ples. As shown in Figure 6, when the number of neurons is set to 15, the MSE is mini-
mized, indicating that the neural network architecture exhibits the best performance in
this configuration.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 16 
 

 

neurons, the network can better fit the training data in a higher-dimensional space, thus 

enhancing model performance. However, for small datasets, an excessive number of neu-

rons may lead to overfitting, in which the model performs well on the training set but 

poorly on the test set. Conversely, too few neurons may prevent the model from ade-

quately learning the features of the training data, resulting in underfitting. Therefore, the 

careful selection of the number of neurons is essential to achieve good generalization abil-

ity [32,33]. 

To address this issue, the mean squared error (MSE) can be calculated to determine 

the optimal number of neurons in the hidden layers. A smaller MSE indicates better pre-

dictive performance. If a particular configuration yields the lowest MSE on the validation 

set without signs of overfitting, it is generally considered the optimal configuration. The 

formula for mean squared error is as follows: 

2

1

1
MSE ( )

N

i i

i

E P
N =

= −  (10) 

where Ei is the actual value, Pi is the predicted value, and N is the total number of samples. 

As shown in Figure 6, when the number of neurons is set to 15, the MSE is minimized, 

indicating that the neural network architecture exhibits the best performance in this con-

figuration. 

 

Figure 6. Line chart of MSE variations with changes in the number of neurons in the hidden layer. 

4. Results 

4.1. Univariate Linear Regression Model Validation 

Near-ground hyperspectral data were collected from a total of 544 samples composed 

of 192 samples of goji psyllids, 272 samples of goji gall mites, and 80 healthy goji samples. 

Twenty randomly selected near-ground hyperspectral measurements were used as a val-

idation set, and the disease index predictions for these 20 data points were calculated us-

ing the estimated univariate linear regression models with parameter R700′s first derivative 

as the variable. A 1:1 scatter plot of the predicted versus actual values was created. Finally, 

the model’s performance was evaluated comprehensively using the coefficient of deter-

mination and root mean square error as metrics. The results are shown in Figure 7. 

Figure 6. Line chart of MSE variations with changes in the number of neurons in the hidden layer.

4. Results
4.1. Univariate Linear Regression Model Validation

Near-ground hyperspectral data were collected from a total of 544 samples composed
of 192 samples of goji psyllids, 272 samples of goji gall mites, and 80 healthy goji samples.
Twenty randomly selected near-ground hyperspectral measurements were used as a vali-
dation set, and the disease index predictions for these 20 data points were calculated using
the estimated univariate linear regression models with parameter R700′s first derivative
as the variable. A 1:1 scatter plot of the predicted versus actual values was created. Fi-
nally, the model’s performance was evaluated comprehensively using the coefficient of
determination and root mean square error as metrics. The results are shown in Figure 7.
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For the goji psyllid pest disease, the univariate linear regression model with parameter
R700′s first derivative as the independent variable had a coefficient of determination of
0.8860 and a root mean square error of 0.3946.

For the goji gall mite pest disease, the univariate linear regression model with parame-
ter R700′s first derivative as the independent variable had a coefficient of determination of
0.8827 and a root mean square error of 0.3860.

4.2. Multivariate Linear Regression Model Validation

The validation set was composed of 20 actual disease index values randomly selected
from the near-ground remote sensing data. The predicted values for these 20 disease index
data points were calculated using the binary linear regression model obtained in Section 4.2.
A scatter plot was created to illustrate the predicted values against the actual values in a 1:1
ratio. The performance of the model was comprehensively evaluated using the coefficient
of determination and the root mean square error as metrics. The results are shown in
Figure 8.
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Figure 8. The 1:1 line plot of predicted disease indices with measured values under multiple linear
regression model (a) for goji psyllids and (b) for goji gall mites.

The goji psyllid pest disease binary linear regression model, with SDb and SDy as the
independent variables, had a coefficient of determination of 0.9059 and a root mean square
error of 0.3531.

The goji gall mite pest disease binary linear regression model, with GNDVI and the
first derivative of R700 as the independent variables, had a coefficient of determination of
0.9168 and a root mean square error of 0.3271.

4.3. Fully Connected Neural Network Model Validation

The hyperspectral image data and near-ground remote sensing data acquired by the
drone were annotated based on the corresponding disease index data recorded during the
experiment. The pixels associated with the tagged plants were categorized into four levels:
healthy, mild, moderate, and severe, represented by the numbers 1, 2, 3, and 4, respectively.
Thirteen feature parameters with the highest correlations were selected as the input layer,
while the disease index (DI) served as the output layer. Three hidden layers were chosen,
each containing 15 neurons. To reduce the training time of the neural network, the dataset
underwent random sampling. The resulting dataset was split into training and validation
sets at a ratio of 7:3, with a maximum training iteration set to 10,000 rounds to establish
the neural network model. The results indicate that the validation accuracy of the fully
connected neural network classification model for the goji psyllids is 94.86%, while that for
the goji gall mites is 96.82%. The training accuracy, loss, and confusion matrix of the fully
connected neural network model constructed for the goji psyllids and goji gall mites are
shown in Figures 9 and 10, respectively.
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Figure 10. Model of goji gall mite pests and diseases constructed under a fully connected neural
network: (a) accuracy; (b) loss value; (c) confusion matrix.The highest accuracy in the confusion
matrix is represented in dark blue, while the rest are shown in light blue.

Display the classification results of a randomly selected high-spectral image of goji
infected with psyllid pests using fully connected neural networks. The hyperspectral image
is shown in Figure 11a. Extract spectral data from each pixel of the hyperspectral image
and compute its feature parameter values, preserving spatial information of the pixels. Use
these feature parameters as input to the fully connected neural network, which outputs the
classification results. Different colors annotate the severity of psyllid infestation on goji,
visually presenting the predicted classification results onto the hyperspectral image. The
classification results of the fully connected neural network are depicted in Figure 11b.
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5. Conclusions

In the current research on monitoring diseases and pests affecting goji berries, most
studies are still based on fundamental multiple linear regression models, primarily utilizing
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near-ground spectral remote sensing data. This paper employs a fully connected neural
network to enhance the accuracy of the goji berry disease and pest prediction model,
combining near-ground spectral remote sensing with drone data for the first time.

By exploring the relationships between hyperspectral feature parameters, sensitive
band variables, vegetation indices, and the disease indices of the goji psyllids and goji gall
mites through drone remote sensing data, highly significant correlated variables were used
to construct univariate linear regression models, multiple linear regression models, and
fully connected neural network models. The predictive performance of these three models
was then validated using near-ground remote sensing data. The consistency between
drone remote sensing and near-ground spectral remote sensing was confirmed. Due to the
rapid and non-destructive detection capabilities of UAV hyperspectral technology, it holds
significant promise for future agricultural crop monitoring applications.

The model based on the fully connected neural network exhibited optimal perfor-
mance, achieving a prediction accuracy of 94.86% for goji psyllids and 96.82% for goji gall
mites, thereby enhancing the accuracy of the goji berry disease and pest prediction model.
Finally, by employing pixel-based classification, the predicted severity of goji berry diseases
was directly visualized on hyperspectral images, providing a theoretical foundation and
reference standard for the establishment of rapid monitoring models for goji berry diseases
and pests in the field.
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