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Abstract: In this paper, we present a novel method to enhance the sum-rate effectiveness in full-duplex
unmanned aerial vehicle (UAV)-assisted communication networks. Existing approaches often couple
uplink and downlink associations, resulting in suboptimal performance, particularly in dynamic
environments where user demands and network conditions are unpredictable. To overcome these
limitations, we propose a decoupling of uplink and downlink associations for ground-based users
(GBUs), significantly improving network efficiency. We formulate a comprehensive optimization
problem that integrates UAV trajectory design and user association, aiming to maximize the overall
sum-rate efficiency of the network. Due to the problem’s non-convexity, we reformulate it as a Partially
Observable Markov Decision Process (POMDP), enabling UAVs to make real-time decisions based on
local observations without requiring complete global information. Our framework employs multi-
agent deep reinforcement learning (MADRL), specifically the Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) algorithm, which balances centralized training with distributed execution. This
allows UAVs to efficiently learn optimal user associations and trajectory controls while dynamically
adapting to local conditions. The proposed solution is particularly suited for critical applications
such as disaster response and search and rescue missions, highlighting the practical significance
of utilizing UAVs for rapid network deployment in emergencies. By addressing the limitations of
existing centralized and distributed solutions, our hybrid model combines the benefits of centralized
training with the adaptability of distributed inference, ensuring optimal UAV operations in real-
time scenarios.

Keywords: IoUAVs; MADRL; SDN

1. Introduction

To address the growing data traffic demand, service providers are increasingly adopt-
ing network densification strategies. This approach involves the deployment of numerous
dense base stations (BSs) and smaller heterogeneous cell BSs, which are critical for the
evolution of future networks. The primary objective of enhancing BS diversity and density
is to improve network capacity and extend coverage, thereby accommodating the escalating
data traffic requirements [1,2]. However, ultra-dense networks present challenges such
as high costs, limited scalability, and extended deployment times [3]. As a result, they
may not be ideal for applications requiring immediate response, such as search and rescue
operations during natural disasters [4].

In contrast, unmanned aerial vehicles (UAVs) offer a more effective solution for this is-
sue. Unlike fixed base stations, which are stationary and limited in height, UAVs are mobile
and can operate at higher altitudes, enhancing the potential for line-of-sight links [5]. When
deployed strategically, UAVs are also cost-effective for providing extensive services [6].
Furthermore, UAV-based networks can implement in-band full-duplex communication,
allowing for simultaneous transmission and reception over the same frequency [7,8]. This
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capability can significantly improve network spectral efficiency, leading to increased interest
in UAV-based communication research [9].

Traditional wireless communication approaches, which rely on fixed infrastructure,
differ significantly from UAV-based communication. In UAV-based systems, the commu-
nication link between UAVs and ground-based users (GBUs) is not constant due to the
mobility of UAVs, resulting in a highly dynamic network topology and increased uncer-
tainty in link stability. Consequently, the processes of user association, transmission power
selection, channel selection, and network coverage require different considerations. Many
studies [10,11] assume that in UAV-GBU communication, a GBU remains associated with
the same UAV for both uplink and downlink communication. This model is appropriate
when the same power levels are used for uplink and downlink. However, in networks
where uplink and downlink power levels differ, this approach is not effective.

For example, as illustrated in Figure 1, consider a GBU that wants to maximize its
downlink performance by connecting to UAV 1, which provides a high downlink rate.
However, for uplink communication, the GBU prefers to use a lower power level, so
it connects to UAV 2, which is optimized for lower-power uplink transmissions. This
scenario illustrates the challenge of managing separate UAV connections for uplink and
downlink communications based on varying power levels and performance requirements,
motivating the adoption of a decoupled association approach that optimizes overall com-
munication performance.

GBU

UAV with high
tranmission power

UAV with low
transmission power

Downlink
Uplink

Figure 1. Separate uplink and downlink association in full-duplex communication for ground user.

Moreover, since UAVs operate on batteries, their ability to provide network services is
limited in duration [12,13]. To reduce this limitation, adopting optimal strategies is essential.
The association between UAVs and GBUs depends on transmission distance, necessitating
that UAV trajectories align with association requirements. Therefore, optimizing both
UAV-GBU association and UAV trajectory can enhance network performance. Several
studies have explored UAV-assisted wireless networks to optimize power management
and trajectory design for efficient data collection and transmission, such as UAV-based
wireless-powered communication networks (WPCNs) that minimize the long-term average
Age of Information (AoI) through clustering and power allocation strategies [14].

Furthermore, Software-Defined Networking (SDN) offers a robust framework for
managing full-duplex communication due to its centralized control and dynamic resource
management capabilities. SDN excels in mitigating both self-interference and interfer-
ence from other users by providing real-time adjustments to network parameters such as
transmission power and frequency allocation [15]. Its inherent flexibility and programma-
bility allow for precise control over network resources, enhancing overall communication
performance and efficiently addressing interference issues. This makes SDN an effective
approach for optimizing network operations in complex communication environments.
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While SDN provides a robust foundation for managing network resources and inter-
ference, optimizing complex scenarios such as multi-UAV networks requires advanced
techniques. Deep Reinforcement Learning (DRL) frameworks are gaining traction for opti-
mizing multi-UAV network problems [16]. DRL combines reinforcement learning (RL) with
deep learning to handle complex environments where traditional RL methods may strug-
gle [17]. In DRL, an agent interacts with the environment and makes decisions based on
feedback in the form of rewards, aiming to maximize cumulative rewards through learning
from its experiences. While DRL is effective for single-agent scenarios, our problem in-
volves numerous possible trajectories, making it computationally intensive. Managing this
complexity with a single-agent approach can be challenging. To address this, multi-agent
DRL techniques extend the framework to multiple interacting agents, offering potential
solutions for dynamic and complex environments [18,19]. This paper explores how DRL
can be adapted to optimize multi-UAV network performance and addresses the unique
challenges associated with applying DRL in this context.

The novelty and contributions of our work are as follows:

• To improve the system’s sum rate, we propose a novel approach that decouples uplink
and downlink associations for GBUs within a full-duplex communication framework.
Our contribution lies in formulating a comprehensive optimization problem that
jointly optimizes both uplink and downlink associations alongside UAV trajectory
design, aimed at maximizing the overall sum-rate efficiency of the network.

• To address the non-convexity of the formulated problem, we reformulated it as a
Partially Observable Markov Decision Process (POMDP). In this approach, each UAV
operates as an autonomous agent, making real-time decisions regarding user associ-
ation and trajectory optimization based on its local observations, without requiring
complete global information about the environment.

• To address the POMDP, we present a framework based on multi-agent deep reinforce-
ment learning (DRL) that leverages centralized training and distributed execution
to achieve near-optimal policy design. Through the application of the Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) [20] algorithm, this technique en-
ables UAVs to learn optimal user association and trajectory control efficiently while
operating in a decentralized manner, adapting dynamically to local conditions.

• The proposed solution is tailored for critical applications such as disaster response
and search and rescue missions. Our work highlights the practical significance of
using UAVs for rapid network deployment in emergency situations, emphasizing the
real-world impact of our research.

• We address the limitations of existing centralized and distributed solutions by offering a
balanced approach. Our hybrid model ensures optimal UAV operations by combining
the benefits of centralized training with the adaptability of distributed inference.

The remainder of the paper is structured as follows: Section 2 reviews recent and
relevant research in the field. Section 3 introduces the fundamental network model and
outlines the problem formulation. In Section 4, we explain the principles of Multi-Agent
Reinforcement Learning (MARL), convert our problem into a Partially Observable Markov
Decision Process (POMDP), and present our proposed Multi-Agent Deep Reinforcement
Learning (MADRL) solution. Section 5 describes the experimental setup and discusses the
results. Finally, Section 6 provides the conclusions of the study.

2. Related Work

Various studies have proposed strategies for optimizing UAV deployment and com-
munication in wireless networks.

The work by [21] explores a comprehensive framework for full-duplex decoupled user
association in multi-tier cellular networks. By formulating a joint uplink and downlink
user association problem, this study effectively demonstrates the potential of decoupled
user association to enhance overall network performance despite the challenges posed by
interference in full-duplex communications. Additionally, the authors in [22] present com-
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pelling arguments for decoupling downlink and uplink transmissions in cellular networks,
highlighting its potential to significantly enhance network throughput, reduce outages,
and lower power consumption at a lower cost.

The downlink-uplink decoupled user association in heterogeneous networks (Het-
Nets) significantly enhances system capacity and frequency efficiency. This work presents
an optimization scheme that incorporates a multiple region frequency allocation (MRFA)
strategy to alleviate interference among users, paired with a convergent power control
(CPC) algorithm to optimize transmit power, demonstrating improved system throughput
and user performance [23]. Furthermore, the study on load balancing in heterogeneous
cellular networks (HCNs) emphasizes the significance of decoupled downlink-uplink asso-
ciations, revealing that employing differing association strategies for uplink and downlink
can markedly improve joint uplink-downlink rate coverage, particularly under conditions
of load imbalance [24,25].

Various studies have explored UAV trajectory optimization. The authors in [26] present
a novel control algorithm utilizing Deep Deterministic Policy Gradient (DDPG) for two-
dimensional trajectory design and power allocation in UAV wireless networks, optimizing
energy efficiency and communication service rates. Additionally, the development of a
3D multi-UAV deployment framework integrates user association scheduling and power
control using a block coordinate descent-based iterative algorithm [27].

Recent advancements have also focused on multi-agent deep reinforcement learning
(MADRL) approaches for optimizing UAV trajectories. For instance, reference [28] intro-
duces a multi-agent DRL-based scheduling algorithm to optimize charging time, phase
shifts, UAV associations, and trajectories in multi-UAV, and multi-IRS networks. Another
study proposes an inverse soft-Q learning algorithm for multi-IRS multi-user association in
UAV communications, significantly improving energy efficiency and convergence [29].

The authors in [11] formulate the UAV localization and association problem as a sub-
modular maximization problem under a matroid constraint, enabling a greedy approach
with a performance guarantee of 1− 1

e . They also propose a heuristic greedy algorithm
that achieves results in a few iterations, although it may not be optimal in all scenarios.
Q-learning-based methods have also been explored in UAV communication networks. For
instance, a reinforcement learning framework was proposed to optimize the 3D location
and power of UAVs as aerial base stations (ABSs), prioritizing emergency users through a
carefully designed reward function [30]. Their results demonstrated significant improve-
ments in user coverage, aligning with the potential benefits of using Q-learning-based
approaches such as MADQN in optimizing UAV performance.

While the aforementioned studies primarily address UAV trajectory and resource
management, the investigation of full-duplex (FD) communication challenges has been a
vital aspect in maximizing system capacity. Joint trajectory design, transmission scheduling,
and power adjustment solutions have been proposed to address severe uplink interference
caused by downlink transmissions [31,32]. The exploration of FD UAVs in uplink-downlink
NOMA scenarios, focusing on simultaneous communication between sources and destina-
tions via FD-aided UAVs over Nakagami-m channels, also contributes to the understanding
of performance enhancements in UAV networks [33].

Lastly, a comprehensive survey of UAV-based communication networks covers critical
aspects such as technologies, path planning, and power management strategies [34].

3. Network Model and Problem Formulation
3.1. Network Configuration and Deployment

We consider a software-defined Internet of UAVs (SD-IoUAVs) network, served by one
fixed ground base station (GBS) and several UAVs functioning as flying base stations (FBSs),
with both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) links, as shown in Figure 2.
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UAV

GBS

LoS

NLoS

Backhaul
Uplink

Downlink

Figure 2. Network model illustrating the communication setup with one GBS, multiple UAVs serving
as FBS, and GBUs. The figure depicts both LoS and NLoS links, as well as uplink and downlink
transmissions between GBUs and UAVs.

The set of FBSs, denoted as F , is given by F = {1, 2, 3, . . . , F}, and the set of GBUs,
denoted as U , is given by U = {1, 2, 3, . . . , U}, where F and U represent the total number
of UAVs and users, respectively. The GBS G is located at the origin, with coordinates
(x, y, h)G = (0, 0, 0), where h is the altitude. For simplicity, the altitude of the GBS is
considered negligible compared to that of the FBSs and is approximated as 0. In this network
scenario, the locations of the GBUs are randomly distributed. The location coordinates
of GBU u are given by lu = (xu, yu, 0), and the location coordinates of FBS f are given by
l f = (x f , y f , h). For our proposed solution, we assume a fixed altitude h for all UAVs. The
geometric distance d f u between GBU u and FBS f can be calculated as:

d f u =
√
(x f − xu)2 + (y f − yu)2 + h2.

The UAVs can move with a maximum velocity of νmax in the direction Φ f = [0, 2π].

3.2. Channel Model

In IoUAV networks, the air-to-ground (A2G) communication links between FBSs and
GBUs can be categorized into LoS or NLoS depending on the environmental factors. The
probability of a LoS link can be calculated as:

P LoS(t) =
[
1 + b1 exp(−b2(ω f u(t)− b1))

]−1
, (1)

where b1 and b2 are constants related to the network environment (e.g., urban, rural), and
ω f u(t) is the elevation angle, which can be calculated as:

ω f u(t) =
180
π

arcsin

(
h

d f u

)
.

With the LoS probability calculated, the probability of NLoS can be obtained as:

PNLoS(t) = 1−P LoS(t). (2)

For LoS and NLoS links, the path loss between FBS f and GBU u can be calculated as:

LLoS
f u (t) = w f u(t)ℵLoS, (3)

LNLoS
f u (t) = w f u(t)ℵNLoS, (4)
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where ℵLoS and ℵNLoS are attenuation coefficients for LoS and NLoS communication links,
respectively. The power gain, w f u(t), is given by

w f u(t) =
(

4πµ

c
d f u(t)

)2
,

where µ is the carrier frequency and c is the speed of light in free space. Using Equations (1)–(4),
the average path-loss between FBS f and GBU u at time slot t can be obtained as:

L f u(t) = P LoS(t)LLoS
f u (t) + PNLoS(t)LNLoS

f u (t). (5)

The received power p f u between GBU u and FBS f for a transmit power pt at time slot
t can be calculated as:

p f u(t) = pt −L f u(t). (6)

Equation (6) applies to both uplink and downlink transmission.

3.3. Association Model

For our network scenario, we consider separate uplink and downlink transmissions.
We introduce a binary variable β to indicate whether a given FBS is serving a GBU at a
given time slot t for either uplink or downlink transmission.

The binary variable β↑f u at timeslot t is defined as:

β↑f u(t) =

{
1, if GBU u is associated with FBS f for UL,
0, otherwise.

(7)

Similarly, the binary variable β↓f u is defined as:

β↓f u(t) =

{
1, if GBU u is associated with FBS f for DL,
0, otherwise.

(8)

A GBU can be associated with only one FBS for uplink transmission and one FBS
for downlink transmission in a given time slot t. Thus, the following constraints ensure
this condition:

U

∑
u=1

β↑f u(t) = 1, (9)

U

∑
u=1

β↓f u(t) = 1. (10)

3.4. Data Rate

The performance of the network is measured by the achievable data rate of transmis-
sion links between FBSs and GBUs. The data rates for uplink and downlink transmissions
differ due to varying levels of interference at FBSs and GBUs.

3.4.1. Uplink Transmission

The theoretical uplink data rate r↑f u between GBU u and FBS f at time slot t can be
calculated using Shannon–Hartley’s equation as follows:

r↑f u(t) = B log2

(
1 + γ↑f u(t)

)
, (11)

where γ↑f u is the signal-to-interference-plus-noise ratio (SINR) of the uplink channel be-
tween GBU u and FBS f and is given by:
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γ↑f u(t) =
p f u(t)

I f (t) + σ2 . (12)

Here, σ2 represents the cumulative effect of external interference and additive white Gaus-
sian noise (assumed to be the same for all devices), and I f is the interference received by
FBS f at time slot t. The interference I f (t) at FBS f while communicating with GBU u at
time slot t is the sum of the received power from all other nodes (both FBSs and GBUs)
using the same channel for communication and the self interference:

I f (t) =
F

∑
i=1,i ̸= f

ϕm(t)Ii(t) +
U

∑
j=1,j ̸=u

ϕm(t)Ij(t) + Isel f
f , (13)

where ϕm(t) is a binary variable indicating whether the device is utilizing the same channel
as FBS f at time slot t.

3.4.2. Downlink Transmission

Similar to the uplink data rate, the downlink data rate can be calculated as:

r↓u f (t) = B log2

(
1 + γ↓u f (t)

)
, (14)

where γ↓u f is the SINR of the downlink channel between GBU u and FBS f , and is given by:

γ↓u f (t) =
p f u(t)

Iu(t) + σ2 . (15)

Here, Iu(t) represents the interference level at GBU u on channel m, which is the sum of the
signal power received at GBU u from all nodes transmitting on the same channel m and the
self interference:

Iu(t) =
F

∑
k=1,k ̸= f

ϕm(t)Ik(t) +
U

∑
l=1,l ̸=u

ϕm(t)Il(t) + Isel f
u . (16)

The maximum data rate that an FBS can handle in time slot t is limited by the capacity
of the backhaul communication link between the FBS and GBS and can be calculated as:

rG
f = B log2

(
1 + γG f

)
, (17)

where γG f is the SINR of the backhaul link between FBS f and GBS.

3.5. Problem Formulation

Our main objective is to maximize the network’s data rate over a given time period T
by optimizing UAV trajectories and GBU associations. We formulate the problem as follows:

P1 max
β,l,p

1
T

{
T

∑
t=1

F

∑
f=1

U

∑
u=1

r↑f u(t) +
T

∑
t=1

F

∑
f=1

U

∑
u=1

r↓f u(t)

}
, (18)

subject to
U

∑
u=1

β↑f u(t) = 1,
U

∑
u=1

β↓f u(t) = 1, ∀ f ∈ F , u ∈ U , (18a)

U

∑
u=1

β↑f ur↑f u(t) +
U

∑
u=1

β↓f ur↓f u(t) ≤ rG
f , ∀ f ∈ F , (18b)

||l f (t)− l f ′(t)|| ≥ dmin, ∀ f ̸= f ′ ∈ F , (18c)
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1
T ∑

f∈F
p f (t) ≤ pavg

f , ∀ f ∈ F , (18d)

l f (1) = l f (T), ∀ f ∈ F . (18e)

The objective function defined in Equation (18) aims to optimize the average combined
uplink and downlink data rates of the network. Constraint (18a) ensures that each GBU
is associated with exactly one FBS for uplink transmission and one FBS for downlink
transmission. Constraint (18b) limits the total data rate of associated GBUs to the maximum
data rate of the link between the FBS and the GBS. Constraint (18c) enforces a minimum
distance between UAVs to avoid collisions. Constraint (18d) limits the total transmit power
of each FBS to its average power in each time slot. Constraint (18e) ensures that each UAV
returns to its starting point at the end of the time period T.

The complexity of the formulated problem, characterized by high-dimensional state
and action spaces, dynamic constraints, and multiple interacting variables, renders heuristic
methods inadequate. Specifically, the state space complexity is O((F×U)× T), the action
space complexity is O((F × U)T), and constraint checking adds further complexity of
O(F × U). These factors collectively challenge heuristic methods due to their limited
capacity to explore and evaluate the vast solution space effectively. Heuristics also struggle
with their reliance on approximate strategies, which do not guarantee optimal solutions
and are less scalable as network size increases. In contrast, Distributed Deep Reinforcement
Learning (DRL) is well-suited to address these challenges, offering robust performance by
efficiently managing large-scale, complex problems, adapting to real-time changes, and
optimizing policies continuously. This makes DRL a more effective and scalable approach
for solving the formulated problem compared to traditional heuristic methods.

4. Proposed Solution

In this article, our main focus is to maximize the overall data rate of the network by
optimizing the FBS trajectory and GBUs association for uplink and downlink transmissions.
We propose the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) based solution
for our problem. In the proposed DRL-based approach each FBS (UAV) acts as an agent
which interacts with the environment to gather the local information. We first transform
the problem into a partially observable Markov Decision Process (POMDP) and then
use the centralized training and distributed inference by the trained model. The UAVs
can only observe a part of the environment thus leading to uncertainty due to limited
information. Therefore, during the centralized training phase, the UAVs jointly learn the
policies. Specifically, we define the state space S for each UAV, which includes information
such as the positions of the UAVs and ground users, current channel states, and trajectory
details. The action space A encompasses decisions related to trajectory adjustments, power
control, and user association. We formulate the reward functionR to capture the objectives
of maximizing data rates and minimizing interference. Transition dynamics P describe
how states evolve based on actions, while the observation space O reflects the partial
observability of each UAV. Using MADDPG, we train a centralized critic to evaluate
joint actions and decentralized actors to make decisions based on local observations, thus
facilitating efficient multi-agent coordination and distributed execution.

4.1. Problem Transformation into POMDP

In our problem, UAVs functioning as flying base stations are considered agents
that make decisions based on their local observations. In the formulated problem in
Equation (18), the UAVs behavior is influenced by the network environment, given their
limited sensing and communication range, these agents can only partially observe the
environment, leading to a scenario where they possess only local information rather than
full global knowledge. This situation can be effectively modeled using a Partially Ob-
servable Markov Decision Process (POMDP). The POMDP is represented by the tuple
(S ,A,R,O, PT , PO, δ), where S denotes the set of possible states, A represents the set of
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actions available to the agents,R is the reward function, O is the set of observations, PT

is the state transition function, PO defines the observation function, and δ is the discount
factor. This model helps in capturing the uncertainty and partial observability inherent in
the UAVs’ operational environment.

• State Space S : The state st at a given time slot t encapsulates the entire system
configuration, including the positions, velocities, user associations, and transmission
power levels of all UAVs. Formally, the state st at time t can be written as:

st = {l f (t), ν f (t), rG
f (t), r↑f u(t), r↓f u(t)}, f ∈ F , (19)

where l f (t) is the position of UAV f , ν f (t) is its velocity, and rG
f (t), r↑f u(t), r↓f u(t)

represent the capacity and uplink/downlink data rates of the associated GBUs. The
complete state space S contains all such possible states.

• Observation Space O Due to partial observability, each UAV can only perceive local
information, represented as an observation o f (t), which includes its position, velocity,
and channel quality indicators for the GBUs in its vicinity. This observation is a subset
of the global state, such that:

o f
t = {l f (t), ν f (t), rG

f (t), γ↑f u(t), γ↓f u(t)}. (20)

where γ↑f u(t) and γ↓f u(t) denote the signal-to-noise ratios for uplink and downlink.
The observation space O for each UAV reflects this limited view.

• Action Space A: The actions of the UAVs involve adjusting their velocities, user
associations, and transmission power. The action a f (t) of UAV f at time t can be
described as:

at = {β↑f (t), β↓f (t), Φ f (t), ν f (t), p f (t)}, (21)

where β↑f (t) and β↓f (t) denote uplink and downlink associations, Φ f (t) represents the
flying direction,ν f (t) is the velocity, and p f (t) is the transmission power. The joint
action space for all UAVs forms the set A.

• RewardR(s, a): The reward function is designed to reflect the network performance
by considering data rate maximization and penalty functions to ensure that constraints
are met. The reward at time t is as follows:

Rt = r(t)− φ1κcapacity − φ2κbound − φ3κpower, (22)

where r(t) represents the total data rate, and κcapacity, κbound, κpower are penalty terms
for violating capacity, boundary, and power constraints, respectively. The weights
φ1, φ2, φ3 control the significance of these penalties.

• Observation Function PO(o|s, a): Since each FBS only has partial observability, the
observation function PO(ot

f |st, at
s) represents the probability of FBS f observing ot

f
given the current state st and action at

f .

• State Transition Function PT(s, a, s′): The state transition function PT(s, a, s′) =
P(st+1|st, at) defines the probability of transitioning from state st to state st+1 given
the action at. This captures the dynamics of UAV movement, user association changes,
and power level adjustments: Consider a sequence of states and actions ST =
{s1, a1, s2, a2, . . . , sT , aT}. The probability of this sequence is given by the following:

P(ST) = P(s1)
T

∏
t=1

π(at | st) · Pr(st+1 | st, at), (23)

where π(at | st) represents the policy that dictates the probability of taking action at
given state st, and Pr(st+1 | st, at) is the transition probability to the next state st+1.
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The transition probability Pr(st+1 | st, at) can be computed by integrating over all
possible future states st+1 as follows:

Pr(st+1 | st, at) =
∫
S ′

λ(st, at, st+1), dst+1, (24)

where λ(st, at, st+1) denotes the probability density function representing the likeli-
hood of transitioning from state st to st+1 when action at is taken.

4.2. MADDPG Based Algorithm

To solve the formulated POMDP problem, we employ the Multi-Agent Deep Determin-
istic Policy Gradient (MADDPG) algorithm. Given the decentralized nature of the UAVs
and the partial observability of the environment, MADDPG is well-suited for scenarios
where agents (UAVs in our case) must make decisions based on local observations while
learning in a centralized manner. In this study, we emphasize MADDPG’s efficacy in opti-
mizing user associations and UAV trajectories within a POMDP framework, allowing for
efficient real-time decision-making. This approach is particularly well-suited for dynamic
scenarios, such as disaster response, where adaptability is crucial.

MADDPG builds on the Deep Deterministic Policy Gradient (DDPG) algorithm by
adapting it to multi-agent settings. Each UAV uses an actor network to map its local
observations to actions, while the training phase remains centralized, supported by a global
critic network that evaluates actions using joint state and action information from all agents.
This centralized training helps mitigate issues like non-stationarity and partial observability,
which are key challenges in the multi-agent environment modeled by the POMDP.

The key advantage of MADDPG lies in its ability to allow decentralized execution.
After training, each UAV relies solely on its local observations to make decisions, while
the centralized critic is only used during the learning process. This decentralized exe-
cution is essential in large-scale environments where global information is inaccessible
to individual UAVs during operation. Figure 3 depicts the MADDPG-based multi-agent
network environment.

Replay
Memory

SAMPLE

Agent 

Agent 

Agent 

Actor Critic

Optimizer Optmizer

Soft Update

Policy Netowrk Policy Network

Target Policy
Network

Target Policy
Network

Gradient

Update Policy
 Gradient Update Gradient

Soft Update

Figure 3. MADRL framework for Multi-UAV network.

4.3. Centralized Training

During the training phase, a central controller collects the joint observations, actions,
and rewards from all UAVs. This enables centralized training, where each agent’s policy
is learned based on the global state and action information of the entire network. For
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each agent f , the critic evaluates the state-action value function Q f (st, at), representing the
expected cumulative reward for taking action at in state st:

Q f (st, at) = Es′∼P(s′ |s,a)
[
r f (s, a) + γmax

a’
Q f (s′, a′)

]
, (25)

where the joint action at = a f (t)
F
f=1 includes the actions of all agents and the next state s′ is

derived from the state transition function P(s′|s, a). The critic is updated by minimizing
the temporal difference (TD) error through the Bellman equation:

L(θQ
f ) = E(s,a,r,s′)

[(
r f + ΓQ f (s′, a′; θQ

f )−Q f (s, a; θQ
f )

)2]
, (26)

where θQ
f represents the parameters of the critic network and θQ′

f represents the parameters
of the target critic network and Γ is the discount factor.

4.4. Target Network Update

To stabilize training, target networks are introduced for both the actor and critic
networks. These target networks are updated slowly to ensure gradual changes during
training. The target network weights are updated using the following soft update rule after
each time step:

θQ′
f ← τθQ

f + (1− τ)θQ′
f , (27)

θπ′
f ← τθπ

f + (1− τ)θπ′
f , (28)

where τ is a small factor (e.g., 0.001), controlling the rate of change. This ensures that
the target networks evolve smoothly, preventing drastic updates that could destabilize
learning.

4.5. Decentralized Execution

Once training is complete, each UAV can execute its learned policy in a decentral-
ized manner, relying solely on its local observations. The actor network for agent f is
parameterized by θπ

f and outputs actions based on the current observation o f (t):

a f (t) = π f (o f (t); θπ
f +Nt), (29)

whereNt represents the exploration noise, typically modeled using the Ornstein-Uhlenbeck
process to generate temporally correlated exploration for smoother action sequences. The
noise ensures that the agent does not converge prematurely to a suboptimal policy by
encouraging the exploration of diverse actions. The policy is updated by maximizing the
expected return:

J(π f ) = Est ,at∼π f

[
Q f (st, at)

]
. (30)

The gradients of the actor’s policy are computed using the deterministic policy gradi-
ent (DPG) algorithm:

∇θπ
f

J(π f ) = E
[
∇θπ

f
π f (o f )∇a f Q f (st, at

]
. (31)

To improve learning efficiency and reduce the correlation between samples, we use
experience replay. Each agent stores its experiences (st, at, rt, st+1) in a replay buffer. Ran-
dom batches of experiences are sampled from this buffer during training to update both
the actor and critic networks. This helps the agents to learn from past experiences and
break the correlation between sequential updates. The detailed steps of the MADDPG
algorithm for UAV trajectory design and user association are provided in Algorithm 1. The
algorithm starts by initializing actor and critic networks with random weights for each
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UAV, followed by the initialization of target networks and a replay buffer. In each episode,
the environment is reset, and the initial state is retrieved (line 2). At each time step, UAVs
observe their local states and select actions with added exploration noise (lines 4–6). The
joint actions are executed, and the next state and rewards are obtained (line 8). Transitions
are stored in the replay buffer (line 9). The critic networks are updated by minimizing the
loss function using a randomly sampled minibatch (lines 10, 11), while the actor networks
are updated via the policy gradient (lines 13–14). Lastly, the target networks are softly
updated (lines 17–18).

Algorithm 1 MADDPG for UAV Trajectory Design and User Association

Require: Initialize actor network π f (o f ; θπ
f ) and critic network Q f (s, a; θQ

f ) with random
weights for each UAV f

Require: Initialize target networks θπ′
f ← θπ

f and θQ′
f ← θQ

f
Require: Initialize replay buffer D

1: for each episode do
2: Reset the environment and obtain initial state s0
3: for each time step t do
4: for each UAV f do
5: Observe local observation o f (t)
6: Select action a f (t) = π f (o f (t); θπ

f ) +Nt (with exploration noise Nt)
7: end for
8: Execute joint action at = {a f (t)}F

f=1 and observe reward rt and next state st+1

9: Store transition (st, at, rt, st+1) in replay buffer D
10: for each UAV f do
11: Sample a random minibatch of N transitions (s, a, r, s′) from D
12: Compute target value: y = r f + γQ f (s′, a′; θQ′

f ), where a′ = {π f (o′f ; θπ′
f )}F

f=1

13: Update critic by minimizing the loss: L(θQ
f ) =

1
N ∑(y−Q f (s, a; θQ

f ))
2

14: Update actor using the sampled policy gradient:
∇θπ

f
J(π f ) =

1
N ∑∇a f Q f (s, a; θQ

f )∇θπ
f
π f (o f ; θπ

f )

15: end for
16: Update target networks:
17: θQ′

f ← τθQ
f + (1− τ)θQ′

f

18: θπ′
f ← τθπ

f + (1− τ)θπ′
f

19: end for
20: end for

5. Algorithm Validation and Analysis
5.1. Experimental Design and Parameters

The performance of the MADDPG algorithm for UAV trajectory design and user asso-
ciation was evaluated through a series of simulations. The system comprised five UAVs
functioning as FBSs and 15 GBUs. These entities were distributed in a 1000 × 1000 m square
area. Communication was modeled using a full-duplex mode where uplink and downlink
channels were independently managed. The simulations utilized a bandwidth of 20 MHz
and UAVs operated with a transmit power of 30 dBm. The external noise power was set at
−60 dB, and the channel gain was modeled using a path loss exponent of 4 and a reference
path loss of 30 dB. The MADDPG algorithm employed deep neural networks with two hid-
den layers, each containing 64 neurons, for both actor and critic networks. Exploration was
facilitated by an Ornstein-Uhlenbeck process with mean reversion level = 0.15, volatility
parameter = 0.2 and mean reversion rate = 0.1.

The training involved a replay buffer of 1,000,000 transitions and a batch size of 256.
The discount factor was set to 0.99, and the soft target update rate was 0.01. The algorithm
was trained over 5000 episodes, with each episode lasting 1000 time steps. Learning
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rates were 0.001 for the actor network and 0.001 for the critic network. The simulations
were carried out using Python with TensorFlow for the implementation of the MADDPG
algorithm. The experiments were executed on a computing system equipped with an
Intel Core i7 processor, 16 GB of RAM, and an NVIDIA GTX 1080 GPU, with data storage
managed by a 1 TB SSD. The rest of the system parameters are given in Table 1.

Table 1. Proposed Parameter Settings.

Parameters Values

Number of GBS (G) 01
Number of FBS (F) 05

Number of GBUs (U) 15
Height of FBS (h) 180 m

Maximum flight velocity of FBS (νmax
f ) 20 m/s

Maximum Power of FBS (pmax
f ) 30 dBm

Maximum Power of GBU (pmax
u ) 30 dBm

External noise level σ2 −60 dBm
Self-interference cancellation χ 100 dB
Attenuation factors ℵLoS,ℵNLoS 1.44544, 199.526

Carrier frequency (µ) 2 GHz
Weights (κ1, κ2, κ3) 50, 500, 50

Learning rate 0.0001
Discount factor (Γ) 0.99

5.2. Simulation Results and Interpretation

In the first experiment, we assessed the capability of our scheme to manage the associ-
ation of GBUs with FBSs (UAVs) for both uplink and downlink channels independently.
The results, detailed in Table 2, illustrate the association of 15 GBUs with five UAVs across
four time slots. The experiment demonstrates that our scheme efficiently handles simul-
taneous uplink and downlink associations, allowing GBUs to connect to different UAVs
(FBSs) for each communication direction. This dual-mode management ensures effective
communication and resource utilization in the full-duplex system.

Table 2. GBU association with FBS where No. of FBSs is Four and No. of GBUs is 15.

GBU U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15

T1
UL 2 1 4 5 3 2 3 3 1 3 5 1 3 4 2
DL 5 3 3 1 5 2 4 5 4 3 3 1 3 4 5

T2
UL 2 4 1 5 3 2 5 4 3 1 2 4 1 5 3
DL 3 1 4 2 5 4 3 2 5 1 4 3 5 2 1

T3
UL 3 1 5 4 2 3 1 4 5 2 3 5 1 4 2
DL 2 4 3 1 5 4 2 5 3 1 4 2 5 3 1

T4
UL 1 5 3 4 2 5 1 3 4 2 5 3 1 4 2
DL 4 2 5 1 3 4 2 5 1 3 4 2 5 1 3

Figure 4 depicts the number of GBUs associated with each FBS (UAV) for both uplink
and downlink channels over the four time slots. The data shows a relatively consistent
number of associations across different FBSs, with slight variations between uplink and
downlink connections. Specifically, FBS 3 exhibits the highest number of GBU associ-
ations in both uplink (13) and downlink (15) modes, suggesting a more central role or
higher demand in the network. Conversely, FBS 5 shows the lowest number of uplink
associations (11) but a higher number of downlink associations (13), indicating a possi-
ble shift in resource allocation or GBU preference. Overall, the uniform distribution of
GBUs across FBSs illustrates the effectiveness of our scheme in maintaining balanced and
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flexible GBU-FBS associations in the full-duplex system. These results demonstrate the ef-
fectiveness of the proposed decoupling strategy, which ensures flexible resource allocation
between UAVs. The balance of associations across the UAVs indicates that the network can
dynamically adapt to varying data traffic demands without overwhelming specific FBSs.
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Figure 4. Frequency of association of each FBS during four timeslots.

Figure 5 illustrates the flight paths of the FBSs. The initial positions of the FBSs are set
near the GBS and the altitude for this experiment is fixed at 180 m. As the figure shows,
the FBSs carefully navigate their paths to maximize the coverage of the GBUs, adjusting
their trajectories dynamically to avoid interference and collisions. The FBSs maintain safe
separation distances, ensuring optimal performance without overlapping coverage areas.
Furthermore, the FBSs follow closed-loop trajectories, meaning they successfully return
to their initial positions, demonstrating the efficiency of the path-planning algorithm in
ensuring full coverage and trajectory closure while minimizing energy consumption. The
dynamic adjustments in trajectory highlight the flexibility of the UAVs in maintaining
optimal coverage in changing network environments. These adjustments lead to improved
resource allocation and interference mitigation, directly affecting the network’s ability to
serve more GBUs efficiently.

Figure 6 illustrates the accumulated reward for various association methods namely:

• CHDA: Coupled Half-Duplex Association, where GBUs are associated with the same
UAV for both uplink and downlink transmissions in a Half-Duplex mode.

• DHDA: Decoupled Half-Duplex Association, where GBUs are connected to different
UAVs for uplink and downlink transmissions, still operating in a Half-Duplex mode.

• CFDA: Coupled Full-Duplex Association, in which GBUs associate with the same
UAV for both uplink and downlink transmissions in a Full-Duplex mode.

• DFDA (proposed): Decoupled Full-Duplex Association, where GBUs are connected
to separate UAVs for uplink and downlink transmissions in a Full-Duplex mode.
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Figure 5. UAV flight trajectories during time T.
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Figure 6. Accumulated Reward based on different association methods.

The proposed DFDA mode achieves the highest reward, surpassing the coupled
full-duplex approach. This is because, in DFDA, GBUs can connect to different UAVs
for uplink and downlink transmissions, allowing for better optimization of each link
individually. By decoupling the associations, DFDA minimizes interference and allows for
more flexible resource allocation between UAVs, which leads to improved spectral efficiency
and reduced transmission delays. In contrast, coupled full-duplex and half-duplex modes
are more constrained, either by forcing the GBU to use the same UAV for both directions
or by operating in a less efficient half-duplex mode. These results clearly demonstrate the
superiority of DFDA in efficiently managing resources and reducing interference, leading to
higher overall network performance. The DFDA method’s superiority over the coupled and
half-duplex methods highlights the significance of decoupling associations in a full-duplex
setting. This approach enhances spectral efficiency, reduces transmission delays, and
optimizes overall network performance compared to existing schemes. The performance
improvement is particularly notable under high traffic and interference conditions, showing
that DFDA can better handle real-world network demands.
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Figure 7 shows the accumulated reward over episodes for different learning rates
(0.001, 0.0001, and 0.00001). The learning rate of 0.001 starts slowly but achieves the highest
reward, indicating effective long-term learning and convergence. The rate of 0.0001 shows
quick initial gains but falls short of 0.001 in the long run, suggesting that it may lead
to instability or suboptimal learning. The rate of 0.00001 results in the lowest reward,
reflecting its overly conservative nature that hinders effective learning and convergence.
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Figure 7. Accumulated reward with different learning rates.

Figure 8 illustrates the accumulated reward obtained using the proposed algorithm
in comparison to MADQN, DDPG, and Greedy. The proposed algorithm achieves the
highest accumulated reward, demonstrating its superior capability in optimizing the
communication system’s performance. In contrast, MADQN, while effective, yields a lower
accumulated reward than the proposed algorithm, suggesting its performance is not as
optimal. DDPG and Greedy show progressively lower accumulated rewards, indicating
that these methods are less effective in this context. This result highlights the proposed
algorithm’s enhanced effectiveness in maximizing accumulated rewards compared to
the other algorithms evaluated. The superior performance of the proposed algorithm
demonstrates its advantage in addressing complex multi-agent environments like UAV-
assisted networks. In comparison, existing algorithms such as MADQN and DDPG struggle
to optimize the system effectively, particularly in dynamic and large-scale settings where
decentralized execution is key.

Figure 9 illustrates the accumulated reward achieved with varying UAV flight heights:
180 m, 200 m, and 220 m. The flight height of 180 m results in the highest accumulated
reward, indicating that this height provides an optimal balance between coverage and
signal quality. The height of 200 m yields moderate performance, suggesting that it may
offer less effective coverage or signal strength compared to 200 m. Conversely, the flight
height of 220 m results in the lowest accumulated reward, likely due to diminished signal
quality. These results highlight the importance of selecting an optimal flight height to
maximize performance in UAV-based communication systems.
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Figure 8. Comparison of proposed algorithm with different algorithms.
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Figure 9. Accumulated reward with different heights of UAVs.

6. Conclusions

In conclusion, this paper presents a novel approach for improving the sum rate in
full-duplex UAV-assisted communication networks by decoupling uplink and downlink
user associations. By formulating the problem as a POMDP and solving it through the
MADDPG algorithm, we have demonstrated the effectiveness of using multi-agent deep
reinforcement learning (MADRL) in achieving optimal user association and UAV trajectory
control. Our results clearly show that the proposed DFDA method outperforms other
association schemes, achieving the highest accumulated reward by reducing interference
and allowing for more efficient resource allocation.

Additionally, our solution optimizes UAV trajectories and flight heights to ensure
efficient coverage and minimal energy consumption. This framework, which combines
centralized training with distributed execution, proves superior to existing methods in
terms of flexibility, scalability, and adaptability, especially in real-world critical applications
like disaster response and search and rescue missions. The practical value of our approach
lies in its ability to rapidly deploy UAV networks while maintaining high operational
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efficiency. Future work can explore extending this approach to more complex network
scenarios and incorporating additional real-world constraints.
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