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Abstract
Psoriasis, a chronic inflammatory skin disease, affects millions of people worldwide. It imposes a significant burden on 
patients’ quality of life and healthcare systems, creating an urgent need for optimized diagnosis, treatment, and management. 
In recent years, image-based artificial intelligence (AI) applications have emerged as promising tools to assist physicians by 
offering improved accuracy and efficiency. In this review, we provide an overview of the current landscape of image-based 
AI applications in psoriasis. Emphasis is placed on machine learning (ML) algorithms, a key subset of AI, which enable 
automated pattern recognition for various tasks. Key AI applications in psoriasis include lesion detection and segmentation, 
differentiation from other skin conditions, subtype identification, automated area involvement, and severity scoring, as well 
as personalized treatment selection and response prediction. Furthermore, we discuss two commercially available systems 
that utilize standardized photo documentation, automated segmentation, and semi-automated Psoriasis Area and Severity 
Index (PASI) calculation for patient assessment and follow-up. Despite the promise of AI in this field, many challenges 
remain. These include the validation of current models, integration into clinical workflows, the current lack of diversity 
in training-set data, and the need for standardized imaging protocols. Addressing these issues is crucial for the successful 
implementation of AI technologies in clinical practice. Overall, we underscore the potential of AI to revolutionize psoriasis 
management, highlighting both the advancements and the hurdles that need to be overcome. As technology continues to 
evolve, AI is expected to significantly improve the accuracy, efficiency, and personalization of psoriasis treatment.
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Key Points 

The primary applications of automated image analysis 
in psoriasis involve detecting and outlining lesion 
borders, distinguishing psoriatic lesions from other skin 
conditions, objectively calculating area involvement and 
severity scores, and selecting treatments while predicting 
their response.

Currently, two commercial systems utilize total body 
photography, automated image segmentation, and semi-
automated Psoriasis Area and Severity Index (PASI) 
calculation to enhance clinical patient care.

Key challenges for future successful AI implementation 
include the need for model validation and 
generalizability, efficient integration into clinical 
workflows, and the establishment of standardized 
imaging protocols.

1  Introduction

Artificial intelligence (AI) is a branch of computer science 
concerned with replicating human cognitive functions and 
analyzing large amounts of data [1]. As a field with primar-
ily visual diagnoses and a large patient base, dermatology 
has recently experienced one of the most rapid developments 
in medical AI applications, particularly in the area of com-
puter-guided image classification [2]. The development of 
convolutional neural networks (CNNs) for melanoma detec-
tion has provided groundbreaking work, as algorithms have 
shown great potential to improve human accuracy in the 
dignity assessment of melanocytic lesions [3–6]. For exam-
ple, in a study by Haenssle et al. comparing the diagnostic 
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performance of 58 international dermatologists with a CNN 
in melanoma detection using dermoscopic images, most der-
matologists were outperformed by the algorithm [3]. In a 
real-world setting, the combination of human and artificial 
intelligence, or augmented intelligence, has been shown to 
increase diagnostic sensitivity and specificity in the evalu-
ation of melanocytic lesions by integrating CNN classifi-
cation into clinical decision making [6]. Naturally, these 
advancements in the early recognition of skin cancer have 
spurred research into CNN applications for other derma-
toses, such as psoriasis.

Psoriasis is a common chronic immune-mediated inflam-
matory skin disorder that affects approximately 2–3% of the 
general population worldwide [7]. Onset can occur at any age 
and the disease is not yet curable [8]. Clinical presentation 
is variable and may include palmo-plantar, scalp, intertrigi-
nous, and nail involvement. Plaque psoriasis most commonly 
presents with sharply demarcated, silvery, erythrosquamous 
plaques on the extensor surfaces of the elbows and knees and 
the lumbosacral region (Fig. 1A). Other less common sub-
types, such as erythrodermic (Fig. 1B) or guttate psoriasis 
(Fig. 1C), as well as genetically and phenotypically distinct 
pustular psoriasis (Fig. 1D), add to the diagnostic complex-
ity [8, 9]. Since psoriasis is typically diagnosed visually and 
is easily photographed by healthcare providers and patients, 
the resulting image repositories lend themselves to analysis 
by AI [1]. In addition to cutaneous manifestations, patients 
are susceptible to multiple comorbidities, such as psoriatic 
arthritis and cardiometabolic syndrome, and most patients 
experience a decrease in quality of life, with an associated 
higher risk of developing depression [8, 10–12].

To objectively report the extent of skin involvement 
and treatment response remains a major challenge in rou-
tine practice and research trials [13–15]. In the absence of 

established biomarkers, a variety of clinical scoring tools 
are currently used, most commonly the Psoriasis Area 
and Severity Index (PASI), Body Surface Area (BSA), 
and Physician’s Global Assessment (PGA) [13]. Major 
weaknesses of these include low efficiency, low intra- and 
inter-rater reliability, and questionable accuracy [13–15]. 
Since no single assessment tool has been shown to be 
superior or to fulfil ideal validation criteria, combina-
tions are often used, depending on the application [13]. 
As treatment decisions and regulatory drug approvals are 
largely based on such measures, accuracy and consistency 
are paramount and could potentially be greatly improved 
through automated calculation. In addition, reimbursement 
for expensive biological treatments in most countries is 
based on minimum score ratings, for which BSA and PASI 
> 10 are considered cut-offs for severe disease [16].

In recent years, immunological targeting of key patho-
genetic cytokines with biological therapies has revolution-
ized the therapeutic management of severe psoriasis [8]. 
In addition to well-established treatments such as meth-
otrexate, tumor necrosis factor alpha (TNFα) inhibitors 
(adalimumab, certolizumab pegol, etanercept, infliximab), 
interleukin (IL)-17 inhibitors (brodalumab, ixekizumab, 
secukinumab), IL-23 inhibitors (guselkumab, risanki-
zumab, tildrakizumab), IL-12/23 inhibitors (ustekinumab), 
and Janus kinase (JAK) inhibitors such as tofacitinib are 
increasingly being prescribed [8]. As early systemic treat-
ment with IL-12/23 or IL-23 inhibitors appears to be pro-
tective by reducing the risk of arthritis progression [17], 
and treatment with TNFα inhibitors is suggested to reduce 
occurrence of cardiovascular events [11, 18], timely diag-
nosis and accurate severity assessment are increasingly 
critical. In addition, apart from facilitated diagnosis and 
treatment surveillance, objective image-based AI support 

Fig. 1   Clinical examples of 
different psoriasis subtypes. 
A Plaque psoriasis. B Eryth-
rodermic psoriasis. C Guttate 
psoriasis. D Pustular psoriasis. 
Clinical image courtesy of the 
University Hospital Basel
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could hopefully lead to a fairer distribution of resources 
and improve the quality of clinical trial data [16].

With such high hopes for AI to address unmet needs in 
the management and treatment of psoriasis and ultimately 
provide faster, cheaper, and more accurate results, some 
important questions remain—where are we now and what 
might our near future really look like? What challenges 
do we still face and how might they be overcome? After 
providing a basic introduction to the concept of image-
based AI, the aim of this article is to provide an overview 
of current developments and their potential in psoriasis 
applications. Subsequently, we will discuss the remain-
ing hurdles to implementation of AI for routine use and 
research purposes.

2 � Overview of Image‑Based Artificial 
Intelligence (AI)

Successful interpretation of computer-generated results 
and useful assistance for clinical decision making requires 
that dermatologists first acquire an understanding of the 
basic concepts of image-based AI.

In our review we will focus on machine learning (ML), 
currently the most commonly used subset of AI for medi-
cal applications regarding psoriasis [1]. ML allows a com-
puter program to extract data patterns and attributes in an 

automated learning process in order to complete a given 
task [19]. ML that uses deep neural networks (DNNs) ena-
bles complex predictions by processing data in a similar 
way to biological neurons [1, 19]. Specifically, CNNs—a 
type of DNN architecture designed to process input data 
with a grid pattern—have proven well suited for medical 
image classification tasks [20–22].

In simple overview, a CNN consists of an input layer, 
multiple hidden layers, and an output layer (Fig. 2). The 
input layer receives the input image pixel values, which 
are passed on to a series of hidden convolution and pool-
ing layers [21].

A convolution layer typically uses combinations of lin-
ear mathematical ‘convolution’ functions as filters while 
scanning the input image by employing small, learnable 
parameter grids named ‘kernels’ to identify features and 
extract them [22]. In simple terms, these filters can be 
thought of as a magnifying glass that scans and focuses on 
small image sections to identify features such as edges or 
textures. As an analogy, one could imagine a resident der-
matologist first examining a patient for clinical findings.

Next, an activation layer applies a non-linear mathemat-
ical function (most commonly the rectified linear unit, or 
ReLU) to the previous output to introduce complexity to 
the network and therefore allow more intricate tasks to be 
performed [22]. More simply, this layer decides which pat-
terns are important by using ReLU to highlight significant 

Fig. 2   Exemplary architecture of an image-based convolutional neu-
ral network (CNN). Feature extraction: The input layer receives the 
pixel values of the input image. In the convolution layer, filters are 
used to scan the image in many sections to detect features such as 
edges or shapes, like a magnifying glass that highlights important 
details. In the activation layer, a mathematical function is applied 
to handle complex patterns by introducing non-linearity, like a light 
switch that highlights important details. The pooling layer zooms in 

on the big picture, summarizing information and reducing data size 
to make further processing steps more efficient. Classification: In the 
fully connected layer, all previously detected features are combined to 
make a final classification, or diagnosis. This result is presented in the 
output layer with a probability score. Clinical image courtesy of the 
University Hospital Basel, used with patient permission. ReLU recti-
fied linear unit
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features and ignore irrelevant information. In our anal-
ogy, the new resident would further consult with a senior 
dermatologist to determine which clinical findings on the 
skin are relevant.

Pooling layers apply mathematical functions to reduce 
the dimensionality of the feature maps produced by 
convolutional layers (e.g., by selecting the maximum or 
average value of the current view) [23]. In other words, 
this layer zooms out to see the bigger picture by focusing 
on the most important features while reducing the size of 
the data to make the information easier to manage. In our 
analogy, the senior dermatologist would summarize the 
resident`s findings in a short report.

The feature map resulting from the entire extraction 
process is then flattened into a one-dimensional vector and 
mapped by fully connected layers with learnable weights 
to the final network outputs, that is, class probabilities of 
dermatological diagnoses [22]. The learnable kernels and 
weights of the model are then optimized in an automated 
training process with the goal of reducing the differences 
between the real image classification, or ground truth, and 
output classifications calculated by the models [22]. In 
our analogy, this step can be imagined as a panel of expert 
dermatologists reviewing the summary report from the 
senior physician and integrating all available information 
to make a final diagnosis of the skin disorder of the patient.

Model training can be performed in a supervised, 
semi-supervised, or unsupervised manner [21]. In 
supervised learning, which is most commonly used for 
image classification tasks, training inputs are pre-labelled 
to provide the correct output for the model for trial and 
error improvement of the classification error [19, 21]. In 
unsupervised learning, unlabeled training data sets allow 
pattern discovery without human guidance in the form of a 
ground truth [19, 21]. As a combination of these two forms, 
semi-supervised learning is helpful in reducing the burden 
of labelling [19].

If the training data set size is too small, the model may over-
fit, meaning that the model only reflects the test distribution and 
does not generalize well to unseen input [23]. To counteract this 
issue, image augmentation techniques such as flipping, color 
adjustment, cropping, rotation, translation or noise injection can 
be applied to the training set to achieve more accurate model 
predictions [23]. The current approaches of image data augmen-
tation techniques and their effects on model performance have 
recently been extensively reviewed [24]. For example, Kriz-
hevsky et al. developed the AlexNet CNN architecture based on 
training on the ImageNet dataset [24, 25]. The authors increased 
the size of the dataset by 2048 times through image augmen-
tation by randomly cropping, rotating, and color adjusting the 
original images, which helped reduce the error rate of the model 
by over 1% by avoiding overfitting [24, 25].

3 � Current Applications and Potential 
of Image‑Based AI in Psoriasis

Main automated image analysis applications in 
psoriasis include detecting and outlining lesion borders, 
differentiating psoriatic lesions from other skin conditions, 
objectively calculating area involvement and severity 
scores, as well as selecting treatments and predicting their 
response.

3.1 � Image Segmentation of Lesions

In addition to correctly identifying psoriasis on skin pho-
tographs, a critical step in performing next-level tasks such 
as assessing disease severity is the automated detection and 
delineation of individual lesions. Manual image segmen-
tation is a tedious task for dermatologists, so researchers 
have focused on developing automated image segmentation 
algorithms. A major advantage for this feat is that psoriatic 
lesions are usually easy to distinguish from the surround-
ing unaffected skin. However, challenges arise from poor 
image quality, including insufficient illumination, blur, or 
artifacts such as camera reflections, as well as the polymor-
phic appearance of lesions [26]. Previous algorithms often 
relied on feature engineering (e.g., feature-based Bayesian 
framework), lacked accuracy, or failed to segment challeng-
ing input images correctly (e.g., Markov random field com-
bined with a support vector machine), limitations that have 
been partially overcome by the use of CNNs [1, 26]. Dash 
et al. developed PsLSNet, a 29-layer deep U-net-based CNN 
(designed for image segmentation, featuring a U-shaped 
architecture that effectively captures context in images and 
enables precise localization), which automatically extracts 
spatial information and was validated on 5241 images from 
1026 psoriasis patients, including more challenging images 
[26]. Results showed an accuracy of 94.8%, outperforming 
all previous approaches [26]. In addition, two deep learning 
models (DLMs) based on a U-net architecture with a ResNet 
backbone (which enables training of very deep models with 
hundreds or thousands of layers) were developed and trained 
by Amruthalingam et al. to anatomically map and segment 
hand eczema lesions with high accuracy [27]. According to 
the authors, this model could also be applied to psoriasis, 
as both conditions can present very similarly with red, scaly 
patches and plaques on the dorsal and palmar aspects of the 
hands [27].

At the histopathological level, CNNs are expected to 
provide future clinical support by automatically analyzing 
skin biopsy images. As a first step, a U-net-based CNN was 
applied by Pal et al. to successfully segment psoriasis skin 
biopsy images into epidermis, dermis, and non-tissue, which 
is a prerequisite for the development of more sophisticated 
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models that can recognize characteristic pathological 
features of the disease within each skin layer [28]. Such 
forms of image segmentation are not only valuable at the 
microscopic level, but can also be applied to macroscopic 
images to evaluate the presence of lesions, as well as disease 
extent and severity, as outlined in the following sections.

3.2 � Diagnosis and Subtype Classification

For proper treatment, psoriasis must first be correctly 
diagnosed. In clinical routine, diagnosis is usually based 
on an inspection of the entire skin surface, including scalp 
and nails, while taking into account the patient’s medical 
and family history. Significant advances have been made 
by several research groups in developing image-based 
AI algorithms trained on large datasets of annotated 
psoriasis images to extract quantitative image features and 
automatically detect and classify lesions [29–33].

Aggarwal [29] was able to improve the performance of 
a CNN model discriminating five dermatological diseases 
(acne, atopic dermatitis, impetigo, psoriasis, and rosacea) 
by augmenting the input data with image transformations 
such as zooming, shearing, rotating, and horizontal 
and vertical flipping. Zhao et al. developed a two-stage 
CNN using 8021 images to discriminate nine different 
diagnoses based on clinical photographs, which made 9% 
fewer errors in diagnosing psoriasis compared with 25 
dermatologists using a test set of 100 images (accuracy 
of CNN: 0.96, mean human accuracy: 0.87) [30]. Using 
Xiangya-Derm, the largest dermatology data set of the 
Chinese population with over 150,000 clinical images of 
571 different skin diseases, Huang et al. developed a CNN 
to differentiate six common skin diseases, outperforming 
the accuracy of 31 dermatologists by 6.6% [31]. Several 
other CNNs have been developed to discriminate psoriasis 
from other dermatological diagnoses, with overall accuracy 
mostly comparable to or better than dermatologists [32, 
33]. However, there is a lack of research on real-world 
applicability and open-source training data for currently 
published algorithms.

Furthermore, image-based AI applications need not be 
limited to the analysis of macroscopic images. Dermoscopic 
images offer high-resolution visualization of the skin, 
revealing subtle details such as vascular or pigment patterns 
through magnification of epidermal and upper dermal layers, 
potentially enhancing diagnostic accuracy depending on 
the clinical task. However, acquiring and interpreting these 
images requires time, specialized equipment, and expertise. 
For CNN classification purposes, dermoscopic image 
data sets tend to be more standardized, improving model 
generalizability.

In contrast, macroscopic images are more accessible, 
faster to acquire, and provide a broader clinical overview 

of lesions, making them preferable for initial screenings. 
Based on macroscopic assessment, clinicians can determine 
whether additional dermoscopic examination is necessary. 
A combined approach, utilizing both macroscopic and 
dermoscopic images, can be advantageous in providing both 
context and detail.

For instance, differentiating between psoriasis and sebor-
rheic dermatitis on the scalp can be challenging using mac-
roscopic assessment alone. Dermoscopy can offer additional 
diagnostic clues, such as the presence of annular and hairpin 
blood vessels indicative of psoriasis, or unstructured white 
areas and atypical vessels suggestive of seborrheic dermati-
tis, aiding in more accurate diagnosis [34]. Yu et al. trained 
GoogLeNet, a 22-layer deep CNN pre-trained on the Imag-
Net dataset, to differentiate scalp psoriasis from seborrheic 
dermatitis using dermoscopic images [34]. The algorithm 
outperformed five dermatologists with varying levels of 
experience with a 26.7% higher sensitivity and 6.8% higher 
specificity (sensitivity: CNN 96.1%, dermatologists (mean) 
69.4%; specificity: CNN: 88.2%, dermatologists (mean) 
81.4%) [34]. Furthermore, non-qualified physicians were 
able to achieve diagnostic performance similar to that of 
dermoscopy-proficient dermatologists through assistance 
from the model (mean sensitivity 79.1%, mean specificity 
81.9%) [34].

This suggests that physicians without specialized training 
(e.g., in remote areas) or teledermatological applications 
could directly benefit from additional AI expertise to 
optimize patient management with dermatologists referred 
to when needed. The Telemedicine Working Group of the 
International Psoriasis Council recently determined that 
managing psoriasis through teledermatology is feasible in 
most cases, with exceptions for special affected areas such as 
the genitals or scalp [35]. A previous study has demonstrated 
that both online and in-office dermatologic follow-ups for 
psoriasis result in comparable improvements in psoriasis 
severity and Dermatology Life Quality Index scores [36]. 
While diagnostic AI holds significant potential to enhance 
these services, further studies are necessary to assess its 
implementation and effectiveness.

In terms of subtype classification, a CNN was used 
by Aijaz et  al. to differentiate plaque, guttate, inverse, 
erythrodermic, and pustular psoriasis with high accuracy 
(84.2%) [37]. The training sets used included 80% of 172 
images of normal skin and 301 images of psoriasis from 
the Dermnet dataset, while the remaining 20% were used 
for validation and testing [37]. Plaque and guttate psoriasis 
images were overrepresented in the dataset (plaque: 
n = 99, guttate: n = 96), followed by pustular (n = 48), 
erythrodermic (n = 33), and inverse psoriasis (n = 25) [37]. 
Regarding the classification performance for individual 
subtypes, the highest accuracy was achieved for inverse 
psoriasis (100%), followed by a sensitivity of 96.5% for 
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normal skin (28/29), 87.2% for guttate (34/39), 85.2% for 
erythrodermic (23/27), 73.3% for pustular (22/30), and 70% 
for plaque psoriasis (28/40) [37].

A major limitation of these reported results is the lack of 
external test sets with diverse patient populations in different 
clinical settings, which would provide more insight into the 
generalizability of algorithms and their potential for real-
world clinical use. In addition to psoriasis subtypes, other 
differential diagnoses presenting with red, scaly plaques 
such as atopic dermatitis, tinea corporis, mycosis fungoides, 
pityriasis rosea, or cutaneous lupus erythematosus must be 
distinguished from psoriasis by AI. To make an accurate 
diagnosis, CNNs must be trained using large datasets 
containing these differential diagnoses to recognize subtle 
differences in appearance and distribution patterns. As 
dermatology training sets become larger and include 
more images of psoriasis subtypes, differential diagnoses, 
and diverse patient populations, future algorithms are 
expected to become more comprehensive. In addition to 
diagnostic applications, AI has great potential to facilitate 
the assessment of the extent and severity of psoriasis, as 
detailed in the following section.

3.3 � Assessment of Disease Extent and Severity

Automated assessment of psoriasis disease extent and sever-
ity has the potential to significantly reduce physician work-
load while ensuring a high degree of standardization and 
reproducibility.

3.3.1 � Clinical Scores

Dermatologists currently mainly use the PASI, BSA, or PGA 
systems to grade clinical severity of plaque psoriasis [2, 14].

PASI is most commonly used in research studies 
and assesses the intensity of erythema, induration, and 
desquamation on different anatomical areas using a scale 
from 0 to 72 (maximum disease activity) [38]. It is often 
used as a standard measurement tool in the validation of 
new scores and usually correlates well with physician-
based assessments, as measured by Spearman or Pearson 
correlation coefficients [13]. For example, Bozek and Reich 
evaluated the reliability of PASI, BSA, and PGA in the 
examination of nine patients by ten dermatologists, with 
each subject being assessed twice by the physicians [14]. 
Significant Pearson correlations were observed between all 
three scales, and no assessment instrument was significantly 
superior [14]. Major criticisms of the PASI score include its 
complexity, extensive time requirements, high variability, 
low responsiveness in mild disease, and non-linear scale 
[13–15]. Since PASI uses a discontinuous score from 0 to 
6 to assess area involvement (0: 0%, 1: 1–9%, 2: 10–29%, 
3: 30–49%, 4: 50–69%, 5: 70–89%, 6: 90–100%), changes 

within a score interval are not adequately reflected [39]. 
To address these inaccuracies, the linearly increasing 
PrecisePASI score was developed to accurately reflect the 
severity of lower BSA ranges by using the actual percentage 
of area involvement as opposed to imprecise area class 
intervals [39].

BSA calculation is often included in the assessment of 
psoriasis severity and can be estimated using the ‘rule of 
nines’ or the number of patient hand areas affected (with 
one hand representing approximately 1%) [13]. While 
computation is easily feasible in clinical routine and 
results in a linear measure, BSA is prone to overestimation 
and inter-rater reliability is variable [13].

PGA provides an ordinal 5- to 7-point rating ranging 
from ‘clear’ to ‘very severe psoriasis’, with good 
reliability independent from observer experience [13]. 
PGA has been shown to display the highest inter-rater 
reliability in comparison with BSA and PASI by Bozek 
and Reich (coefficients of variation [%]: PGA 29.3, PASI 
36.9, BSA 57.1) [14]. It can be used statically to assess a 
single time point or dynamically for baseline comparison. 
Disadvantages include the high inter-rater reliability and 
lack of body surface area assessment [14]. Given these 
limitations, a more reproducible, standardized, and time-
efficient estimation of disease severity is needed, which 
could be provided by image-based AI algorithms.

3.3.2 � Automated Severity Scoring of Plaque Psoriasis

A prerequisite for automated severity scoring is the 
implementation of an accurate image segmentation 
algorithm [1, 26–28]. With the advancement of ML 
methods, CNNs (i.e., using U-net models) have already 
been developed that can estimate BSA at the level of a 
dermatologist [40]. However, the automated assessment of 
individual clinical PASI subcriteria from two-dimensional 
images is more technically challenging, especially with 
regard to three-dimensional features such as induration. 
Schaap et al. achieved this feat by using a CNN structure 
that takes ordinal scales into account and trained a separate 
network for each anatomical region (trunk, arms, and legs) 
and each PASI subscore category (erythema, induration, 
desquamation, and area), resulting in 12 CNNs [41]. The 
models were able to demonstrate similar performance to 
dermatologists in the scoring of erythema, scaling, and 
induration, while outperforming physician assessment 
in image-based area scoring [41]. A single-shot PASI 
system (SS-PASI) was developed by Okamoto et  al., 
which assesses a simplified psoriasis severity score from 
a single input image of the trunk, since photographs of 
this anatomical area are usually readily available, fairly 
standardized, and show a large skin surface [42]. The 
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CNN performed consistently with SS-PASI scores of 
human raters (13 dermatologists, 9 medical students) 
using a test set of 10 images that were excluded from the 
training images [42]. However, since the training set used 
by the authors contained only 670 psoriasis images, risk 
of overfitting is possible [19, 43].

While these and further examples from research 
applications and have previously been reviewed by Liu 
et al. [1], we would like to focus on currently available 
clinical tools.

3.3.3 � Commercially Available Systems For Semi‑Automated 
Severity Scoring

The use of total body photography (TBP) lends itself to 
automated psoriasis severity calculations in routine practice. 
Currently, there are two commercially available systems 
that use standardized photo documentation, automated 
segmentation, and subsequent semi-automated computer-
assisted PASI calculation for patient assessment and 
follow-up.

3.3.3.1  Automated Total Body Mapping  FotoFinder 
ATBM® Systems GmbH (Bad Birnbach, Germany) uses 
Automated Total Body Mapping (ATBM) to provide a 
standardized, two-dimensional overview of the skin surface 
by allowing patients to assume various anatomical positions 
in front of a dynamic mount with a cross-polarized, xenon-
flash, high-resolution camera [44]. Using FotoFinder’s 
PASIscan® analysis software, the underlying psoriasis type 
can be selected and automated lesion segmentation is per-
formed to estimate PASI pre-score values, including affected 
body surface area of the head, arms, trunk, and legs, as well 
as erythema, plaque thickness, and scaling [44]. These val-
ues can then be manually adjusted by the physician for final 
PASI calculation, which may be particularly necessary for 
areas covered by hair, such as the scalp, or body parts cov-
ered by underwear. During follow-up, images can be viewed 
side by side for direct comparison and improvement is auto-
matically quantified by PASI 50, 75, 90, or 100 (indicating 
50%, 75%, 90%, or 100% improvement from baseline) [44]. 
The accuracy and reproducibility of this algorithm was eval-
uated in a comparative observational study involving three 
trained physicians and 120 plaque psoriasis patients, which 
showed a high level of human–AI agreement and demon-
strated superior repeatability of AI assessment compared 
with physicians [45]. Based on the promising precision and 
reproducibility, it may be recommended for use in clinics 
with financial access to such technologies or for research 
trials after further studies have been conducted. Limitations 
include the inability of some patients (especially the elderly) 
to reach predefined positions for image acquisition, and the 
time resources and/or additional personnel required to cap-

ture respective image series [45]. In addition, lack of auto-
mated psoriasis subtype identification and body sites such 
as the genital area or hairy scalp that still require additional, 
thorough clinical examination by a dermatologist are a main 
limitation for the development of a fully automated score 
calculation.

3.3.3.2  3D Total Body Photography  In recent years, 3D 
TBP has been commercially developed using the VECTRA​® 
WB360 (Canfield Scientific, Parsippany, New Jersey, USA) 
and overcomes some of these limitations. This system uses 
images captured instantaneously by 92 cameras in a single 
anatomical position to create a digital avatar of the patient’s 
skin surface from two-dimensional images in macro-quality 
resolution, excluding plantar surfaces, mucous membranes, 
and areas covered by hair (Fig. 3). A psoriasis assessment 
tool has recently been developed for the software that allows 
automated segmentation of the 3D avatar and calculates the 
lesion coverage of each anatomical region (head and neck, 
arms, trunk, legs, and whole body) [46]. Physicians can then 
manually score the erythema, induration, and desquamation 
of each region to calculate an automated whole body PASI 
score. Potential benefits include a simplified, more time-
efficient image acquisition process. This novel algorithm 

Fig. 3   VECTRA​® WB360 avatar of a psoriasis patient captured by 
3D total body photography. Clinical image courtesy of the University 
Hospital Basel, used with patient permission
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has, however, not yet been validated in clinical trials. For 
melanoma screening, it has already been shown that patients 
prefer the 3D TBP system to the 2D-TBP system, mainly 
based on the more time-efficient, facilitated imaging process 
[47]. Further real-world comparative studies are needed to 
determine patient and physician preferences for psoriasis 
applications and to demonstrate true benefit of the Canfield 
algorithm in clinical use. Limitations of this system include 
its high acquisition cost and the significant space needed 
for setup, which restrict its clinical availability mainly to 
larger centers. Additionally, time and personnel resources 
are required to manually score erythema, induration, and 
desquamation for each region to calculate the whole-body 
PASI score. Automatic psoriasis subtype identification, sim-
ilar to Automated Body Mapping, is currently not yet pos-
sible. Furthermore, special areas such as the scalp or plantar 
surfaces are not imaged and must be examined separately, 
limiting the potential use in remote settings (Fig. 3).

3.3.4 � Automated Severity Scoring of Other Psoriasis 
Subtypes

While the above-mentioned algorithms focus mainly on 
severity analysis of plaque psoriasis, research has recently 
shifted towards other subtypes. Several well-established 
clinical scores have been developed to assess disease sever-
ity in psoriasis subtypes such as generalized pustular psoria-
sis (e.g., Generalized Pustular Psoriasis Area and Severity 
Index [GPPASI]), or for involvement of specific locations 
such as the nails (Nail Psoriasis Severity Index [NAPSI]) 
[48, 49]. Similar to plaque psoriasis assessments, calcula-
tion in a clinical setting can be tedious and time consuming, 
a task that could potentially be facilitated and standardized 
by the use of AI.

Folle et al. used a transformer DLM, which uses self-
attention mechanisms to weigh the importance of different 
parts of the input image, to automatically quantify NAPSI 
scores with high agreement with human annotations 
(Pearson correlation of 90%) [49]. Amruthalingam et al. 
quantified pustular psoriasis efflorescences using a DLM 
to objectively evaluate disease activity [50]. A very high 
agreement was reached between the model’s predictions 
and expert labelling using a test set (intraclass correlation 
coefficients [ICC]: 0.97 for count and 0.93 for surface 
percentage) [50]. Reliability was confirmed by application 
to an unstandardized test set with multiple pustular disorders 
(Spearman correlation [SC] coefficients compared with 
dermatologist evaluation: 0.66 for count and 0.80 for surface 
percentage) [50].

While an automated severity score of plaque psoriasis 
would certainly meet the most common demand, we believe 
that it is important to continue a parallel investigation of 

AI applications in these rarer subtypes. If the accuracy and 
reliability of such algorithms continue to improve and even 
surpass human performance in future studies, we predict that 
semi- to fully automated severity scoring will soon serve as 
the gold standard in centers where respective technologies 
are available and for clinical trial assessments. By offering 
the advantages of consistency, objectivity, efficiency, pre-
cision, and scalability, AI could potentially overcome the 
limitations of current clinical assessment scores.

3.4 � Treatment Selection and Response

Predicting treatment response and personalizing drug 
selection has great potential to improve the quality of life 
of psoriasis patients and optimize long-term outcomes. 
Currently, clinical treatment strategy is based on disease 
severity, subtype, location, presence of psoriasis arthritis 
and other co-morbidities, as well as patient preference and 
satisfaction [8].

Several AI applications have been developed that attempt 
to identify potential biomarkers and predict individual short- 
and long-term response to biologics [1, 51]. For example, the 
quantification of systemic inflammatory proteins measured 
before and four weeks after initiation of systemic treatment 
with tofacitinib and etanercept was used to develop an ML 
model that accurately predicted long-term response [52]. 
Unsupervised cluster analysis has been used to categorize 
psoriasis patients into three subgroups based on their 
lesional and non-lesional skin transcriptome to predict 
treatment effects of methotrexate and various biologicals 
using an ML algorithm [53].

Since AI has the capacity to analyze extensive datasets 
including patient records, clinical photographs, and 
molecular characteristics, personalized treatment plans 
may very well be our near future as new patterns continue 
to be discovered. ML approaches have already been used 
to show which patients with psoriatic arthritis would 
benefit from a higher starting dose of secukinumab [54]. 
We anticipate that image-based AI will also play a central 
role in the development of automated treatment decision 
algorithms for psoriasis patients. By integrating imaging 
data with clinical and genetic information, AI models 
could identify optimal treatment regimens tailored to 
individual patient characteristics, improving therapeutic 
efficacy and reducing potential side effects. Features such 
as the clinical phenotype, lesion distribution, and severity 
could be extracted from photographs using CNNs to serve 
as input for such treatment recommendation models. In 
addition, potentially influential variables for treatment 
success, such as patient age, gender, ethnicity, comorbidities, 
co-medication, or previous treatments, as well as molecular 
profiles, could be considered to optimize treatment choice 
once further research has been conducted.
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4 � Remaining Challenges

While integration of image-based AI into routine 
management of psoriasis and clinical trials yields great 
potential, many hurdles must still be overcome.

First, the achievable levels of sensitivity and specificity 
of ML algorithms are highly dependent on the quantity 
and quality of the input data [55]. With the widespread 
implementation of electronic medical records and routine 
photographic documentation of dermatological diseases, the 
exponential amount of training data has greatly enhanced 
the ability of ML algorithms to learn and perform complex 
tasks [2]. In terms of quality, this feat is somewhat hindered 
by the current lack of standardized conditions, as images 
are captured by physicians and patients in various settings 
using different photographic devices, lighting, backgrounds, 
color calibration, and angles [2, 56]. The routine use of 
standardized total body photography systems such as the 
VECTRA​® WB360 (Canfield Scientific) or the ATBM 
system (FotoFinder) partially addresses this problem, but 
these systems are expensive, require additional staff and 
spatial resources, and are therefore often only available in 
specialized centers. Because complex algorithms such as 
CNNs require extensive datasets to achieve generalizable 
outcomes, current training and validation image sets remain 
heterogeneous, making it more difficult for algorithms to 
distinguish between real and artificial discrepancies. In 
addition, currently available training sets lack healthy 
patient images that allow algorithms to distinguish lesions 
from intact skin without potentially introducing biases from 
other features such as anatomical localization. With the 
many algorithms and methods currently published, there is 
currently no accepted psoriasis-specific open-source dataset 
that can be used to compare performance.

Failure to train a model with the appropriate input data 
would result in incorrect diagnostic classification and 
severity scoring. The diversity of the training set data is 
additionally critical in the development of a generalizable 
algorithm. However, patients with skin of color, elderly 
patients, children, and women are often underrepresented in 
training image repositories, leading to potentially erroneous 
results when models are applied to these patient populations 
[57–59]. For example, psoriasis in the pediatric population 
is more prevalent on the face and flexures than in adults, and 
plaques are often smaller and thinner, potentially leading 
to misclassification of the diagnosis [60]. Additionally, 
psoriasis manifests differently in various ethnicities and 
populations. For example, in skin of color (Fitzpatrick 
scale IV–VI), erythema may be less apparent and appear 
violaceous or hyperpigmented, potentially leading to 
severity underscoring or incorrect image segmentation 
if a model was trained with only lighter skin types on the 

Fitzpatrick scale (I–III) [61]. In general, the Fitzpatrick scale 
is widely criticized for its subjectivity and development with 
only White patients, as its reliance on terms such as ‘burn’ 
or ‘tan’ inadequately describe the effects of UV radiation 
on darker skin tones, calling for the use of more objective 
measures such as spectrophotometric assessments when 
labelling image sets [62]. AI models that were only trained 
on images from one population are therefore at risk of bias 
and inaccuracy when being generalized. In addition, the 
performance of algorithms regarding postinflammatory 
hypo- or hyperpigmentation after successful treatment 
should be assessed in clinical application, since residual 
discolorations may affect results if this aspect has not been 
considered in the training process.

In order to interpret outputs, physicians need to 
understand the capability and limitations of AI models, 
which is especially critical for applications involving 
treatment decisions. In addition, especially for neural 
network-based models that often make ‘black box’ decisions, 
the lack of explainability can be detrimental to medical 
applications, as physicians need transparency to trust and 
integrate AI assessments into their clinical decisions. 
For medical image analysis tasks, several interpretability 
methods have been developed and recently reviewed, 
including attribution maps that highlight the important 
regions of an input image, language descriptions that provide 
written justifications, or internal network representations 
that depict different features learned by filters in the CNN 
[63]. A truly comprehensive algorithm, which has not been 
developed to date, needs to be transparent to clinicians and 
validated in a broad real-world setting to ensure applicability 
across all skin types, ages, genders, and clinical phenotypes.

Many of the image-based AI algorithms developed to 
date have not yet been studied in a clinical setting, so their 
real-world accuracy and utility remain uncertain. Clinical 
trials with sufficient statistical power and validation studies 
are needed to evaluate true performance in clinical practice. 
Psoriasis lesions vary significantly in size, appearance, and 
anatomical location, so AI models must prove their ability to 
handle this variability and complexity in real-world applica-
tions. Furthermore, it remains to be determined how real-
world image transformations (e.g., due to slight movement 
of the patient or changes in lighting) affect consistency. For 
melanoma risk scoring of digital dermoscopic images using 
CNNs, it has already been shown that slight user-induced 
image changes can significantly alter classification results 
during repeated imaging [64]. Therefore, additional evalua-
tion of the robustness of psoriasis AI models should not be 
overlooked in future clinical trial design.

Finally, patient and physician acceptance of new technol-
ogies must be considered for successful implementation. It is 
critical to seamlessly integrate image-based AI applications 
into the clinical workflow without adding complexity to the 
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patient care process, which could negatively impact percep-
tions. Compliance with regulatory standards and ethical con-
siderations regarding patient privacy, patient consent, and 
image data protection must be ensured for the responsible 
use of image-based AI in healthcare. Overcoming these chal-
lenges and optimizing clinical workflows will require close 
collaboration between deep learning engineers, physicians, 
and researchers. We believe that interdisciplinary communi-
cation is essential to the development and implementation of 
accurate, robust, reliable, and ethical algorithms with maxi-
mum clinical utility.

As a future outlook, CNNs may soon be replaced by a new 
state-of-the-art technology for medical image classification 
tasks. Compared with CNNs, the use of Vision Transformer 
(ViT) algorithms has already shown promising results and 
requires a simplified training process with much smaller data 
sets [49, 65].

5 � Conclusions

Dermatology is undergoing a paradigm shift with the 
rapid development of image-based AI. When applied to 
psoriasis, there is great potential to facilitate diagnosis, 
standardize and streamline management, and optimize 
treatment of the disease. Despite the promising outlook, 
many challenges remain, including validation of current 
models, integration into clinical workflows, current lack of 
diversity in training set data, and the need for standardized 
imaging protocols. However, given the current pace of 
technological development, a revolution in the field has 
already begun, as exemplified by the commercial availability 
of two semi-automated PASI score calculators based on total 
body photography. Based on previous efforts to use AI to 
identify potential biomarkers and predict treatment response 
to biologics, it is anticipated that augmented intelligence 
will soon become an integral part of treatment and disease 
management. We expect to see a new diagnostic era in the 
care of psoriasis patients in the coming years due to the 
unprecedented capabilities of AI. As research and innovation 
in this area continues, patient outcomes are expected 
to improve substantially while reducing the burden on 
healthcare systems.
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