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How to draw Kkinetic barrier diagrams for enzyme-catalysed

reactions

Janos SUDI

Abteilung Toxikologie, Christian-Albrechts-Universitdt, D 2300 Kiel, Federal Republic of Germany

A modified way to construct kinetic barrier diagrams is presented. Although the diagram superficially resembles a free-
energy profile, it is independent of any conception derived from transition-state theory. Some simple calculations referring
to the lactate dehydrogenase turnover reaction at equilibrium demonstrate self-consistency of the diagram and its direct
relevance to the results of numerical simulations of the detailed course of enzyme-catalysed reactions.

As recently stated by Burbaum et al. [1], there are several
problems in the illustration of enzyme-catalysed reactions. To
cope with these problems, Burbaum et al. [1] have recommended
the drawing of ‘kinetic barrier diagrams’, instead of the classical
free-energy profiles. Some years ago I presented a complete set of
ten rate constants for describing the lactate dehydrogenase
(LDH) reaction in terms of a five-step turnover mechanism [2—4].
This kinetic system (Table 1a) allows a numerical testing of the
kinetic barrier formalism which has not yet been reported. On
the basis of this numerical test, I conclude that very much can be
gained by basically altering the way in which one plots kinetic
barrier diagrams.

The procedure suggested is based on plotting, in a ‘ peak-and-
valley’ type barrier diagram, reciprocal fluxes as maxima and
reciprocal concentrations as minima. Accordingly, two new
constructional features characterize the suggested type of kinetic
barrier diagrams: (i) the minima no longer involve direct
reference to free substrates and products; each diagram refers to
a specific combination of reactant concentrations; and (ii) the
conservation equation of classical enzyme kinetics is involved in
the calculation of both minima and maxima.

The main argument for introducing the modified diagram is its
direct relevance to the results of numerical simulations of the
detailed course of enzyme-catalysed reactions. An example,
constructed with the parameters listed in Table 2, is shown in
Fig. 1. Fig. 1 refers to the equilibrium of the LDH turnover as
catalysed by the pig heart enzyme (Scheme 1). This reaction is
described, at pH 8.4 and 6.3 °C [2-4], by the ten rate constants
found in Table 1. Equilibrium kinetics (Fig. 1) can only be
measured by special methods, such as monitoring the rate of
isotope exchange between labelled reactants. The isotope-
exchange reaction, which involves all five steps of the LDH
turnover (Scheme 1), is that between NAD* and NADH.

It should be noted that Fig. 1 has two ordinates with different
dimensions. Accordingly, Fig. 1 could be regarded as a com-
bination of two diagrams, one for intermediate concentrations
(minima) and one for unidirectional fluxes (maxima). On the one
hand, neither slopes nor barrier heights can be numerically
interpreted with any of the two ordinates [note that the dimen-
sions of barrier height would be time (s)]. On the other hand,
the higher kinetic barrier corresponds to a lower valley (i.e.

higher intermediate concentration) and/or a higher peak (i.e..

lower flux).

The calculations yielding Fig. 1 also involve the equilibrium
concentrations of NAD*, lactate (L), pyruvate (P) and NADH
which are listed in Table 1. This specific set of reactant concen-

trations results in a kinetic situation (see Fig. 1) in which (a) the
equilibrium one-way fluxes in the five consecutive reaction steps
are as closely similar-as possible, and () the concentration of
free enzyme ([E]) is equal to the total concentration of liganded
enzyme ([E,]). Note that, from the conservation equation:

[E]+[E] = [E]

It should be further noted that the numerical values of the rate
constants k,, and k_, on the one hand, and k_, and k_; on the
other hand, are already very similar (1200 ~ 1002 # 190 ~ 246).
From this it follows that the equilibrium fluxes through the three
central steps of Scheme 1 are also very similar. Since this
similarity is determined by true first-order constants, it is
independent of substrate concentrations. By contrast the absolute
values of these three fluxes, as well as their relation to the fluxes
in steps 1 and 5 (coenzyme binding and release) are obviously
determined by reactant concentrations. The simple calculations
which have led to finding those reactant concentrations which
yield both [E,] = [E], and the best approximation to ‘uniform
flux’ are detailed in the following five points.
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Scheme 1. The five-step turnover of the LDH reaction

The minimal mechanism is defined by the possible dissociation
products of enzyme—substrate intermediates, and a corresponding
set of ten macroscopic rate constants.

Abbreviations used: LDH, lactate dehydrogenase; L, lactate; P, pyruvate.
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Table 1. Numerical values of the parameters involved in the calculations yielding Fig. 1.

Reaction conditions: pH 8.4, 6.3 °C. (a) Numerical values of the ten rate constants defined in' Scheme 1 [2-4]. (b) Reactant concentrations (related
by K., = 2.369 x 107*) derived as described in the text.

(a) Rate constants (b) Equilibrium substrate concns.
Parameter Value Parameter Value Parameter Value

k,, 8.74x 10 M~ 1-s7! k_, 526571 [NAD*] 1.6124x 107% M
k,, 6.07x 10* M~*-s7! k_, 1200s7! [L] 1.3437x 1072 M
k., 1002 s7! k_q 246 57! [P] 1.3223x 1075 M
k., 190 s? k_, 1.21 x 108 M71-s72 [NADH] 3.8824x 107" M
ks 16s7! k_g 3.63x107m1-57t

Table 2. Numerical values of the five intermediate concentrations and ten
elementary reactions coupled in the turnover cycle illustrated in
Fig. 1

(a) Intermediate concentrations ([E,] =
molar concn. of liganded enzyme)

:
]
]
1
]
i
' —_
|
Parameter Value ! 1.0 >
! )
[E] 1.0000 [E,] i S
[E¥2') 0.0268 [E.] : z
[ENaDY] 0.0182 [E_] ! k|
Ef oTal) 2
[ENAPH] . i
(b) Elementary reactions (unidirectional fluxes; R0 !
in units of [E ]-s™") N !
)
5 !
Parameter Value 5 _4 ENADH !
8 -—1.01 !
[ '
[E]INAD")k, 14.0932 2 |
TR i |
[ENaDH]£°, 14.0932 | i
[ENAvH] 14.0932 ol - UL
[E][NADH]_, 14.0932 E eV |
[E¥APH] [Pk, 14.0932 T :v
[EYAPH] 18.2469 N —
[ENAD ]k_2 21.8526 1 2 3 4 5
[EN‘D 1k_, 14.0932 Reaction step

Fig. 1. Kinetic barrier diagram for the LDH reaction as defined by the
numerical values of 14 parameters in Table 2

(i) Steps 1 and 5 will yield equal fluxes if: The sequence of reaction steps shown by the abscissae corresponds

[EIINAD*}k,, = [E[NADHJk_, to one cyqle of the turnover reactiop (Scheme 1). T.he ordin'aye yielt.is
the logarithms of both intermediate concentrations (minima; in
A k units of the molar concn. of liganded enzyme, [E,]) and unidirectional
[N DH] _ ~*1 — 0.2408 fluxes (maxima; in units of [E ]-s™).

[NAD*] k_5

yielding

Referring to the overall equilibrium constant (K, = 2.396 x

107%), one further obtains the concentration ratio of pyruvate to (iii) We can now express the concentratlons of all four enzyme

lactate [P] [NAD+] 0.8411 x 104 substrate intermediates with [E¥AP"] as follows:
— =K —=09. x 10~
L - [NADH] . . .
.. . [.] [ETAP] = [H[E’“‘D 1=0.6797 [EN4"]
(ii)) In a similar manner, one can select the pyruvate con- K,

centration at which:

[E}APH] = K,[EYAP"] = 2.7684 [E¥AP"]
[ENAPHk, . = [ENAPH][P]k_, P strL

wherefrom . ) [ENaPH] = 59_ [E;IADH] = 32.8750 [EN“D+]
[P =l—(:i= 1.3223 x 10~ M (P]
and -4 (iv) If we further introduce the definition for liganded enzyme,
we obtain from
[L]= E]_-ni‘i]zl;l—] =1.3437x 102Mm + +
Keq. [NAD ] [E‘] = [ENAD ]+[EI€AD ]+[E§ADH]+[ENADH]
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Kinetic barrier diagrams

the following .
[ENAP'] = 0.0268 [E,]

[ENAP"} = 0.0182[E,]

[EZAPH] = 0.0742[E,]
and
[ENAPH] = (.8808 [E,]

Finally, derived from the equilibrium condition, we also have
the equality:

[E][INAD*]k,, = [E¥*P"]k_, = 14.0932[E,]

from which

[—Eﬁ = 6.2016 x 10°*[NAD*
E] [ 1
and if
[E] = [E,],
then
[NAD*] = 1.6125x 10~%m
and

[NADH] = 3.8824 x 10" M

Considering the more general argument derived from Fig. 1, I
conclude that it is possible to construct kinetic barrier diagrams
which provide a comprehensive quantitative illustration of en-
zymic turnover reactions. Diagrams such as those shown in Fig.
1 can be numerically derived from phenomenological enzyme
kinetics. Although this type of diagram appears to be very useful
in displaying the results of numerical simulations of enzyme
kinetics, it is not dependent on any of the conceptions derived
from transition-state theory (free-energy of activation, transition
state, standard state, etc.). The example discussed here refers to
the equilibrium of a two-substrate, two-product, five-step mech-
anism (Scheme 1). However, the suggested procedure is not
limited by the number of reactants and/or reaction steps, and
can also be used for clearly illustrating the distinction between
equilibrium and non-equilibrium reactions.

As to the usefulness of the proposed procedure, the present
discussion should be restricted to the choice of ordinate dimen-
sions. I suggest that any quantitative description of the con-
secutive reaction steps of any enzymic-turnover reaction must
yield the numerical values of three groups of dimensionally
distinct quantities: (a) intermediate concentrations (M); (b)
velocities with which these intermediates are transformed into
each other (one-way fluxes, M-s™!); (c¢) time constants which
relate fluxes to intermediate concentrations (first-order rate
constants, s™1).

The usefulness of a diagram which is intended to illustrate
such results critically depends on the choice of quantities plotted.
The present procedure is based on plotting reciprocal fluxes (as
maxima) and reciprocal concentrations (as minima), in a ‘peak-
and-valley’-type barrier diagram. This diagram defines the
kinetic barrier as the reciprocal flux:

1 1

o, [ik™

)

the dimensions of which are s-M™'. Also plotted in Fig. 1 are the
reciprocal concentrations of intermediates. Concentrations and
fluxes are, however, related by a time factor, and eqn. (1) might
seem to indicate that, by equating the logarithms of reciprocal
fluxes, concentrations and rate constants, it is possible to draw a
kinetic barrier diagram with a single ordinate from which all
three quantities can be read off. However, these three quantities
have all got different dimensions. For instance, time is constituent
of the dimensions of fluxes and rate constants, but not of
concentrations. Accordingly, by changing unit time from s to ms,
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Fig. 2. Kinetic barrier diagram of the same equilibrium system as in Fig. 1

Both ordinate scales are arithmetic. Left: fractional concentrations
((E] = 1 M); right: fractional resistance (1/v, = 0.3127 s-M™"). Note
the usefulness of also drawing two abscissae specifying intermediate
and reaction step respectively.

the logarithmic values of fluxes and rate constants are changed
by three units, whereas the logarithmic values of concentrations
remain unchanged. Consequently, the shape of the diagram can
be freely manipulated while retaining its exactness. In other
words, the distance between the levels of minima and maxima
can in no case yield additional useful information. Quantities
with different dimensions basically require different ordinates.

My choice of defining a kinetic barrier by reciprocal flux
(eqn. 1) is supported by the analogy of this quantity to resistance
in electrical circuits [5). The analogy reaches so far that even eqn.
(2) is valid [5,6]:

1 1 1

1
— =t A— )
v, v, v, v

n
according to which the barrier to the overall reaction can be
calculated as the sum of all the barriers encountered in the
constituent reaction steps. Eqn. (2) is obviously analogous to
Ohm’s Law. For the latter reason, if the kinetic barrier is defined
as reciprocal flux (I/v), it may also be referred to as resistance.
There are no logarithms involved in eqns. (1) and (2). Indeed,
I also find that logarithmic scales are not essential features of
kinetic barrier diagrams based on plotting fluxes and concen-
trations. Especially informative diagrams can be drawn by
plotting fractional intermediate concentrations (upside down) as
minima, and fractional resistance of individual reaction steps to
the overall reaction velocity as maxima (Fig. 2). Fig. 2 illustrates
the same kinetic equilibrium as Fig. 1. Accordingly, the overall
reaction can be identified as isotope exchange between NAD*
and NADH at the specified equilibrium substrate concentrations.
The illustrative power of Figs. 1 and 2 can be conceived even
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more clearly if one also considers two further isotope-exchange
reactions which may potentially be observed in the same equi-
librium system. These are, in addition to the [NAD*]<==[NADH]
exchange reaction, a [lactate] =[NADH] exchange, and a
[L]==[P] exchange (see Yagil & Hoberman [6]). It should be
noted that the reciprocal velocities of all three exchange reactions
can be read off from Figs. 1 and 2, namely, as the sum of five,
four and three of the resistances (barriers) shown in any one of
these two Figures. The straightforwardness with which Figs. 1
and 2 depict this result, and the fact that Fig. 2 yields an
equivalent substitute for Fig. 1, are strong arguments for defining
kinetic barrier as reciprocal flux.
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