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This study aimed to develop a machine learning (ML) model for predicting pulmonary embolism (PE) in 
patients with gastrointestinal cancers, a group at increased risk for PE. We conducted a retrospective, 
multicenter study analyzing patients who underwent computed tomographic pulmonary angiography 
(CTPA) between 2010 and 2020. The study utilized demographic and clinical data, including the Wells 
score and D-dimer levels, to train a random forest ML model. The model’s effectiveness was assessed 
using the area under the receiver operating curve (AUROC). In total, 446 patients from hospital A 
and 139 from hospital B were included. The training set consisted of 356 patients from hospital A, 
with internal validation on 90 and external validation on 139 patients from hospital B. The model 
achieved an AUROC of 0.736 in hospital A and 0.669 in hospital B. The ML model significantly reduced 
the number of patients recommended for CTPA compared to the conventional diagnostic strategy 
(hospital A; 100.0% vs. 91.1%, P < 0.001, hospital B; 100.0% vs. 93.5%, P = 0.003). The results indicate 
that an ML-based prediction model can reduce unnecessary CTPA procedures in gastrointestinal cancer 
patients, highlighting its potential to enhance diagnostic efficiency and reduce patient burden.
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Venous thromboembolism (VTE) occurs in 15-20% of cancer patients1. Among cancer populations, VTE 
increases the risk of death2–4. Epidemiological studies have reported that the highest risk of VTE is found in 
intra-abdominal cancers, including gastrointestinal cancers5–7. Among VTEs, pulmonary embolism (PE) is a 
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clinically important disease that requires urgent management. Early detection of PE is crucial because massive 
PE can lead to cardiac arrest or circulatory collapse, both of which are associated with high mortality rates8.

Many studies have developed various diagnostic strategies for PE. These strategies aim to identify low-risk 
patients for PE from whom it is safe to withhold imaging studies and anticoagulation therapy9. Assessments 
of clinical pretest probability (C-PTP), such as the Wells score, are most often used in combination with the 
D-dimer test. It has been well established that PE can be ruled out in patients with low C-PTP and D-dimer 
levels under 500ng per milliliter9–11. However, these patients only constitute approximately 30% of outpatients12.

Computed tomography pulmonary angiography (CTPA) is the method of choice for evaluating pulmonary 
vasculature in patients with suspected PE10. However, CTPA is associated with issues such as radiation exposure, 
potential side effects from the contrast media, and high cost. Various efforts have been made to reduce 
unnecessary CTPA in patients with suspected PE. Several studies have aimed to investigate the potential for 
modifying the cut-off value of the D-dimer test12,13. Nevertheless, these studies did not analyze patients with 
cancer, which has limited the ability of their proposed strategies to predict VTE in cancer patients.

More recently, there have been studies intending to use artificial intelligence to improve the diagnosis of PE. 
One study used machine learning (ML) to support clinical decision-making for CTPA in patients with moderate 
to high C-PTP14. Another study used ML for risk-stratification of deep vein thrombosis (DVT) using Wells score 
and D-dimer15. However, there have been few studies using ML to aid in the decision-making of CTPA in cancer 
patients suspected of having PE.

The existing diagnostic methods for PE have limited applicability to cancer patients. This is primarily because 
cancer patients tend to have elevated D-dimer levels16. PE is relatively common in gastrointestinal cancers5–7. 
Therefore, our objective in the current work was to improve the diagnostic strategy used for PE in gastrointestinal 
cancer patients through the use of ML, with the ultimate aim of reducing unnecessary CTPA scans.

Methods
Study design and patients
This retrospective, multicenter study investigated patients with gastrointestinal cancer who underwent CTPA 
between 2010 and 2020 by surveying an electrical medical records database (Fig. 1). Data from Hospital A (Seoul 
National University Hospital, Seoul, Korea) were used for development and internal validation of the proposed 
model. Data from Hospital B (Seoul National University Bundang Hospital, Seongnam-si, Korea) were used for 
external validation of the proposed model. The diagnosis of gastrointestinal cancer was confirmed based on the 
pathological results. Hepatocellular carcinoma diagnosed based on imaging without pathological confirmation 
was also included17. Any patients who met the exclusion criteria were not included in the analysis; the exclusion 
criteria were as follows: suspected PE associated with causes other than cancer or other malignancy, no evidence 
of malignancy at the time of CTPA, ambiguous diagnosis of PE on CTPA, or missing data. We also checked heart 
rate through electrocardiography, and we excluded patients who did not have an electrocardiogram at the time 
of the CTPA. The diagnosis of PE was confirmed by trained experts based on CTPA.

This study was approved by the institutional review board (IRB) of the Seoul National University Hospital, 
Korea (IRB No.2009-146-1159) and the Seoul National University Bundang Hospital, Korea (IRB No.B-2111-
721-401). The need for informed consent was waived by the IRB of Seoul National University Hospital and the 
Seoul National University Bundang Hospital. The study was conducted in accordance with the Declaration of 
Helsinki.

Data collection and definition
Patient characteristics were retrospectively collected, including age, sex, cancer diagnosis, Wells score and 
components of the Wells score, and D-dimer. Gastrointestinal cancers were defined as cancers of gastrointestinal 
tract from esophagus to anus as well as cancers of liver and pancreatobiliary system18. The Wells score was 

Fig. 1. Study flow chart. GI cancer gastrointestinal cancer, PE pulmonary embolism, CTPA computed 
tomographic pulmonary angiography, ECG electrocardiography.
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calculated using a method that has previously been used in patients suspected of having PE19. The components 
of the Wells score included the signs and symptoms of VTE, alternative diagnosis less likely than pulmonary 
embolism, heart rate > 100 beats per minute, history of VTE, immobilization, malignancy, and hemoptysis. 
Among them, we did not include malignancy because all considered participants were diagnosed with cancer. 
History of VTE was defined as a previous history of PE or DVT19. A low C-PTP was defined as a Wells score of 0 
to 1.5, a moderate C-PTP was defined as a Wells score from 2.0 to 6.0, and a high C-PTP was defined as a Wells 
score of 6.5 or higher19. According to the conventional PE diagnostic strategy, PE could be ruled out in patients 
with low to moderate C-PTP and D-dimer levels of less than 500ng per milliliter. Otherwise, CTPA is required 
to identify PE10. (Supplementary Fig. 1).

Model development
This study used four machine learning algorithms: logistic regression, XGBoost, LightGBM, and random forest. 
The interpretability of the results produced by logistic regression is particularly important in the context of 
clinical decision-making. XGBoost and LightGBM are gradient boosting methods that have exhibited high 
performance and efficiency20,21. The random forest (RF) model demonstrated satisfactory performance in both 
regression and classification, particularly in the healthcare field, where deep learning is not accessible due to a 
lack of data22,23. Four models were trained, and the one showing the best performance was selected for external 
validation.

Study outcome measures
The primary outcome considered in this study was the area under the receiver operating characteristics curve 
(AUROC) and the accuracy of the ML model for the diagnosis of PE in patients with gastrointestinal cancer.

As a secondary outcome, we compared the number of CTPA performed for PE in the ML model with the 
conventional diagnostic strategy. We also investigated the feature importance of the ML model.

Statistical analysis
To compare the baseline characteristics, the Student’s t-test and the Chi-square test were used for continuous 
and dichotomous variables, respectively. If any subgroups had less than four subjects, the Fisher’s exact test was 
used instead of a Chi-square test.

We utilized the components of the Wells score and incorporated D-dimer as continuous variables in machine 
learning training. We evaluated our model using the hold-out test method. We performed a five-fold cross 
validation on 80% of the subjects to determine the optimal hyperparameters. Subsequently, we evaluated the 
model using the remaining 20% of the subjects. To evaluate this, we measured the performance of the model 
using the area under the receiver operating characteristics curve (AUROC), sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV). To determine the optimal cutoff, we identified the 
point at which the sensitivity reached 1.024. Moreover, to evaluate the net benefits of the proposed ML model and 
the conventional diagnostic strategy, we performed a decision curve analysis (DCA)25. The benefit was defined 
as accurately identifying PE patients while reducing unnecessary CTPA scans, while the harm was defined as 
either missing PE cases or performing unnecessary CTPA scans.

P-values lower than 0.05 were considered to indicate statistically significant findings. Statistical calculations 
were performed using SPSS and scikit-learn’s random forest model. To measure feature importance, the SHAP 
algorithm was used. Lastly, statistical analysis based on the Delong test was performed to compare prediction 
ROC curves between models.

Results
Baseline characteristics of the study population
In hospital A, 708 patients diagnosed with gastrointestinal cancer underwent CTPA; of these, 262 were excluded 
because of the exclusion criteria, thus leaving a total of 446 patients. In hospital B, 388 patients diagnosed with 
gastrointestinal cancer underwent CTPA; 249 of these were excluded (Fig. 1). In the training set, 103 (28.9%) 
patients were diagnosed with PE. Table 1 presents a comparison of the baseline characteristics according to PE 
in the development dataset. Pancreatic cancer was the most common type of cancer in patients with PE (33.0%). 
Patients with PE had higher C-PTP (40.8% vs. 23.3%, P < 0.001). More patients were suspected to have DVT 
among the patients with PE (48.5% vs. 26.9%, P < 0.001). History of VTE (2.4% vs. 14.6%, P < 0.001) was more 
common in patients with PE. There were no significant differences between the two groups in the other variables.

Demographics were evaluated on the internal validation set and on the external validation set (Table 2). The 
patients who were treated at hospital B were older than the patients who were treated at hospital A (hospital 
A; 65.6 ± 12.6 vs. hospital B; 69.4 ± 10.9, P = 0.021). There were also differences in the types of cancer among 
hospitals. The patients who were treated at hospital B had higher incidences of pancreatic cancer (20.0% vs. 
29.5%) and cholangiocarcinoma (6.7% vs. 12.2%), while they exhibited lower prevalence of colon cancer (22.2% 
vs. 16.5%) and hepatocellular carcinoma (27.8% vs. 12.2%). The patients who were treated at hospital A had 
higher C-PTP than hospital B (35.6% vs. 15.8%, P < 0.001). There were more patients who were suspected to have 
DVT (36.7% vs. 13.7%, P < 0.001) and who were reported to have a history of VTE (13.3% vs. 1.4%, P < 0.001) 
among the patients who were treated at hospital A.

Primary study outcomes
We have trained the data using several machine learning models. Among them, we employed the random forest 
model with the highest AUROC (Supplementary Table 1). The performance of the ML model is summarized 
in Table 3; Fig. 2. The AUROC and accuracy of the ML model during internal validation were 0.736 and 0.433, 
respectively. In the external validation, the AUROC and accuracy of the ML model were 0.669 and 0.345, 
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All patients Hospital A Hospital B

P value(n = 229) (n = 90) (n = 139)

Age (mean) 67.9 ± 11.7 65.6 ± 12.6 69.4 ± 10.9 0.021

Male (%) 143 (62.4) 63 (70.0) 80 (57.6) 0.078

PE (%) 72 (31.4) 31 (34.4) 41 (29.5) 0.521

Cancer (%) 0.018

 Gastric cancer 48 (21.0) 18 (20.0) 30 (21.6)

 Colon cancer 43 (18.8) 20 (22.2) 23 (16.5)

 Hepatocellular carcinoma 42 (18.3) 25 (27.8) 17.(12.2)

 Pancreatic cancer 59 (25.8) 18 (20.0) 41 (29.5)

 Cholangiocarcinoma 23 (10.0) 6 (6.7) 17 (12.2)

 Others 14 (6.1) 3 (3.3) 11 (7.9)

Components of wells score (%)

 Signs and symptoms of DVT 52 (22.7) 33 (36.7) 19 (13.7) < 0.001

 Alternative diagnosis less 
likely than PE 99 (43.2) 46 (51.1) 53 (38.1) 0.072

 Heart rate > 100/min 120 (52.4) 47 (52.2) 73 (52.5) 1.000

 Immobilization 79 (34.5) 35 (38.9) 44 (31.7) 0.326

 History of VTE 14 (6.1) 12 (13.3) 2 (1.4) 0.001

 Hemoptysis 2 (0.9) 2 (2.2) 0 (0) 0.153

Wells score (%) 0.001

 Low to intermediate 175 (76.4) 58 (64.4) 117 (84.2)

 High 54 (23.6) 32 (35.6) 22 (15.8)

D-dimer ≥  500 ng/mL (%) 228 (99.6) 89 (98.9) 139 (100.0) 0.393

Table 2. Baseline characteristics for internal and external validation datasets. DVT deep vein thrombosis, PE 
pulmonary embolism, VTE venous embolism.

 

All patients Patients without PE Patients with PE

P value(n = 356) (n = 253) (n = 103)

Age (mean) 66.5 ± 11.1 66.8 ± 10.9 65.5 ± 11.6 0.318

Male (%) 243 (68.3) 177 (70.0) 66 (64.1) 0.339

Cancer (%) < 0.001

 Gastric cancer 70 (19.7) 58 (22.9) 12 (11.7)

 Colon cancer 72 (20.2) 49 (19.4) 23 (22.3)

 Hepatocellular carcinoma 81 (22.8) 65 (25.7) 16 (15.5)

 Pancreatic cancer 71 (19.9) 37 (14.6) 34 (33.0)

 Cholangiocarcinoma 40 (11.2) 26 (10.3) 14 (13.6)

 Others 22 (6.2) 18 (7.1) 4 (3.9)

Components of Wells score (%)

 Signs and symptoms of DVT 118 (33.1) 68 (26.9) 50 (48.5) < 0.001

 Alternative diagnosis less 
likely than PE 168 (47.2) 114 (45.1) 54 (52.4) 0.252

 Heart rate > 100/min 160 (44.9) 113 (44.7) 47 (45.6) 0.961

 Immobilization 136 (38.2) 91 (36.0) 45 (43.7) 0.215

 History of VTE 21 (5.9) 6 (2.4) 15 (14.6) < 0.001

 Hemoptysis 3 (0.8) 1 (0.4) 2 (1.9) 0.202

Wells score (%) 0.001

 Low to intermediate 225 (71.6) 194 (76.7) 61 (59.2)

 High 101 (28.4) 59 (23.3) 42 (40.8)

D-dimer ≥  500 ng/mL (%) 348 (97.8) 246 (97.2) 102 (99.0) 0.447

Table 1. Baseline characteristics of patients according to the presence of pulmonary embolism. DVT deep vein 
thrombosis, PE pulmonary embolism, VTE venous embolism.
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respectively. We validated this model at an operating point with high sensitivity (1.000) for use as a screening 
tool, and the results of external validation showed a sensitivity of 0.976.

The factor analysis revealed that the variables “less likely than PE” and “hemoptysis” were only present in the 
identical factors. Consequently, when the RF model was analyzed without hemoptysis, the AUROC remained 
consistent (Supplemental Table 2 and Supplemental Fig. 2).

Fig. 2. AUROC of conventional model and machine learning model. AUROC area under the receiver 
operating characteristics curve, RF random forest, LR logistic regression, XGB xgboost, LGBM light gradient 
boosting model.

 

Features

Hospital A Hospital B

WC + D-dimer WC + D-dimer

AUROC 0.736 (0.624–0.838) 0.669 (0.557–0.767)

Accuracy 0.433 (0.333–0.533) 0.345 (0.226–0.424)

Sensitivity 1.000 (1.000–1.000) 0.976 (0.921-1.000)

NPV 1.000 (1.000–1.000) 0.889 (0.625-1.000)

Specificity 0.136 (0.053–0.231) 0.082 (0.030–0.136)

PPV 0.378 (0.275–0.482) 0.308 (0.231–0.388)

Table 3. Performance of machine learning model for predicting PE. PE pulmonary embolism, WC 
components of Wells score, AUROC area under receiver operating curve, NPV negative predictive value, PPV 
positive predictive value.
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Secondary study outcomes
Figure 3 illustrates the feature importance of the ML model. According to the SHAP analysis of the ML model, 
high levels of D-dimer as well as positive signs and symptoms of DVT have the greatest impacts on the prediction 
of PE in both hospitals. Clinically, D-dimer, which has been a pivotal biomarker in stratifying patients for CTPA, 
was also found to be the most important variable in the ML model. We also analyzed the variables important for 
predicting PE in the traditional logistic model and Mean Decrease Gini, and the results were consistent with the 
SHAP analysis. (Supplemental Table 3 and Supplemental Fig. 3).

In accordance with the conventional diagnostic strategy, all patients from both hospitals were required to 
undergo a CTPA for a PE to be diagnosed. On the other hand, the number of patients classified as requiring 
CTPA during the diagnosis of PE was significantly reduced in both hospitals after the implementation of the ML 
model (hospital A; 100.0% vs. 91.1%, P < 0.001, hospital B; 100.0% vs. 93.5%, P = 0.003) (Fig. 4).

The DCA indicates that our ML model maintains a higher net benefit across various thresholds, while the 
conventional diagnostic strategy’s net benefit declines rapidly and becomes negative beyond a threshold of 0.3; 
these findings demonstrate the superior clinical utility of the ML model (Supplementary Fig. 4).

Discussion
In gastrointestinal cancer patients, PE is one of the most critical complications that necessitates early diagnosis 
and treatment. However, the diagnostic strategy that is currently used for PE has exhibited unsatisfactory 
performance in ruling out PE, which has led to unnecessary CTPA scans in cancer patients. The current study 
showed that the ML model enhances the performance of ruling out PE and reduces unnecessary CTPA scans.

Several studies have reported that the ML model can be used to enhance the diagnostic strategies used for 
PE. One study demonstrated that a neural network model utilizing raw structured electronic medical record 
data can be used to predict the risk of PE14. They developed a predictive model that was specifically tailored to 
moderate to high C-PTP patients. Willian et al. showed that a ML model can outperform existing risk assessment 
scoring in excluding DVT15. Humberto et al. reported that a ML model outperformed traditional risk scores 
such as Wells score combined with D-dimer, the revised Geneva score, and the pulmonary embolism rule-out 
criteria score (PERC)26. This study also showed that ML models could improve the diagnosis of PE compared to 
conventional diagnostic strategies, even though it was based on patients with gastrointestinal cancer. We selected 
the RF model because it showed the best performance among the machine learning models. Compared to deep 
learning, RF models can be used on a smaller number of patients, which is advantageous for diseases with 
relatively low incidence, such as PE22,23. The RF model can also track which features were mainly considered by 

Fig. 4. Comparison of patients who needed CT pulmonary angiography in different hospitals between 
conventional diagnostic strategy and machine learning model. PE pulmonary embolism, CTPA computed 
tomographic pulmonary angiography.

 

Fig. 3. Feature importance after machine learning. HR heart rate, VTE venous embolism, DVT deep vein 
thrombosis, PE pulmonary embolism.
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the model in the process of making decisions. This is a form of explainable artificial intelligence, which can solve 
the model reliability problem that is being faced by most deep learning algorithms.

Among the patients who were diagnosed with cancer in South Korea in 2018, gastric cancer and colorectal 
cancer were the most common, with gastrointestinal cancer accounting for 36% of all cancer cases27. Based on 
that study, the ML model proposed herein has the potential to reduce unnecessary CTPA scans in thousands 
of gastrointestinal cancer patients per year in South Korea. Considering that a CTPA scan costs approximately 
400 US dollars in South Korea, this could result in significant cost savings in healthcare expenses. It could also 
decrease the medical burden by reducing complications associated with contrast media, such as nephropathy 
and anaphylaxis. The DCA also showed that the ML model offers a greater net benefit than the traditional 
diagnostic strategy. However, the small number of variables considered limits the interpretability of the results 
from DCA, and this warrants further study.

In this study, pancreatic cancer was the most common type of cancer in patients with PE. Previous studies have 
reported that pancreatic cancer carries the highest risk of VTE among all cancer types7,28. Signs and symptoms of 
DVT, along with history of VTE, are factors that have previously been indicated to be associated with PE10,19,29. 
While immobilization is a strong risk factor for PE19, there was no significant difference in immobilization 
according to PE in this study. This could be attributed to the fact that the present study focused on cancer 
patients. Cancer itself is a risk factor for PE19, and it can also influence the performance status of patients.

In the analysis of SHAP values, high D-dimer levels as well as positive signs and symptoms of DVT were found 
to be the most important variables in predicting PE. This was observed in both groups, i.e., those in hospital A 
and hospital B. The link between DVT and PE is well known. A PE occurs when part of the DVT clot breaks off 
and travels along the blood vessels to the lungs30. D-dimer is also known to be a very important consideration 
affecting the diagnosis of PE. D-dimer was of even greater importance in the current study because it focused on 
cancer patients16. Many prior studies have attempted to achieve improved diagnostic rates by altering the cut-off 
value of D-dimer. One study enhanced the diagnostic rate by adjusting the D-dimer cutoff value based on age31. 
Another study ruled out more patients suspected of having PE by raising the D-dimer cut-off value to 1000 ng 
per milliliter in the low probability group based on their Wells scores12. Based on these results, modifying the 
cut-off value of the D-dimer test has the potential to enhance the diagnostic rate for PE, particularly in cancer 
patients who exhibit elevated D-dimer levels. We did not use a previously established D-dimer cut-off value in 
this study, as we instead let the ML model adjust the cut-off value based on other variables, which may have 
contributed to the reduction in the number of CTPA scans required by the ML model.

This study has several limitations. First, as a retrospective study, it may potentially involve unexpected bias. 
Since our analysis focused on patients who had undergone CTPA scans, there could be selective bias inherent in 
the sample. Second, the AUROC values of the ML model are relatively lower than those seen in other studies14,31. 
This discrepancy is attributed to the fact that the subjects of this study were cancer patients, who typically exhibit 
higher D-dimer levels than non-cancer patients16. We used ML to address these D-dimer-related limitations. 
However, as most artificial intelligence—including ML—operates in the form of a black-box model, the precise 
cutoff value for D-dimer within the ML model remains unknown. Nevertheless, we underscored the significance 
of D-dimer using feature importance, which is an explainable artificial intelligence technique. Third, the study’s 
sample size is relatively small. PE is a relatively rare disease with an annual incidence of approximately 0.1%32. 
Nevertheless, despite using smaller sample sizes, previous studies have successfully developed ML models with 
robust performance33,34. Fourth, we compared the ML model with the Wells score combined with D-dimer. 
However, aside from the Wells score, other assessment tools such as the revised Geneva score and PERC are 
also used for PE risk assessment35. Further research is warranted to make comparisons between these scoring 
systems with ML model. Fifth, we only used ML models in this study. Various AI models have recently been 
introduced, and many studies have reported using them36–40. Since we only used variables that are used in 
existing PE diagnostic methods, we chose the ML model, taking into account the data structure. However, 
further performance improvements can be achieved by using a deep learning model with medical imaging data 
and monitoring data such as electrocardiograms. We plan to conduct future studies involving different variables 
and models.

Despite these limitations, this study has several strengths. To our knowledge, this study is the first to develop 
a ML model to predict PE in gastrointestinal cancer patients. We applied ML to a simplified model that has 
already been demonstrated in prior work, which makes it more easily accessible in the emergent department. 
Further, since the weight of each variable in the Wells score and the cut-off value of D-dimer are adjusted in 
the ML model, the limitations of the existing diagnostic system can be overcome. Therefore, a large prospective 
study in the future would be warranted to verify these results.

Conclusion
We developed an ML-based model to predict PE in patients with gastrointestinal cancer. D-dimer was found 
to be the most important variable in the feature importance analysis. This machine learning model has the 
potential to both enhance diagnostic strategies for pulmonary embolism (PE) and reduce the number of 
unnecessary computed tomography pulmonary angiography (CTPA) procedures in the diagnostic process for 
gastrointestinal cancer patients. It is necessary to verify these results in a prospective cohort study in the future. 
We plan to improve the performance of the model by including additional variables and considering a larger 
cohort in the future.

Data availability
The anonymized datasets generated and analyzed during the current study are available from the corresponding 
author upon reasonable request.
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